/* * Mesa 3-D graphics library * Version: 7.5 * * Copyright (C) 1999-2008 Brian Paul All Rights Reserved. * Copyright (C) 2009 VMware, Inc. All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include "glheader.h" #include "imports.h" #include "context.h" #include "enums.h" #include "light.h" #include "macros.h" #include "simple_list.h" #include "mtypes.h" #include "math/m_matrix.h" void GLAPIENTRY _mesa_ShadeModel( GLenum mode ) { GET_CURRENT_CONTEXT(ctx); ASSERT_OUTSIDE_BEGIN_END(ctx); if (MESA_VERBOSE & VERBOSE_API) _mesa_debug(ctx, "glShadeModel %s\n", _mesa_lookup_enum_by_nr(mode)); if (mode != GL_FLAT && mode != GL_SMOOTH) { _mesa_error(ctx, GL_INVALID_ENUM, "glShadeModel"); return; } if (ctx->Light.ShadeModel == mode) return; FLUSH_VERTICES(ctx, _NEW_LIGHT); ctx->Light.ShadeModel = mode; if (mode == GL_FLAT) ctx->_TriangleCaps |= DD_FLATSHADE; else ctx->_TriangleCaps &= ~DD_FLATSHADE; if (ctx->Driver.ShadeModel) ctx->Driver.ShadeModel( ctx, mode ); } /** * Set the provoking vertex (the vertex which specifies the prim's * color when flat shading) to either the first or last vertex of the * triangle or line. */ void GLAPIENTRY _mesa_ProvokingVertexEXT(GLenum mode) { GET_CURRENT_CONTEXT(ctx); ASSERT_OUTSIDE_BEGIN_END(ctx); if (MESA_VERBOSE&VERBOSE_API) _mesa_debug(ctx, "glProvokingVertexEXT 0x%x\n", mode); switch (mode) { case GL_FIRST_VERTEX_CONVENTION_EXT: case GL_LAST_VERTEX_CONVENTION_EXT: break; default: _mesa_error(ctx, GL_INVALID_ENUM, "glProvokingVertexEXT(0x%x)", mode); return; } if (ctx->Light.ProvokingVertex == mode) return; FLUSH_VERTICES(ctx, _NEW_LIGHT); ctx->Light.ProvokingVertex = mode; } /** * Helper function called by _mesa_Lightfv and _mesa_PopAttrib to set * per-light state. * For GL_POSITION and GL_SPOT_DIRECTION the params position/direction * will have already been transformed by the modelview matrix! * Also, all error checking should have already been done. */ void _mesa_light(struct gl_context *ctx, GLuint lnum, GLenum pname, const GLfloat *params) { struct gl_light *light; ASSERT(lnum < MAX_LIGHTS); light = &ctx->Light.Light[lnum]; switch (pname) { case GL_AMBIENT: if (TEST_EQ_4V(light->Ambient, params)) return; FLUSH_VERTICES(ctx, _NEW_LIGHT); COPY_4V( light->Ambient, params ); break; case GL_DIFFUSE: if (TEST_EQ_4V(light->Diffuse, params)) return; FLUSH_VERTICES(ctx, _NEW_LIGHT); COPY_4V( light->Diffuse, params ); break; case GL_SPECULAR: if (TEST_EQ_4V(light->Specular, params)) return; FLUSH_VERTICES(ctx, _NEW_LIGHT); COPY_4V( light->Specular, params ); break; case GL_POSITION: /* NOTE: position has already been transformed by ModelView! */ if (TEST_EQ_4V(light->EyePosition, params)) return; FLUSH_VERTICES(ctx, _NEW_LIGHT); COPY_4V(light->EyePosition, params); if (light->EyePosition[3] != 0.0F) light->_Flags |= LIGHT_POSITIONAL; else light->_Flags &= ~LIGHT_POSITIONAL; break; case GL_SPOT_DIRECTION: /* NOTE: Direction already transformed by inverse ModelView! */ if (TEST_EQ_3V(light->SpotDirection, params)) return; FLUSH_VERTICES(ctx, _NEW_LIGHT); COPY_3V(light->SpotDirection, params); break; case GL_SPOT_EXPONENT: ASSERT(params[0] >= 0.0); ASSERT(params[0] <= ctx->Const.MaxSpotExponent); if (light->SpotExponent == params[0]) return; FLUSH_VERTICES(ctx, _NEW_LIGHT); light->SpotExponent = params[0]; _mesa_invalidate_spot_exp_table(light); break; case GL_SPOT_CUTOFF: ASSERT(params[0] == 180.0 || (params[0] >= 0.0 && params[0] <= 90.0)); if (light->SpotCutoff == params[0]) return; FLUSH_VERTICES(ctx, _NEW_LIGHT); light->SpotCutoff = params[0]; light->_CosCutoffNeg = (GLfloat) (cos(light->SpotCutoff * DEG2RAD)); if (light->_CosCutoffNeg < 0) light->_CosCutoff = 0; else light->_CosCutoff = light->_CosCutoffNeg; if (light->SpotCutoff != 180.0F) light->_Flags |= LIGHT_SPOT; else light->_Flags &= ~LIGHT_SPOT; break; case GL_CONSTANT_ATTENUATION: ASSERT(params[0] >= 0.0); if (light->ConstantAttenuation == params[0]) return; FLUSH_VERTICES(ctx, _NEW_LIGHT); light->ConstantAttenuation = params[0]; break; case GL_LINEAR_ATTENUATION: ASSERT(params[0] >= 0.0); if (light->LinearAttenuation == params[0]) return; FLUSH_VERTICES(ctx, _NEW_LIGHT); light->LinearAttenuation = params[0]; break; case GL_QUADRATIC_ATTENUATION: ASSERT(params[0] >= 0.0); if (light->QuadraticAttenuation == params[0]) return; FLUSH_VERTICES(ctx, _NEW_LIGHT); light->QuadraticAttenuation = params[0]; break; default: _mesa_problem(ctx, "Unexpected pname in _mesa_light()"); return; } if (ctx->Driver.Lightfv) ctx->Driver.Lightfv( ctx, GL_LIGHT0 + lnum, pname, params ); } void GLAPIENTRY _mesa_Lightf( GLenum light, GLenum pname, GLfloat param ) { GLfloat fparam[4]; fparam[0] = param; fparam[1] = fparam[2] = fparam[3] = 0.0F; _mesa_Lightfv( light, pname, fparam ); } void GLAPIENTRY _mesa_Lightfv( GLenum light, GLenum pname, const GLfloat *params ) { GET_CURRENT_CONTEXT(ctx); GLint i = (GLint) (light - GL_LIGHT0); GLfloat temp[4]; ASSERT_OUTSIDE_BEGIN_END(ctx); if (i < 0 || i >= (GLint) ctx->Const.MaxLights) { _mesa_error( ctx, GL_INVALID_ENUM, "glLight(light=0x%x)", light ); return; } /* do particular error checks, transformations */ switch (pname) { case GL_AMBIENT: case GL_DIFFUSE: case GL_SPECULAR: /* nothing */ break; case GL_POSITION: /* transform position by ModelView matrix */ TRANSFORM_POINT(temp, ctx->ModelviewMatrixStack.Top->m, params); params = temp; break; case GL_SPOT_DIRECTION: /* transform direction by inverse modelview */ if (_math_matrix_is_dirty(ctx->ModelviewMatrixStack.Top)) { _math_matrix_analyse(ctx->ModelviewMatrixStack.Top); } TRANSFORM_DIRECTION(temp, params, ctx->ModelviewMatrixStack.Top->m); params = temp; break; case GL_SPOT_EXPONENT: if (params[0] < 0.0 || params[0] > ctx->Const.MaxSpotExponent) { _mesa_error(ctx, GL_INVALID_VALUE, "glLight"); return; } break; case GL_SPOT_CUTOFF: if ((params[0] < 0.0 || params[0] > 90.0) && params[0] != 180.0) { _mesa_error(ctx, GL_INVALID_VALUE, "glLight"); return; } break; case GL_CONSTANT_ATTENUATION: if (params[0] < 0.0) { _mesa_error(ctx, GL_INVALID_VALUE, "glLight"); return; } break; case GL_LINEAR_ATTENUATION: if (params[0] < 0.0) { _mesa_error(ctx, GL_INVALID_VALUE, "glLight"); return; } break; case GL_QUADRATIC_ATTENUATION: if (params[0] < 0.0) { _mesa_error(ctx, GL_INVALID_VALUE, "glLight"); return; } break; default: _mesa_error(ctx, GL_INVALID_ENUM, "glLight(pname=0x%x)", pname); return; } _mesa_light(ctx, i, pname, params); } void GLAPIENTRY _mesa_Lighti( GLenum light, GLenum pname, GLint param ) { GLint iparam[4]; iparam[0] = param; iparam[1] = iparam[2] = iparam[3] = 0; _mesa_Lightiv( light, pname, iparam ); } void GLAPIENTRY _mesa_Lightiv( GLenum light, GLenum pname, const GLint *params ) { GLfloat fparam[4]; switch (pname) { case GL_AMBIENT: case GL_DIFFUSE: case GL_SPECULAR: fparam[0] = INT_TO_FLOAT( params[0] ); fparam[1] = INT_TO_FLOAT( params[1] ); fparam[2] = INT_TO_FLOAT( params[2] ); fparam[3] = INT_TO_FLOAT( params[3] ); break; case GL_POSITION: fparam[0] = (GLfloat) params[0]; fparam[1] = (GLfloat) params[1]; fparam[2] = (GLfloat) params[2]; fparam[3] = (GLfloat) params[3]; break; case GL_SPOT_DIRECTION: fparam[0] = (GLfloat) params[0]; fparam[1] = (GLfloat) params[1]; fparam[2] = (GLfloat) params[2]; break; case GL_SPOT_EXPONENT: case GL_SPOT_CUTOFF: case GL_CONSTANT_ATTENUATION: case GL_LINEAR_ATTENUATION: case GL_QUADRATIC_ATTENUATION: fparam[0] = (GLfloat) params[0]; break; default: /* error will be caught later in gl_Lightfv */ ; } _mesa_Lightfv( light, pname, fparam ); } void GLAPIENTRY _mesa_GetLightfv( GLenum light, GLenum pname, GLfloat *params ) { GET_CURRENT_CONTEXT(ctx); GLint l = (GLint) (light - GL_LIGHT0); ASSERT_OUTSIDE_BEGIN_END(ctx); if (l < 0 || l >= (GLint) ctx->Const.MaxLights) { _mesa_error( ctx, GL_INVALID_ENUM, "glGetLightfv" ); return; } switch (pname) { case GL_AMBIENT: COPY_4V( params, ctx->Light.Light[l].Ambient ); break; case GL_DIFFUSE: COPY_4V( params, ctx->Light.Light[l].Diffuse ); break; case GL_SPECULAR: COPY_4V( params, ctx->Light.Light[l].Specular ); break; case GL_POSITION: COPY_4V( params, ctx->Light.Light[l].EyePosition ); break; case GL_SPOT_DIRECTION: COPY_3V( params, ctx->Light.Light[l].SpotDirection ); break; case GL_SPOT_EXPONENT: params[0] = ctx->Light.Light[l].SpotExponent; break; case GL_SPOT_CUTOFF: params[0] = ctx->Light.Light[l].SpotCutoff; break; case GL_CONSTANT_ATTENUATION: params[0] = ctx->Light.Light[l].ConstantAttenuation; break; case GL_LINEAR_ATTENUATION: params[0] = ctx->Light.Light[l].LinearAttenuation; break; case GL_QUADRATIC_ATTENUATION: params[0] = ctx->Light.Light[l].QuadraticAttenuation; break; default: _mesa_error( ctx, GL_INVALID_ENUM, "glGetLightfv" ); break; } } void GLAPIENTRY _mesa_GetLightiv( GLenum light, GLenum pname, GLint *params ) { GET_CURRENT_CONTEXT(ctx); GLint l = (GLint) (light - GL_LIGHT0); ASSERT_OUTSIDE_BEGIN_END(ctx); if (l < 0 || l >= (GLint) ctx->Const.MaxLights) { _mesa_error( ctx, GL_INVALID_ENUM, "glGetLightiv" ); return; } switch (pname) { case GL_AMBIENT: params[0] = FLOAT_TO_INT(ctx->Light.Light[l].Ambient[0]); params[1] = FLOAT_TO_INT(ctx->Light.Light[l].Ambient[1]); params[2] = FLOAT_TO_INT(ctx->Light.Light[l].Ambient[2]); params[3] = FLOAT_TO_INT(ctx->Light.Light[l].Ambient[3]); break; case GL_DIFFUSE: params[0] = FLOAT_TO_INT(ctx->Light.Light[l].Diffuse[0]); params[1] = FLOAT_TO_INT(ctx->Light.Light[l].Diffuse[1]); params[2] = FLOAT_TO_INT(ctx->Light.Light[l].Diffuse[2]); params[3] = FLOAT_TO_INT(ctx->Light.Light[l].Diffuse[3]); break; case GL_SPECULAR: params[0] = FLOAT_TO_INT(ctx->Light.Light[l].Specular[0]); params[1] = FLOAT_TO_INT(ctx->Light.Light[l].Specular[1]); params[2] = FLOAT_TO_INT(ctx->Light.Light[l].Specular[2]); params[3] = FLOAT_TO_INT(ctx->Light.Light[l].Specular[3]); break; case GL_POSITION: params[0] = (GLint) ctx->Light.Light[l].EyePosition[0]; params[1] = (GLint) ctx->Light.Light[l].EyePosition[1]; params[2] = (GLint) ctx->Light.Light[l].EyePosition[2]; params[3] = (GLint) ctx->Light.Light[l].EyePosition[3]; break; case GL_SPOT_DIRECTION: params[0] = (GLint) ctx->Light.Light[l].SpotDirection[0]; params[1] = (GLint) ctx->Light.Light[l].SpotDirection[1]; params[2] = (GLint) ctx->Light.Light[l].SpotDirection[2]; break; case GL_SPOT_EXPONENT: params[0] = (GLint) ctx->Light.Light[l].SpotExponent; break; case GL_SPOT_CUTOFF: params[0] = (GLint) ctx->Light.Light[l].SpotCutoff; break; case GL_CONSTANT_ATTENUATION: params[0] = (GLint) ctx->Light.Light[l].ConstantAttenuation; break; case GL_LINEAR_ATTENUATION: params[0] = (GLint) ctx->Light.Light[l].LinearAttenuation; break; case GL_QUADRATIC_ATTENUATION: params[0] = (GLint) ctx->Light.Light[l].QuadraticAttenuation; break; default: _mesa_error( ctx, GL_INVALID_ENUM, "glGetLightiv" ); break; } } /**********************************************************************/ /*** Light Model ***/ /**********************************************************************/ void GLAPIENTRY _mesa_LightModelfv( GLenum pname, const GLfloat *params ) { GLenum newenum; GLboolean newbool; GET_CURRENT_CONTEXT(ctx); ASSERT_OUTSIDE_BEGIN_END(ctx); switch (pname) { case GL_LIGHT_MODEL_AMBIENT: if (TEST_EQ_4V( ctx->Light.Model.Ambient, params )) return; FLUSH_VERTICES(ctx, _NEW_LIGHT); COPY_4V( ctx->Light.Model.Ambient, params ); break; case GL_LIGHT_MODEL_LOCAL_VIEWER: newbool = (params[0]!=0.0); if (ctx->Light.Model.LocalViewer == newbool) return; FLUSH_VERTICES(ctx, _NEW_LIGHT); ctx->Light.Model.LocalViewer = newbool; break; case GL_LIGHT_MODEL_TWO_SIDE: newbool = (params[0]!=0.0); if (ctx->Light.Model.TwoSide == newbool) return; FLUSH_VERTICES(ctx, _NEW_LIGHT); ctx->Light.Model.TwoSide = newbool; if (ctx->Light.Enabled && ctx->Light.Model.TwoSide) ctx->_TriangleCaps |= DD_TRI_LIGHT_TWOSIDE; else ctx->_TriangleCaps &= ~DD_TRI_LIGHT_TWOSIDE; break; case GL_LIGHT_MODEL_COLOR_CONTROL: if (params[0] == (GLfloat) GL_SINGLE_COLOR) newenum = GL_SINGLE_COLOR; else if (params[0] == (GLfloat) GL_SEPARATE_SPECULAR_COLOR) newenum = GL_SEPARATE_SPECULAR_COLOR; else { _mesa_error( ctx, GL_INVALID_ENUM, "glLightModel(param=0x0%x)", (GLint) params[0] ); return; } if (ctx->Light.Model.ColorControl == newenum) return; FLUSH_VERTICES(ctx, _NEW_LIGHT); ctx->Light.Model.ColorControl = newenum; break; default: _mesa_error( ctx, GL_INVALID_ENUM, "glLightModel(pname=0x%x)", pname ); break; } if (ctx->Driver.LightModelfv) ctx->Driver.LightModelfv( ctx, pname, params ); } void GLAPIENTRY _mesa_LightModeliv( GLenum pname, const GLint *params ) { GLfloat fparam[4]; switch (pname) { case GL_LIGHT_MODEL_AMBIENT: fparam[0] = INT_TO_FLOAT( params[0] ); fparam[1] = INT_TO_FLOAT( params[1] ); fparam[2] = INT_TO_FLOAT( params[2] ); fparam[3] = INT_TO_FLOAT( params[3] ); break; case GL_LIGHT_MODEL_LOCAL_VIEWER: case GL_LIGHT_MODEL_TWO_SIDE: case GL_LIGHT_MODEL_COLOR_CONTROL: fparam[0] = (GLfloat) params[0]; break; default: /* Error will be caught later in gl_LightModelfv */ ASSIGN_4V(fparam, 0.0F, 0.0F, 0.0F, 0.0F); } _mesa_LightModelfv( pname, fparam ); } void GLAPIENTRY _mesa_LightModeli( GLenum pname, GLint param ) { GLint iparam[4]; iparam[0] = param; iparam[1] = iparam[2] = iparam[3] = 0; _mesa_LightModeliv( pname, iparam ); } void GLAPIENTRY _mesa_LightModelf( GLenum pname, GLfloat param ) { GLfloat fparam[4]; fparam[0] = param; fparam[1] = fparam[2] = fparam[3] = 0.0F; _mesa_LightModelfv( pname, fparam ); } /********** MATERIAL **********/ /* * Given a face and pname value (ala glColorMaterial), compute a bitmask * of the targeted material values. */ GLuint _mesa_material_bitmask( struct gl_context *ctx, GLenum face, GLenum pname, GLuint legal, const char *where ) { GLuint bitmask = 0; /* Make a bitmask indicating what material attribute(s) we're updating */ switch (pname) { case GL_EMISSION: bitmask |= MAT_BIT_FRONT_EMISSION | MAT_BIT_BACK_EMISSION; break; case GL_AMBIENT: bitmask |= MAT_BIT_FRONT_AMBIENT | MAT_BIT_BACK_AMBIENT; break; case GL_DIFFUSE: bitmask |= MAT_BIT_FRONT_DIFFUSE | MAT_BIT_BACK_DIFFUSE; break; case GL_SPECULAR: bitmask |= MAT_BIT_FRONT_SPECULAR | MAT_BIT_BACK_SPECULAR; break; case GL_SHININESS: bitmask |= MAT_BIT_FRONT_SHININESS | MAT_BIT_BACK_SHININESS; break; case GL_AMBIENT_AND_DIFFUSE: bitmask |= MAT_BIT_FRONT_AMBIENT | MAT_BIT_BACK_AMBIENT; bitmask |= MAT_BIT_FRONT_DIFFUSE | MAT_BIT_BACK_DIFFUSE; break; case GL_COLOR_INDEXES: bitmask |= MAT_BIT_FRONT_INDEXES | MAT_BIT_BACK_INDEXES; break; default: _mesa_error( ctx, GL_INVALID_ENUM, "%s", where ); return 0; } if (face==GL_FRONT) { bitmask &= FRONT_MATERIAL_BITS; } else if (face==GL_BACK) { bitmask &= BACK_MATERIAL_BITS; } else if (face != GL_FRONT_AND_BACK) { _mesa_error( ctx, GL_INVALID_ENUM, "%s", where ); return 0; } if (bitmask & ~legal) { _mesa_error( ctx, GL_INVALID_ENUM, "%s", where ); return 0; } return bitmask; } /* Perform a straight copy between materials. */ void _mesa_copy_materials( struct gl_material *dst, const struct gl_material *src, GLuint bitmask ) { int i; for (i = 0 ; i < MAT_ATTRIB_MAX ; i++) if (bitmask & (1<<i)) COPY_4FV( dst->Attrib[i], src->Attrib[i] ); } /* Update derived values following a change in ctx->Light.Material */ void _mesa_update_material( struct gl_context *ctx, GLuint bitmask ) { struct gl_light *light, *list = &ctx->Light.EnabledList; GLfloat (*mat)[4] = ctx->Light.Material.Attrib; if (MESA_VERBOSE & VERBOSE_MATERIAL) _mesa_debug(ctx, "_mesa_update_material, mask 0x%x\n", bitmask); if (!bitmask) return; /* update material ambience */ if (bitmask & MAT_BIT_FRONT_AMBIENT) { foreach (light, list) { SCALE_3V( light->_MatAmbient[0], light->Ambient, mat[MAT_ATTRIB_FRONT_AMBIENT]); } } if (bitmask & MAT_BIT_BACK_AMBIENT) { foreach (light, list) { SCALE_3V( light->_MatAmbient[1], light->Ambient, mat[MAT_ATTRIB_BACK_AMBIENT]); } } /* update BaseColor = emission + scene's ambience * material's ambience */ if (bitmask & (MAT_BIT_FRONT_EMISSION | MAT_BIT_FRONT_AMBIENT)) { COPY_3V( ctx->Light._BaseColor[0], mat[MAT_ATTRIB_FRONT_EMISSION] ); ACC_SCALE_3V( ctx->Light._BaseColor[0], mat[MAT_ATTRIB_FRONT_AMBIENT], ctx->Light.Model.Ambient ); } if (bitmask & (MAT_BIT_BACK_EMISSION | MAT_BIT_BACK_AMBIENT)) { COPY_3V( ctx->Light._BaseColor[1], mat[MAT_ATTRIB_BACK_EMISSION] ); ACC_SCALE_3V( ctx->Light._BaseColor[1], mat[MAT_ATTRIB_BACK_AMBIENT], ctx->Light.Model.Ambient ); } /* update material diffuse values */ if (bitmask & MAT_BIT_FRONT_DIFFUSE) { foreach (light, list) { SCALE_3V( light->_MatDiffuse[0], light->Diffuse, mat[MAT_ATTRIB_FRONT_DIFFUSE] ); } } if (bitmask & MAT_BIT_BACK_DIFFUSE) { foreach (light, list) { SCALE_3V( light->_MatDiffuse[1], light->Diffuse, mat[MAT_ATTRIB_BACK_DIFFUSE] ); } } /* update material specular values */ if (bitmask & MAT_BIT_FRONT_SPECULAR) { foreach (light, list) { SCALE_3V( light->_MatSpecular[0], light->Specular, mat[MAT_ATTRIB_FRONT_SPECULAR]); } } if (bitmask & MAT_BIT_BACK_SPECULAR) { foreach (light, list) { SCALE_3V( light->_MatSpecular[1], light->Specular, mat[MAT_ATTRIB_BACK_SPECULAR]); } } if (bitmask & MAT_BIT_FRONT_SHININESS) { _mesa_invalidate_shine_table( ctx, 0 ); } if (bitmask & MAT_BIT_BACK_SHININESS) { _mesa_invalidate_shine_table( ctx, 1 ); } } /* * Update the current materials from the given rgba color * according to the bitmask in ColorMaterialBitmask, which is * set by glColorMaterial(). */ void _mesa_update_color_material( struct gl_context *ctx, const GLfloat color[4] ) { GLuint bitmask = ctx->Light.ColorMaterialBitmask; struct gl_material *mat = &ctx->Light.Material; int i; for (i = 0 ; i < MAT_ATTRIB_MAX ; i++) if (bitmask & (1<<i)) COPY_4FV( mat->Attrib[i], color ); _mesa_update_material( ctx, bitmask ); } void GLAPIENTRY _mesa_ColorMaterial( GLenum face, GLenum mode ) { GET_CURRENT_CONTEXT(ctx); GLuint bitmask; GLuint legal = (MAT_BIT_FRONT_EMISSION | MAT_BIT_BACK_EMISSION | MAT_BIT_FRONT_SPECULAR | MAT_BIT_BACK_SPECULAR | MAT_BIT_FRONT_DIFFUSE | MAT_BIT_BACK_DIFFUSE | MAT_BIT_FRONT_AMBIENT | MAT_BIT_BACK_AMBIENT); ASSERT_OUTSIDE_BEGIN_END(ctx); if (MESA_VERBOSE&VERBOSE_API) _mesa_debug(ctx, "glColorMaterial %s %s\n", _mesa_lookup_enum_by_nr(face), _mesa_lookup_enum_by_nr(mode)); bitmask = _mesa_material_bitmask(ctx, face, mode, legal, "glColorMaterial"); if (ctx->Light.ColorMaterialBitmask == bitmask && ctx->Light.ColorMaterialFace == face && ctx->Light.ColorMaterialMode == mode) return; FLUSH_VERTICES(ctx, _NEW_LIGHT); ctx->Light.ColorMaterialBitmask = bitmask; ctx->Light.ColorMaterialFace = face; ctx->Light.ColorMaterialMode = mode; if (ctx->Light.ColorMaterialEnabled) { FLUSH_CURRENT( ctx, 0 ); _mesa_update_color_material(ctx,ctx->Current.Attrib[VERT_ATTRIB_COLOR0]); } if (ctx->Driver.ColorMaterial) ctx->Driver.ColorMaterial( ctx, face, mode ); } void GLAPIENTRY _mesa_GetMaterialfv( GLenum face, GLenum pname, GLfloat *params ) { GET_CURRENT_CONTEXT(ctx); GLuint f; GLfloat (*mat)[4] = ctx->Light.Material.Attrib; ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx); /* update materials */ FLUSH_CURRENT(ctx, 0); /* update ctx->Light.Material from vertex buffer */ if (face==GL_FRONT) { f = 0; } else if (face==GL_BACK) { f = 1; } else { _mesa_error( ctx, GL_INVALID_ENUM, "glGetMaterialfv(face)" ); return; } switch (pname) { case GL_AMBIENT: COPY_4FV( params, mat[MAT_ATTRIB_AMBIENT(f)] ); break; case GL_DIFFUSE: COPY_4FV( params, mat[MAT_ATTRIB_DIFFUSE(f)] ); break; case GL_SPECULAR: COPY_4FV( params, mat[MAT_ATTRIB_SPECULAR(f)] ); break; case GL_EMISSION: COPY_4FV( params, mat[MAT_ATTRIB_EMISSION(f)] ); break; case GL_SHININESS: *params = mat[MAT_ATTRIB_SHININESS(f)][0]; break; case GL_COLOR_INDEXES: params[0] = mat[MAT_ATTRIB_INDEXES(f)][0]; params[1] = mat[MAT_ATTRIB_INDEXES(f)][1]; params[2] = mat[MAT_ATTRIB_INDEXES(f)][2]; break; default: _mesa_error( ctx, GL_INVALID_ENUM, "glGetMaterialfv(pname)" ); } } void GLAPIENTRY _mesa_GetMaterialiv( GLenum face, GLenum pname, GLint *params ) { GET_CURRENT_CONTEXT(ctx); GLuint f; GLfloat (*mat)[4] = ctx->Light.Material.Attrib; ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx); /* update materials */ FLUSH_CURRENT(ctx, 0); /* update ctx->Light.Material from vertex buffer */ if (face==GL_FRONT) { f = 0; } else if (face==GL_BACK) { f = 1; } else { _mesa_error( ctx, GL_INVALID_ENUM, "glGetMaterialiv(face)" ); return; } switch (pname) { case GL_AMBIENT: params[0] = FLOAT_TO_INT( mat[MAT_ATTRIB_AMBIENT(f)][0] ); params[1] = FLOAT_TO_INT( mat[MAT_ATTRIB_AMBIENT(f)][1] ); params[2] = FLOAT_TO_INT( mat[MAT_ATTRIB_AMBIENT(f)][2] ); params[3] = FLOAT_TO_INT( mat[MAT_ATTRIB_AMBIENT(f)][3] ); break; case GL_DIFFUSE: params[0] = FLOAT_TO_INT( mat[MAT_ATTRIB_DIFFUSE(f)][0] ); params[1] = FLOAT_TO_INT( mat[MAT_ATTRIB_DIFFUSE(f)][1] ); params[2] = FLOAT_TO_INT( mat[MAT_ATTRIB_DIFFUSE(f)][2] ); params[3] = FLOAT_TO_INT( mat[MAT_ATTRIB_DIFFUSE(f)][3] ); break; case GL_SPECULAR: params[0] = FLOAT_TO_INT( mat[MAT_ATTRIB_SPECULAR(f)][0] ); params[1] = FLOAT_TO_INT( mat[MAT_ATTRIB_SPECULAR(f)][1] ); params[2] = FLOAT_TO_INT( mat[MAT_ATTRIB_SPECULAR(f)][2] ); params[3] = FLOAT_TO_INT( mat[MAT_ATTRIB_SPECULAR(f)][3] ); break; case GL_EMISSION: params[0] = FLOAT_TO_INT( mat[MAT_ATTRIB_EMISSION(f)][0] ); params[1] = FLOAT_TO_INT( mat[MAT_ATTRIB_EMISSION(f)][1] ); params[2] = FLOAT_TO_INT( mat[MAT_ATTRIB_EMISSION(f)][2] ); params[3] = FLOAT_TO_INT( mat[MAT_ATTRIB_EMISSION(f)][3] ); break; case GL_SHININESS: *params = IROUND( mat[MAT_ATTRIB_SHININESS(f)][0] ); break; case GL_COLOR_INDEXES: params[0] = IROUND( mat[MAT_ATTRIB_INDEXES(f)][0] ); params[1] = IROUND( mat[MAT_ATTRIB_INDEXES(f)][1] ); params[2] = IROUND( mat[MAT_ATTRIB_INDEXES(f)][2] ); break; default: _mesa_error( ctx, GL_INVALID_ENUM, "glGetMaterialfv(pname)" ); } } /**********************************************************************/ /***** Lighting computation *****/ /**********************************************************************/ /* * Notes: * When two-sided lighting is enabled we compute the color (or index) * for both the front and back side of the primitive. Then, when the * orientation of the facet is later learned, we can determine which * color (or index) to use for rendering. * * KW: We now know orientation in advance and only shade for * the side or sides which are actually required. * * Variables: * n = normal vector * V = vertex position * P = light source position * Pe = (0,0,0,1) * * Precomputed: * IF P[3]==0 THEN * // light at infinity * IF local_viewer THEN * _VP_inf_norm = unit vector from V to P // Precompute * ELSE * // eye at infinity * _h_inf_norm = Normalize( VP + <0,0,1> ) // Precompute * ENDIF * ENDIF * * Functions: * Normalize( v ) = normalized vector v * Magnitude( v ) = length of vector v */ /* * Whenever the spotlight exponent for a light changes we must call * this function to recompute the exponent lookup table. */ void _mesa_invalidate_spot_exp_table( struct gl_light *l ) { l->_SpotExpTable[0][0] = -1; } static void validate_spot_exp_table( struct gl_light *l ) { GLint i; GLdouble exponent = l->SpotExponent; GLdouble tmp = 0; GLint clamp = 0; l->_SpotExpTable[0][0] = 0.0; for (i = EXP_TABLE_SIZE - 1; i > 0 ;i--) { if (clamp == 0) { tmp = pow(i / (GLdouble) (EXP_TABLE_SIZE - 1), exponent); if (tmp < FLT_MIN * 100.0) { tmp = 0.0; clamp = 1; } } l->_SpotExpTable[i][0] = (GLfloat) tmp; } for (i = 0; i < EXP_TABLE_SIZE - 1; i++) { l->_SpotExpTable[i][1] = (l->_SpotExpTable[i+1][0] - l->_SpotExpTable[i][0]); } l->_SpotExpTable[EXP_TABLE_SIZE-1][1] = 0.0; } /* Calculate a new shine table. Doing this here saves a branch in * lighting, and the cost of doing it early may be partially offset * by keeping a MRU cache of shine tables for various shine values. */ void _mesa_invalidate_shine_table( struct gl_context *ctx, GLuint side ) { ASSERT(side < 2); if (ctx->_ShineTable[side]) ctx->_ShineTable[side]->refcount--; ctx->_ShineTable[side] = NULL; } static void validate_shine_table( struct gl_context *ctx, GLuint side, GLfloat shininess ) { struct gl_shine_tab *list = ctx->_ShineTabList; struct gl_shine_tab *s; ASSERT(side < 2); foreach(s, list) if ( s->shininess == shininess ) break; if (s == list) { GLint j; GLfloat *m; foreach(s, list) if (s->refcount == 0) break; m = s->tab; m[0] = 0.0; if (shininess == 0.0) { for (j = 1 ; j <= SHINE_TABLE_SIZE ; j++) m[j] = 1.0; } else { for (j = 1 ; j < SHINE_TABLE_SIZE ; j++) { GLdouble t, x = j / (GLfloat) (SHINE_TABLE_SIZE - 1); if (x < 0.005) /* underflow check */ x = 0.005; t = pow(x, shininess); if (t > 1e-20) m[j] = (GLfloat) t; else m[j] = 0.0; } m[SHINE_TABLE_SIZE] = 1.0; } s->shininess = shininess; } if (ctx->_ShineTable[side]) ctx->_ShineTable[side]->refcount--; ctx->_ShineTable[side] = s; move_to_tail( list, s ); s->refcount++; } void _mesa_validate_all_lighting_tables( struct gl_context *ctx ) { GLuint i; GLfloat shininess; shininess = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_SHININESS][0]; if (!ctx->_ShineTable[0] || ctx->_ShineTable[0]->shininess != shininess) validate_shine_table( ctx, 0, shininess ); shininess = ctx->Light.Material.Attrib[MAT_ATTRIB_BACK_SHININESS][0]; if (!ctx->_ShineTable[1] || ctx->_ShineTable[1]->shininess != shininess) validate_shine_table( ctx, 1, shininess ); for (i = 0; i < ctx->Const.MaxLights; i++) if (ctx->Light.Light[i]._SpotExpTable[0][0] == -1) validate_spot_exp_table( &ctx->Light.Light[i] ); } /** * Examine current lighting parameters to determine if the optimized lighting * function can be used. * Also, precompute some lighting values such as the products of light * source and material ambient, diffuse and specular coefficients. */ void _mesa_update_lighting( struct gl_context *ctx ) { struct gl_light *light; ctx->Light._NeedEyeCoords = GL_FALSE; ctx->Light._Flags = 0; if (!ctx->Light.Enabled) return; foreach(light, &ctx->Light.EnabledList) { ctx->Light._Flags |= light->_Flags; } ctx->Light._NeedVertices = ((ctx->Light._Flags & (LIGHT_POSITIONAL|LIGHT_SPOT)) || ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR || ctx->Light.Model.LocalViewer); ctx->Light._NeedEyeCoords = ((ctx->Light._Flags & LIGHT_POSITIONAL) || ctx->Light.Model.LocalViewer); /* XXX: This test is overkill & needs to be fixed both for software and * hardware t&l drivers. The above should be sufficient & should * be tested to verify this. */ if (ctx->Light._NeedVertices) ctx->Light._NeedEyeCoords = GL_TRUE; /* Precompute some shading values. Although we reference * Light.Material here, we can get away without flushing * FLUSH_UPDATE_CURRENT, as when any outstanding material changes * are flushed, they will update the derived state at that time. */ if (ctx->Light.Model.TwoSide) _mesa_update_material(ctx, MAT_BIT_FRONT_EMISSION | MAT_BIT_FRONT_AMBIENT | MAT_BIT_FRONT_DIFFUSE | MAT_BIT_FRONT_SPECULAR | MAT_BIT_BACK_EMISSION | MAT_BIT_BACK_AMBIENT | MAT_BIT_BACK_DIFFUSE | MAT_BIT_BACK_SPECULAR); else _mesa_update_material(ctx, MAT_BIT_FRONT_EMISSION | MAT_BIT_FRONT_AMBIENT | MAT_BIT_FRONT_DIFFUSE | MAT_BIT_FRONT_SPECULAR); } /** * Update state derived from light position, spot direction. * Called upon: * _NEW_MODELVIEW * _NEW_LIGHT * _TNL_NEW_NEED_EYE_COORDS * * Update on (_NEW_MODELVIEW | _NEW_LIGHT) when lighting is enabled. * Also update on lighting space changes. */ static void compute_light_positions( struct gl_context *ctx ) { struct gl_light *light; static const GLfloat eye_z[3] = { 0, 0, 1 }; if (!ctx->Light.Enabled) return; if (ctx->_NeedEyeCoords) { COPY_3V( ctx->_EyeZDir, eye_z ); } else { TRANSFORM_NORMAL( ctx->_EyeZDir, eye_z, ctx->ModelviewMatrixStack.Top->m ); } foreach (light, &ctx->Light.EnabledList) { if (ctx->_NeedEyeCoords) { /* _Position is in eye coordinate space */ COPY_4FV( light->_Position, light->EyePosition ); } else { /* _Position is in object coordinate space */ TRANSFORM_POINT( light->_Position, ctx->ModelviewMatrixStack.Top->inv, light->EyePosition ); } if (!(light->_Flags & LIGHT_POSITIONAL)) { /* VP (VP) = Normalize( Position ) */ COPY_3V( light->_VP_inf_norm, light->_Position ); NORMALIZE_3FV( light->_VP_inf_norm ); if (!ctx->Light.Model.LocalViewer) { /* _h_inf_norm = Normalize( V_to_P + <0,0,1> ) */ ADD_3V( light->_h_inf_norm, light->_VP_inf_norm, ctx->_EyeZDir); NORMALIZE_3FV( light->_h_inf_norm ); } light->_VP_inf_spot_attenuation = 1.0; } else { /* positional light w/ homogeneous coordinate, divide by W */ GLfloat wInv = (GLfloat)1.0 / light->_Position[3]; light->_Position[0] *= wInv; light->_Position[1] *= wInv; light->_Position[2] *= wInv; } if (light->_Flags & LIGHT_SPOT) { /* Note: we normalize the spot direction now */ if (ctx->_NeedEyeCoords) { COPY_3V( light->_NormSpotDirection, light->SpotDirection ); NORMALIZE_3FV( light->_NormSpotDirection ); } else { GLfloat spotDir[3]; COPY_3V(spotDir, light->SpotDirection); NORMALIZE_3FV(spotDir); TRANSFORM_NORMAL( light->_NormSpotDirection, spotDir, ctx->ModelviewMatrixStack.Top->m); } NORMALIZE_3FV( light->_NormSpotDirection ); if (!(light->_Flags & LIGHT_POSITIONAL)) { GLfloat PV_dot_dir = - DOT3(light->_VP_inf_norm, light->_NormSpotDirection); if (PV_dot_dir > light->_CosCutoff) { double x = PV_dot_dir * (EXP_TABLE_SIZE-1); int k = (int) x; light->_VP_inf_spot_attenuation = (GLfloat) (light->_SpotExpTable[k][0] + (x-k)*light->_SpotExpTable[k][1]); } else { light->_VP_inf_spot_attenuation = 0; } } } } } static void update_modelview_scale( struct gl_context *ctx ) { ctx->_ModelViewInvScale = 1.0F; if (!_math_matrix_is_length_preserving(ctx->ModelviewMatrixStack.Top)) { const GLfloat *m = ctx->ModelviewMatrixStack.Top->inv; GLfloat f = m[2] * m[2] + m[6] * m[6] + m[10] * m[10]; if (f < 1e-12) f = 1.0; if (ctx->_NeedEyeCoords) ctx->_ModelViewInvScale = (GLfloat) INV_SQRTF(f); else ctx->_ModelViewInvScale = (GLfloat) SQRTF(f); } } /** * Bring up to date any state that relies on _NeedEyeCoords. */ void _mesa_update_tnl_spaces( struct gl_context *ctx, GLuint new_state ) { const GLuint oldneedeyecoords = ctx->_NeedEyeCoords; (void) new_state; ctx->_NeedEyeCoords = GL_FALSE; if (ctx->_ForceEyeCoords || (ctx->Texture._GenFlags & TEXGEN_NEED_EYE_COORD) || ctx->Point._Attenuated || ctx->Light._NeedEyeCoords) ctx->_NeedEyeCoords = GL_TRUE; if (ctx->Light.Enabled && !_math_matrix_is_length_preserving(ctx->ModelviewMatrixStack.Top)) ctx->_NeedEyeCoords = GL_TRUE; /* Check if the truth-value interpretations of the bitfields have * changed: */ if (oldneedeyecoords != ctx->_NeedEyeCoords) { /* Recalculate all state that depends on _NeedEyeCoords. */ update_modelview_scale(ctx); compute_light_positions( ctx ); if (ctx->Driver.LightingSpaceChange) ctx->Driver.LightingSpaceChange( ctx ); } else { GLuint new_state2 = ctx->NewState; /* Recalculate that same state only if it has been invalidated * by other statechanges. */ if (new_state2 & _NEW_MODELVIEW) update_modelview_scale(ctx); if (new_state2 & (_NEW_LIGHT|_NEW_MODELVIEW)) compute_light_positions( ctx ); } } /** * Drivers may need this if the hardware tnl unit doesn't support the * light-in-modelspace optimization. It's also useful for debugging. */ void _mesa_allow_light_in_model( struct gl_context *ctx, GLboolean flag ) { ctx->_ForceEyeCoords = !flag; ctx->NewState |= _NEW_POINT; /* one of the bits from * _MESA_NEW_NEED_EYE_COORDS. */ } /**********************************************************************/ /***** Initialization *****/ /**********************************************************************/ /** * Initialize the n-th light data structure. * * \param l pointer to the gl_light structure to be initialized. * \param n number of the light. * \note The defaults for light 0 are different than the other lights. */ static void init_light( struct gl_light *l, GLuint n ) { make_empty_list( l ); ASSIGN_4V( l->Ambient, 0.0, 0.0, 0.0, 1.0 ); if (n==0) { ASSIGN_4V( l->Diffuse, 1.0, 1.0, 1.0, 1.0 ); ASSIGN_4V( l->Specular, 1.0, 1.0, 1.0, 1.0 ); } else { ASSIGN_4V( l->Diffuse, 0.0, 0.0, 0.0, 1.0 ); ASSIGN_4V( l->Specular, 0.0, 0.0, 0.0, 1.0 ); } ASSIGN_4V( l->EyePosition, 0.0, 0.0, 1.0, 0.0 ); ASSIGN_3V( l->SpotDirection, 0.0, 0.0, -1.0 ); l->SpotExponent = 0.0; _mesa_invalidate_spot_exp_table( l ); l->SpotCutoff = 180.0; l->_CosCutoffNeg = -1.0f; l->_CosCutoff = 0.0; /* KW: -ve values not admitted */ l->ConstantAttenuation = 1.0; l->LinearAttenuation = 0.0; l->QuadraticAttenuation = 0.0; l->Enabled = GL_FALSE; } /** * Initialize the light model data structure. * * \param lm pointer to the gl_lightmodel structure to be initialized. */ static void init_lightmodel( struct gl_lightmodel *lm ) { ASSIGN_4V( lm->Ambient, 0.2F, 0.2F, 0.2F, 1.0F ); lm->LocalViewer = GL_FALSE; lm->TwoSide = GL_FALSE; lm->ColorControl = GL_SINGLE_COLOR; } /** * Initialize the material data structure. * * \param m pointer to the gl_material structure to be initialized. */ static void init_material( struct gl_material *m ) { ASSIGN_4V( m->Attrib[MAT_ATTRIB_FRONT_AMBIENT], 0.2F, 0.2F, 0.2F, 1.0F ); ASSIGN_4V( m->Attrib[MAT_ATTRIB_FRONT_DIFFUSE], 0.8F, 0.8F, 0.8F, 1.0F ); ASSIGN_4V( m->Attrib[MAT_ATTRIB_FRONT_SPECULAR], 0.0F, 0.0F, 0.0F, 1.0F ); ASSIGN_4V( m->Attrib[MAT_ATTRIB_FRONT_EMISSION], 0.0F, 0.0F, 0.0F, 1.0F ); ASSIGN_4V( m->Attrib[MAT_ATTRIB_FRONT_SHININESS], 0.0F, 0.0F, 0.0F, 0.0F ); ASSIGN_4V( m->Attrib[MAT_ATTRIB_FRONT_INDEXES], 0.0F, 1.0F, 1.0F, 0.0F ); ASSIGN_4V( m->Attrib[MAT_ATTRIB_BACK_AMBIENT], 0.2F, 0.2F, 0.2F, 1.0F ); ASSIGN_4V( m->Attrib[MAT_ATTRIB_BACK_DIFFUSE], 0.8F, 0.8F, 0.8F, 1.0F ); ASSIGN_4V( m->Attrib[MAT_ATTRIB_BACK_SPECULAR], 0.0F, 0.0F, 0.0F, 1.0F ); ASSIGN_4V( m->Attrib[MAT_ATTRIB_BACK_EMISSION], 0.0F, 0.0F, 0.0F, 1.0F ); ASSIGN_4V( m->Attrib[MAT_ATTRIB_BACK_SHININESS], 0.0F, 0.0F, 0.0F, 0.0F ); ASSIGN_4V( m->Attrib[MAT_ATTRIB_BACK_INDEXES], 0.0F, 1.0F, 1.0F, 0.0F ); } /** * Initialize all lighting state for the given context. */ void _mesa_init_lighting( struct gl_context *ctx ) { GLuint i; /* Lighting group */ for (i = 0; i < MAX_LIGHTS; i++) { init_light( &ctx->Light.Light[i], i ); } make_empty_list( &ctx->Light.EnabledList ); init_lightmodel( &ctx->Light.Model ); init_material( &ctx->Light.Material ); ctx->Light.ShadeModel = GL_SMOOTH; ctx->Light.ProvokingVertex = GL_LAST_VERTEX_CONVENTION_EXT; ctx->Light.Enabled = GL_FALSE; ctx->Light.ColorMaterialFace = GL_FRONT_AND_BACK; ctx->Light.ColorMaterialMode = GL_AMBIENT_AND_DIFFUSE; ctx->Light.ColorMaterialBitmask = _mesa_material_bitmask( ctx, GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE, ~0, NULL ); ctx->Light.ColorMaterialEnabled = GL_FALSE; ctx->Light.ClampVertexColor = GL_TRUE; /* Lighting miscellaneous */ ctx->_ShineTabList = MALLOC_STRUCT( gl_shine_tab ); make_empty_list( ctx->_ShineTabList ); /* Allocate 10 (arbitrary) shininess lookup tables */ for (i = 0 ; i < 10 ; i++) { struct gl_shine_tab *s = MALLOC_STRUCT( gl_shine_tab ); s->shininess = -1; s->refcount = 0; insert_at_tail( ctx->_ShineTabList, s ); } /* Miscellaneous */ ctx->Light._NeedEyeCoords = GL_FALSE; ctx->_NeedEyeCoords = GL_FALSE; ctx->_ForceEyeCoords = GL_FALSE; ctx->_ModelViewInvScale = 1.0; } /** * Deallocate malloc'd lighting state attached to given context. */ void _mesa_free_lighting_data( struct gl_context *ctx ) { struct gl_shine_tab *s, *tmps; /* Free lighting shininess exponentiation table */ foreach_s( s, tmps, ctx->_ShineTabList ) { free( s ); } free( ctx->_ShineTabList ); }