/** * \file texobj.c * Texture object management. */ /* * Mesa 3-D graphics library * Version: 7.1 * * Copyright (C) 1999-2007 Brian Paul All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include "mfeatures.h" #include "bufferobj.h" #include "colortab.h" #include "context.h" #include "enums.h" #include "fbobject.h" #include "formats.h" #include "hash.h" #include "imports.h" #include "macros.h" #include "teximage.h" #include "texobj.h" #include "texstate.h" #include "mtypes.h" #include "program/prog_instruction.h" /**********************************************************************/ /** \name Internal functions */ /*@{*/ /** * Return the gl_texture_object for a given ID. */ struct gl_texture_object * _mesa_lookup_texture(struct gl_context *ctx, GLuint id) { return (struct gl_texture_object *) _mesa_HashLookup(ctx->Shared->TexObjects, id); } /** * Allocate and initialize a new texture object. But don't put it into the * texture object hash table. * * Called via ctx->Driver.NewTextureObject, unless overridden by a device * driver. * * \param shared the shared GL state structure to contain the texture object * \param name integer name for the texture object * \param target either GL_TEXTURE_1D, GL_TEXTURE_2D, GL_TEXTURE_3D, * GL_TEXTURE_CUBE_MAP_ARB or GL_TEXTURE_RECTANGLE_NV. zero is ok for the sake * of GenTextures() * * \return pointer to new texture object. */ struct gl_texture_object * _mesa_new_texture_object( struct gl_context *ctx, GLuint name, GLenum target ) { struct gl_texture_object *obj; (void) ctx; obj = MALLOC_STRUCT(gl_texture_object); _mesa_initialize_texture_object(obj, name, target); return obj; } /** * Initialize a new texture object to default values. * \param obj the texture object * \param name the texture name * \param target the texture target */ void _mesa_initialize_texture_object( struct gl_texture_object *obj, GLuint name, GLenum target ) { ASSERT(target == 0 || target == GL_TEXTURE_1D || target == GL_TEXTURE_2D || target == GL_TEXTURE_3D || target == GL_TEXTURE_CUBE_MAP_ARB || target == GL_TEXTURE_RECTANGLE_NV || target == GL_TEXTURE_1D_ARRAY_EXT || target == GL_TEXTURE_2D_ARRAY_EXT || target == GL_TEXTURE_BUFFER); memset(obj, 0, sizeof(*obj)); /* init the non-zero fields */ _glthread_INIT_MUTEX(obj->Mutex); obj->RefCount = 1; obj->Name = name; obj->Target = target; obj->Priority = 1.0F; obj->BaseLevel = 0; obj->MaxLevel = 1000; /* sampler state */ if (target == GL_TEXTURE_RECTANGLE_NV) { obj->Sampler.WrapS = GL_CLAMP_TO_EDGE; obj->Sampler.WrapT = GL_CLAMP_TO_EDGE; obj->Sampler.WrapR = GL_CLAMP_TO_EDGE; obj->Sampler.MinFilter = GL_LINEAR; } else { obj->Sampler.WrapS = GL_REPEAT; obj->Sampler.WrapT = GL_REPEAT; obj->Sampler.WrapR = GL_REPEAT; obj->Sampler.MinFilter = GL_NEAREST_MIPMAP_LINEAR; } obj->Sampler.MagFilter = GL_LINEAR; obj->Sampler.MinLod = -1000.0; obj->Sampler.MaxLod = 1000.0; obj->Sampler.LodBias = 0.0; obj->Sampler.MaxAnisotropy = 1.0; obj->Sampler.CompareMode = GL_NONE; /* ARB_shadow */ obj->Sampler.CompareFunc = GL_LEQUAL; /* ARB_shadow */ obj->Sampler.CompareFailValue = 0.0F; /* ARB_shadow_ambient */ obj->Sampler.DepthMode = GL_LUMINANCE; /* ARB_depth_texture */ obj->Sampler.CubeMapSeamless = GL_FALSE; obj->Swizzle[0] = GL_RED; obj->Swizzle[1] = GL_GREEN; obj->Swizzle[2] = GL_BLUE; obj->Swizzle[3] = GL_ALPHA; obj->_Swizzle = SWIZZLE_NOOP; obj->Sampler.sRGBDecode = GL_DECODE_EXT; } /** * Some texture initialization can't be finished until we know which * target it's getting bound to (GL_TEXTURE_1D/2D/etc). */ static void finish_texture_init(struct gl_context *ctx, GLenum target, struct gl_texture_object *obj) { assert(obj->Target == 0); if (target == GL_TEXTURE_RECTANGLE_NV) { /* have to init wrap and filter state here - kind of klunky */ obj->Sampler.WrapS = GL_CLAMP_TO_EDGE; obj->Sampler.WrapT = GL_CLAMP_TO_EDGE; obj->Sampler.WrapR = GL_CLAMP_TO_EDGE; obj->Sampler.MinFilter = GL_LINEAR; if (ctx->Driver.TexParameter) { static const GLfloat fparam_wrap[1] = {(GLfloat) GL_CLAMP_TO_EDGE}; static const GLfloat fparam_filter[1] = {(GLfloat) GL_LINEAR}; ctx->Driver.TexParameter(ctx, target, obj, GL_TEXTURE_WRAP_S, fparam_wrap); ctx->Driver.TexParameter(ctx, target, obj, GL_TEXTURE_WRAP_T, fparam_wrap); ctx->Driver.TexParameter(ctx, target, obj, GL_TEXTURE_WRAP_R, fparam_wrap); ctx->Driver.TexParameter(ctx, target, obj, GL_TEXTURE_MIN_FILTER, fparam_filter); } } } /** * Deallocate a texture object struct. It should have already been * removed from the texture object pool. * Called via ctx->Driver.DeleteTexture() if not overriden by a driver. * * \param shared the shared GL state to which the object belongs. * \param texObj the texture object to delete. */ void _mesa_delete_texture_object(struct gl_context *ctx, struct gl_texture_object *texObj) { GLuint i, face; /* Set Target to an invalid value. With some assertions elsewhere * we can try to detect possible use of deleted textures. */ texObj->Target = 0x99; _mesa_free_colortable_data(&texObj->Palette); /* free the texture images */ for (face = 0; face < 6; face++) { for (i = 0; i < MAX_TEXTURE_LEVELS; i++) { if (texObj->Image[face][i]) { _mesa_delete_texture_image( ctx, texObj->Image[face][i] ); } } } _mesa_reference_buffer_object(ctx, &texObj->BufferObject, NULL); /* destroy the mutex -- it may have allocated memory (eg on bsd) */ _glthread_DESTROY_MUTEX(texObj->Mutex); /* free this object */ free(texObj); } /** * Copy texture object state from one texture object to another. * Use for glPush/PopAttrib. * * \param dest destination texture object. * \param src source texture object. */ void _mesa_copy_texture_object( struct gl_texture_object *dest, const struct gl_texture_object *src ) { dest->Target = src->Target; dest->Name = src->Name; dest->Priority = src->Priority; dest->Sampler.BorderColor.f[0] = src->Sampler.BorderColor.f[0]; dest->Sampler.BorderColor.f[1] = src->Sampler.BorderColor.f[1]; dest->Sampler.BorderColor.f[2] = src->Sampler.BorderColor.f[2]; dest->Sampler.BorderColor.f[3] = src->Sampler.BorderColor.f[3]; dest->Sampler.WrapS = src->Sampler.WrapS; dest->Sampler.WrapT = src->Sampler.WrapT; dest->Sampler.WrapR = src->Sampler.WrapR; dest->Sampler.MinFilter = src->Sampler.MinFilter; dest->Sampler.MagFilter = src->Sampler.MagFilter; dest->Sampler.MinLod = src->Sampler.MinLod; dest->Sampler.MaxLod = src->Sampler.MaxLod; dest->Sampler.LodBias = src->Sampler.LodBias; dest->BaseLevel = src->BaseLevel; dest->MaxLevel = src->MaxLevel; dest->Sampler.MaxAnisotropy = src->Sampler.MaxAnisotropy; dest->Sampler.CompareMode = src->Sampler.CompareMode; dest->Sampler.CompareFunc = src->Sampler.CompareFunc; dest->Sampler.CompareFailValue = src->Sampler.CompareFailValue; dest->Sampler.CubeMapSeamless = src->Sampler.CubeMapSeamless; dest->Sampler.DepthMode = src->Sampler.DepthMode; dest->Sampler.sRGBDecode = src->Sampler.sRGBDecode; dest->_MaxLevel = src->_MaxLevel; dest->_MaxLambda = src->_MaxLambda; dest->GenerateMipmap = src->GenerateMipmap; dest->Palette = src->Palette; dest->_Complete = src->_Complete; COPY_4V(dest->Swizzle, src->Swizzle); dest->_Swizzle = src->_Swizzle; } /** * Free all texture images of the given texture object. * * \param ctx GL context. * \param t texture object. * * \sa _mesa_clear_texture_image(). */ void _mesa_clear_texture_object(struct gl_context *ctx, struct gl_texture_object *texObj) { GLuint i, j; if (texObj->Target == 0) return; for (i = 0; i < MAX_FACES; i++) { for (j = 0; j < MAX_TEXTURE_LEVELS; j++) { struct gl_texture_image *texImage = texObj->Image[i][j]; if (texImage) _mesa_clear_texture_image(ctx, texImage); } } } /** * Check if the given texture object is valid by examining its Target field. * For debugging only. */ static GLboolean valid_texture_object(const struct gl_texture_object *tex) { switch (tex->Target) { case 0: case GL_TEXTURE_1D: case GL_TEXTURE_2D: case GL_TEXTURE_3D: case GL_TEXTURE_CUBE_MAP_ARB: case GL_TEXTURE_RECTANGLE_NV: case GL_TEXTURE_1D_ARRAY_EXT: case GL_TEXTURE_2D_ARRAY_EXT: case GL_TEXTURE_BUFFER: return GL_TRUE; case 0x99: _mesa_problem(NULL, "invalid reference to a deleted texture object"); return GL_FALSE; default: _mesa_problem(NULL, "invalid texture object Target 0x%x, Id = %u", tex->Target, tex->Name); return GL_FALSE; } } /** * Reference (or unreference) a texture object. * If '*ptr', decrement *ptr's refcount (and delete if it becomes zero). * If 'tex' is non-null, increment its refcount. */ void _mesa_reference_texobj(struct gl_texture_object **ptr, struct gl_texture_object *tex) { assert(ptr); if (*ptr == tex) { /* no change */ return; } if (*ptr) { /* Unreference the old texture */ GLboolean deleteFlag = GL_FALSE; struct gl_texture_object *oldTex = *ptr; ASSERT(valid_texture_object(oldTex)); (void) valid_texture_object; /* silence warning in release builds */ _glthread_LOCK_MUTEX(oldTex->Mutex); ASSERT(oldTex->RefCount > 0); oldTex->RefCount--; deleteFlag = (oldTex->RefCount == 0); _glthread_UNLOCK_MUTEX(oldTex->Mutex); if (deleteFlag) { GET_CURRENT_CONTEXT(ctx); if (ctx) ctx->Driver.DeleteTexture(ctx, oldTex); else _mesa_problem(NULL, "Unable to delete texture, no context"); } *ptr = NULL; } assert(!*ptr); if (tex) { /* reference new texture */ ASSERT(valid_texture_object(tex)); _glthread_LOCK_MUTEX(tex->Mutex); if (tex->RefCount == 0) { /* this texture's being deleted (look just above) */ /* Not sure this can every really happen. Warn if it does. */ _mesa_problem(NULL, "referencing deleted texture object"); *ptr = NULL; } else { tex->RefCount++; *ptr = tex; } _glthread_UNLOCK_MUTEX(tex->Mutex); } } /** * Mark a texture object as incomplete. * \param t texture object * \param fmt... string describing why it's incomplete (for debugging). */ static void incomplete(struct gl_texture_object *t, const char *fmt, ...) { #if 0 va_list args; char s[100]; va_start(args, fmt); vsnprintf(s, sizeof(s), fmt, args); va_end(args); printf("Texture Obj %d incomplete because: %s\n", t->Name, s); #endif t->_Complete = GL_FALSE; } /** * Examine a texture object to determine if it is complete. * * The gl_texture_object::Complete flag will be set to GL_TRUE or GL_FALSE * accordingly. * * \param ctx GL context. * \param t texture object. * * According to the texture target, verifies that each of the mipmaps is * present and has the expected size. */ void _mesa_test_texobj_completeness( const struct gl_context *ctx, struct gl_texture_object *t ) { const GLint baseLevel = t->BaseLevel; GLint maxLog2 = 0, maxLevels = 0; t->_Complete = GL_TRUE; /* be optimistic */ /* Detect cases where the application set the base level to an invalid * value. */ if ((baseLevel < 0) || (baseLevel >= MAX_TEXTURE_LEVELS)) { incomplete(t, "base level = %d is invalid", baseLevel); return; } /* Always need the base level image */ if (!t->Image[0][baseLevel]) { incomplete(t, "Image[baseLevel=%d] == NULL", baseLevel); return; } /* Check width/height/depth for zero */ if (t->Image[0][baseLevel]->Width == 0 || t->Image[0][baseLevel]->Height == 0 || t->Image[0][baseLevel]->Depth == 0) { incomplete(t, "texture width = 0"); return; } /* Compute _MaxLevel */ if ((t->Target == GL_TEXTURE_1D) || (t->Target == GL_TEXTURE_1D_ARRAY_EXT)) { maxLog2 = t->Image[0][baseLevel]->WidthLog2; maxLevels = ctx->Const.MaxTextureLevels; } else if ((t->Target == GL_TEXTURE_2D) || (t->Target == GL_TEXTURE_2D_ARRAY_EXT)) { maxLog2 = MAX2(t->Image[0][baseLevel]->WidthLog2, t->Image[0][baseLevel]->HeightLog2); maxLevels = ctx->Const.MaxTextureLevels; } else if (t->Target == GL_TEXTURE_3D) { GLint max = MAX2(t->Image[0][baseLevel]->WidthLog2, t->Image[0][baseLevel]->HeightLog2); maxLog2 = MAX2(max, (GLint)(t->Image[0][baseLevel]->DepthLog2)); maxLevels = ctx->Const.Max3DTextureLevels; } else if (t->Target == GL_TEXTURE_CUBE_MAP_ARB) { maxLog2 = MAX2(t->Image[0][baseLevel]->WidthLog2, t->Image[0][baseLevel]->HeightLog2); maxLevels = ctx->Const.MaxCubeTextureLevels; } else if (t->Target == GL_TEXTURE_RECTANGLE_NV) { maxLog2 = 0; /* not applicable */ maxLevels = 1; /* no mipmapping */ } else { _mesa_problem(ctx, "Bad t->Target in _mesa_test_texobj_completeness"); return; } ASSERT(maxLevels > 0); if (t->MaxLevel < t->BaseLevel) { incomplete(t, "MAX_LEVEL (%d) < BASE_LEVEL (%d)", t->MaxLevel, t->BaseLevel); return; } t->_MaxLevel = baseLevel + maxLog2; t->_MaxLevel = MIN2(t->_MaxLevel, t->MaxLevel); t->_MaxLevel = MIN2(t->_MaxLevel, maxLevels - 1); /* Compute _MaxLambda = q - b (see the 1.2 spec) used during mipmapping */ t->_MaxLambda = (GLfloat) (t->_MaxLevel - t->BaseLevel); if (t->Target == GL_TEXTURE_CUBE_MAP_ARB) { /* make sure that all six cube map level 0 images are the same size */ const GLuint w = t->Image[0][baseLevel]->Width2; const GLuint h = t->Image[0][baseLevel]->Height2; GLuint face; for (face = 1; face < 6; face++) { if (t->Image[face][baseLevel] == NULL || t->Image[face][baseLevel]->Width2 != w || t->Image[face][baseLevel]->Height2 != h) { incomplete(t, "Cube face missing or mismatched size"); return; } } } /* extra checking for mipmaps */ if (t->Sampler.MinFilter != GL_NEAREST && t->Sampler.MinFilter != GL_LINEAR) { /* * Mipmapping: determine if we have a complete set of mipmaps */ GLint i; GLint minLevel = baseLevel; GLint maxLevel = t->_MaxLevel; if (minLevel > maxLevel) { incomplete(t, "minLevel > maxLevel"); return; } /* Test dimension-independent attributes */ for (i = minLevel; i <= maxLevel; i++) { if (t->Image[0][i]) { if (t->Image[0][i]->TexFormat != t->Image[0][baseLevel]->TexFormat) { incomplete(t, "Format[i] != Format[baseLevel]"); return; } if (t->Image[0][i]->Border != t->Image[0][baseLevel]->Border) { incomplete(t, "Border[i] != Border[baseLevel]"); return; } } } /* Test things which depend on number of texture image dimensions */ if ((t->Target == GL_TEXTURE_1D) || (t->Target == GL_TEXTURE_1D_ARRAY_EXT)) { /* Test 1-D mipmaps */ GLuint width = t->Image[0][baseLevel]->Width2; for (i = baseLevel + 1; i < maxLevels; i++) { if (width > 1) { width /= 2; } if (i >= minLevel && i <= maxLevel) { if (!t->Image[0][i]) { incomplete(t, "1D Image[0][i] == NULL"); return; } if (t->Image[0][i]->Width2 != width ) { incomplete(t, "1D Image[0][i] bad width"); return; } } if (width == 1) { return; /* found smallest needed mipmap, all done! */ } } } else if ((t->Target == GL_TEXTURE_2D) || (t->Target == GL_TEXTURE_2D_ARRAY_EXT)) { /* Test 2-D mipmaps */ GLuint width = t->Image[0][baseLevel]->Width2; GLuint height = t->Image[0][baseLevel]->Height2; for (i = baseLevel + 1; i < maxLevels; i++) { if (width > 1) { width /= 2; } if (height > 1) { height /= 2; } if (i >= minLevel && i <= maxLevel) { if (!t->Image[0][i]) { incomplete(t, "2D Image[0][i] == NULL"); return; } if (t->Image[0][i]->Width2 != width) { incomplete(t, "2D Image[0][i] bad width"); return; } if (t->Image[0][i]->Height2 != height) { incomplete(t, "2D Image[0][i] bad height"); return; } if (width==1 && height==1) { return; /* found smallest needed mipmap, all done! */ } } } } else if (t->Target == GL_TEXTURE_3D) { /* Test 3-D mipmaps */ GLuint width = t->Image[0][baseLevel]->Width2; GLuint height = t->Image[0][baseLevel]->Height2; GLuint depth = t->Image[0][baseLevel]->Depth2; for (i = baseLevel + 1; i < maxLevels; i++) { if (width > 1) { width /= 2; } if (height > 1) { height /= 2; } if (depth > 1) { depth /= 2; } if (i >= minLevel && i <= maxLevel) { if (!t->Image[0][i]) { incomplete(t, "3D Image[0][i] == NULL"); return; } if (t->Image[0][i]->_BaseFormat == GL_DEPTH_COMPONENT) { incomplete(t, "GL_DEPTH_COMPONENT only works with 1/2D tex"); return; } if (t->Image[0][i]->Width2 != width) { incomplete(t, "3D Image[0][i] bad width"); return; } if (t->Image[0][i]->Height2 != height) { incomplete(t, "3D Image[0][i] bad height"); return; } if (t->Image[0][i]->Depth2 != depth) { incomplete(t, "3D Image[0][i] bad depth"); return; } } if (width == 1 && height == 1 && depth == 1) { return; /* found smallest needed mipmap, all done! */ } } } else if (t->Target == GL_TEXTURE_CUBE_MAP_ARB) { /* make sure 6 cube faces are consistant */ GLuint width = t->Image[0][baseLevel]->Width2; GLuint height = t->Image[0][baseLevel]->Height2; for (i = baseLevel + 1; i < maxLevels; i++) { if (width > 1) { width /= 2; } if (height > 1) { height /= 2; } if (i >= minLevel && i <= maxLevel) { GLuint face; for (face = 0; face < 6; face++) { /* check that we have images defined */ if (!t->Image[face][i]) { incomplete(t, "CubeMap Image[n][i] == NULL"); return; } /* Don't support GL_DEPTH_COMPONENT for cube maps */ if (t->Image[face][i]->_BaseFormat == GL_DEPTH_COMPONENT) { incomplete(t, "GL_DEPTH_COMPONENT only works with 1/2D tex"); return; } /* check that all six images have same size */ if (t->Image[face][i]->Width2 != width || t->Image[face][i]->Height2 != height) { incomplete(t, "CubeMap Image[n][i] bad size"); return; } } } if (width == 1 && height == 1) { return; /* found smallest needed mipmap, all done! */ } } } else if (t->Target == GL_TEXTURE_RECTANGLE_NV) { /* XXX special checking? */ } else { /* Target = ??? */ _mesa_problem(ctx, "Bug in gl_test_texture_object_completeness\n"); } } } /** * Check if the given cube map texture is "cube complete" as defined in * the OpenGL specification. */ GLboolean _mesa_cube_complete(const struct gl_texture_object *texObj) { const GLint baseLevel = texObj->BaseLevel; const struct gl_texture_image *img0, *img; GLuint face; if (texObj->Target != GL_TEXTURE_CUBE_MAP) return GL_FALSE; if ((baseLevel < 0) || (baseLevel >= MAX_TEXTURE_LEVELS)) return GL_FALSE; /* check first face */ img0 = texObj->Image[0][baseLevel]; if (!img0 || img0->Width < 1 || img0->Width != img0->Height) return GL_FALSE; /* check remaining faces vs. first face */ for (face = 1; face < 6; face++) { img = texObj->Image[face][baseLevel]; if (!img || img->Width != img0->Width || img->Height != img0->Height || img->TexFormat != img0->TexFormat) return GL_FALSE; } return GL_TRUE; } /** * Mark a texture object dirty. It forces the object to be incomplete * and optionally forces the context to re-validate its state. * * \param ctx GL context. * \param texObj texture object. * \param invalidate_state also invalidate context state. */ void _mesa_dirty_texobj(struct gl_context *ctx, struct gl_texture_object *texObj, GLboolean invalidate_state) { texObj->_Complete = GL_FALSE; if (invalidate_state) ctx->NewState |= _NEW_TEXTURE; } /** * Return pointer to a default/fallback texture. * The texture is a 2D 8x8 RGBA texture with all texels = (0,0,0,1). * That's the value a sampler should get when sampling from an * incomplete texture. */ struct gl_texture_object * _mesa_get_fallback_texture(struct gl_context *ctx) { if (!ctx->Shared->FallbackTex) { /* create fallback texture now */ static GLubyte texels[8 * 8][4]; struct gl_texture_object *texObj; struct gl_texture_image *texImage; gl_format texFormat; GLuint i; for (i = 0; i < 8 * 8; i++) { texels[i][0] = texels[i][1] = texels[i][2] = 0x0; texels[i][3] = 0xff; } /* create texture object */ texObj = ctx->Driver.NewTextureObject(ctx, 0, GL_TEXTURE_2D); assert(texObj->RefCount == 1); texObj->Sampler.MinFilter = GL_NEAREST; texObj->Sampler.MagFilter = GL_NEAREST; /* create level[0] texture image */ texImage = _mesa_get_tex_image(ctx, texObj, GL_TEXTURE_2D, 0); texFormat = ctx->Driver.ChooseTextureFormat(ctx, GL_RGBA, GL_RGBA, GL_UNSIGNED_BYTE); /* init the image fields */ _mesa_init_teximage_fields(ctx, GL_TEXTURE_2D, texImage, 8, 8, 1, 0, GL_RGBA, texFormat); ASSERT(texImage->TexFormat != MESA_FORMAT_NONE); /* set image data */ ctx->Driver.TexImage2D(ctx, GL_TEXTURE_2D, 0, GL_RGBA, 8, 8, 0, GL_RGBA, GL_UNSIGNED_BYTE, texels, &ctx->DefaultPacking, texObj, texImage); _mesa_test_texobj_completeness(ctx, texObj); assert(texObj->_Complete); ctx->Shared->FallbackTex = texObj; } return ctx->Shared->FallbackTex; } /*@}*/ /***********************************************************************/ /** \name API functions */ /*@{*/ /** * Generate texture names. * * \param n number of texture names to be generated. * \param textures an array in which will hold the generated texture names. * * \sa glGenTextures(). * * Calls _mesa_HashFindFreeKeyBlock() to find a block of free texture * IDs which are stored in \p textures. Corresponding empty texture * objects are also generated. */ void GLAPIENTRY _mesa_GenTextures( GLsizei n, GLuint *textures ) { GET_CURRENT_CONTEXT(ctx); GLuint first; GLint i; ASSERT_OUTSIDE_BEGIN_END(ctx); if (n < 0) { _mesa_error( ctx, GL_INVALID_VALUE, "glGenTextures" ); return; } if (!textures) return; /* * This must be atomic (generation and allocation of texture IDs) */ _glthread_LOCK_MUTEX(ctx->Shared->Mutex); first = _mesa_HashFindFreeKeyBlock(ctx->Shared->TexObjects, n); /* Allocate new, empty texture objects */ for (i = 0; i < n; i++) { struct gl_texture_object *texObj; GLuint name = first + i; GLenum target = 0; texObj = (*ctx->Driver.NewTextureObject)( ctx, name, target); if (!texObj) { _glthread_UNLOCK_MUTEX(ctx->Shared->Mutex); _mesa_error(ctx, GL_OUT_OF_MEMORY, "glGenTextures"); return; } /* insert into hash table */ _mesa_HashInsert(ctx->Shared->TexObjects, texObj->Name, texObj); textures[i] = name; } _glthread_UNLOCK_MUTEX(ctx->Shared->Mutex); } /** * Check if the given texture object is bound to the current draw or * read framebuffer. If so, Unbind it. */ static void unbind_texobj_from_fbo(struct gl_context *ctx, struct gl_texture_object *texObj) { const GLuint n = (ctx->DrawBuffer == ctx->ReadBuffer) ? 1 : 2; GLuint i; for (i = 0; i < n; i++) { struct gl_framebuffer *fb = (i == 0) ? ctx->DrawBuffer : ctx->ReadBuffer; if (fb->Name) { GLuint j; for (j = 0; j < BUFFER_COUNT; j++) { if (fb->Attachment[j].Type == GL_TEXTURE && fb->Attachment[j].Texture == texObj) { /* Vertices are already flushed by _mesa_DeleteTextures */ ctx->NewState |= _NEW_BUFFERS; _mesa_remove_attachment(ctx, fb->Attachment + j); } } } } } /** * Check if the given texture object is bound to any texture image units and * unbind it if so (revert to default textures). */ static void unbind_texobj_from_texunits(struct gl_context *ctx, struct gl_texture_object *texObj) { GLuint u, tex; for (u = 0; u < MAX_TEXTURE_IMAGE_UNITS; u++) { struct gl_texture_unit *unit = &ctx->Texture.Unit[u]; for (tex = 0; tex < NUM_TEXTURE_TARGETS; tex++) { if (texObj == unit->CurrentTex[tex]) { _mesa_reference_texobj(&unit->CurrentTex[tex], ctx->Shared->DefaultTex[tex]); ASSERT(unit->CurrentTex[tex]); break; } } } } /** * Delete named textures. * * \param n number of textures to be deleted. * \param textures array of texture IDs to be deleted. * * \sa glDeleteTextures(). * * If we're about to delete a texture that's currently bound to any * texture unit, unbind the texture first. Decrement the reference * count on the texture object and delete it if it's zero. * Recall that texture objects can be shared among several rendering * contexts. */ void GLAPIENTRY _mesa_DeleteTextures( GLsizei n, const GLuint *textures) { GET_CURRENT_CONTEXT(ctx); GLint i; ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx); /* too complex */ if (!textures) return; for (i = 0; i < n; i++) { if (textures[i] > 0) { struct gl_texture_object *delObj = _mesa_lookup_texture(ctx, textures[i]); if (delObj) { _mesa_lock_texture(ctx, delObj); /* Check if texture is bound to any framebuffer objects. * If so, unbind. * See section 4.4.2.3 of GL_EXT_framebuffer_object. */ unbind_texobj_from_fbo(ctx, delObj); /* Check if this texture is currently bound to any texture units. * If so, unbind it. */ unbind_texobj_from_texunits(ctx, delObj); _mesa_unlock_texture(ctx, delObj); ctx->NewState |= _NEW_TEXTURE; /* The texture _name_ is now free for re-use. * Remove it from the hash table now. */ _glthread_LOCK_MUTEX(ctx->Shared->Mutex); _mesa_HashRemove(ctx->Shared->TexObjects, delObj->Name); _glthread_UNLOCK_MUTEX(ctx->Shared->Mutex); /* Unreference the texobj. If refcount hits zero, the texture * will be deleted. */ _mesa_reference_texobj(&delObj, NULL); } } } } /** * Convert a GL texture target enum such as GL_TEXTURE_2D or GL_TEXTURE_3D * into the corresponding Mesa texture target index. * Note that proxy targets are not valid here. * \return TEXTURE_x_INDEX or -1 if target is invalid */ static GLint target_enum_to_index(GLenum target) { switch (target) { case GL_TEXTURE_1D: return TEXTURE_1D_INDEX; case GL_TEXTURE_2D: return TEXTURE_2D_INDEX; case GL_TEXTURE_3D: return TEXTURE_3D_INDEX; case GL_TEXTURE_CUBE_MAP_ARB: return TEXTURE_CUBE_INDEX; case GL_TEXTURE_RECTANGLE_NV: return TEXTURE_RECT_INDEX; case GL_TEXTURE_1D_ARRAY_EXT: return TEXTURE_1D_ARRAY_INDEX; case GL_TEXTURE_2D_ARRAY_EXT: return TEXTURE_2D_ARRAY_INDEX; case GL_TEXTURE_BUFFER_ARB: return TEXTURE_BUFFER_INDEX; default: return -1; } } /** * Bind a named texture to a texturing target. * * \param target texture target. * \param texName texture name. * * \sa glBindTexture(). * * Determines the old texture object bound and returns immediately if rebinding * the same texture. Get the current texture which is either a default texture * if name is null, a named texture from the hash, or a new texture if the * given texture name is new. Increments its reference count, binds it, and * calls dd_function_table::BindTexture. Decrements the old texture reference * count and deletes it if it reaches zero. */ void GLAPIENTRY _mesa_BindTexture( GLenum target, GLuint texName ) { GET_CURRENT_CONTEXT(ctx); struct gl_texture_unit *texUnit = _mesa_get_current_tex_unit(ctx); struct gl_texture_object *newTexObj = NULL; GLint targetIndex; ASSERT_OUTSIDE_BEGIN_END(ctx); if (MESA_VERBOSE & (VERBOSE_API|VERBOSE_TEXTURE)) _mesa_debug(ctx, "glBindTexture %s %d\n", _mesa_lookup_enum_by_nr(target), (GLint) texName); targetIndex = target_enum_to_index(target); if (targetIndex < 0) { _mesa_error(ctx, GL_INVALID_ENUM, "glBindTexture(target)"); return; } assert(targetIndex < NUM_TEXTURE_TARGETS); /* * Get pointer to new texture object (newTexObj) */ if (texName == 0) { /* Use a default texture object */ newTexObj = ctx->Shared->DefaultTex[targetIndex]; } else { /* non-default texture object */ newTexObj = _mesa_lookup_texture(ctx, texName); if (newTexObj) { /* error checking */ if (newTexObj->Target != 0 && newTexObj->Target != target) { /* the named texture object's target doesn't match the given target */ _mesa_error( ctx, GL_INVALID_OPERATION, "glBindTexture(target mismatch)" ); return; } if (newTexObj->Target == 0) { finish_texture_init(ctx, target, newTexObj); } } else { /* if this is a new texture id, allocate a texture object now */ newTexObj = (*ctx->Driver.NewTextureObject)(ctx, texName, target); if (!newTexObj) { _mesa_error(ctx, GL_OUT_OF_MEMORY, "glBindTexture"); return; } /* and insert it into hash table */ _glthread_LOCK_MUTEX(ctx->Shared->Mutex); _mesa_HashInsert(ctx->Shared->TexObjects, texName, newTexObj); _glthread_UNLOCK_MUTEX(ctx->Shared->Mutex); } newTexObj->Target = target; } assert(valid_texture_object(newTexObj)); /* Check if this texture is only used by this context and is already bound. * If so, just return. */ { GLboolean early_out; _glthread_LOCK_MUTEX(ctx->Shared->Mutex); early_out = ((ctx->Shared->RefCount == 1) && (newTexObj == texUnit->CurrentTex[targetIndex])); _glthread_UNLOCK_MUTEX(ctx->Shared->Mutex); if (early_out) { return; } } /* flush before changing binding */ FLUSH_VERTICES(ctx, _NEW_TEXTURE); /* Do the actual binding. The refcount on the previously bound * texture object will be decremented. It'll be deleted if the * count hits zero. */ _mesa_reference_texobj(&texUnit->CurrentTex[targetIndex], newTexObj); ASSERT(texUnit->CurrentTex[targetIndex]); /* Pass BindTexture call to device driver */ if (ctx->Driver.BindTexture) (*ctx->Driver.BindTexture)( ctx, target, newTexObj ); } /** * Set texture priorities. * * \param n number of textures. * \param texName texture names. * \param priorities corresponding texture priorities. * * \sa glPrioritizeTextures(). * * Looks up each texture in the hash, clamps the corresponding priority between * 0.0 and 1.0, and calls dd_function_table::PrioritizeTexture. */ void GLAPIENTRY _mesa_PrioritizeTextures( GLsizei n, const GLuint *texName, const GLclampf *priorities ) { GET_CURRENT_CONTEXT(ctx); GLint i; ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx); if (n < 0) { _mesa_error( ctx, GL_INVALID_VALUE, "glPrioritizeTextures" ); return; } if (!priorities) return; for (i = 0; i < n; i++) { if (texName[i] > 0) { struct gl_texture_object *t = _mesa_lookup_texture(ctx, texName[i]); if (t) { t->Priority = CLAMP( priorities[i], 0.0F, 1.0F ); } } } ctx->NewState |= _NEW_TEXTURE; } /** * See if textures are loaded in texture memory. * * \param n number of textures to query. * \param texName array with the texture names. * \param residences array which will hold the residence status. * * \return GL_TRUE if all textures are resident and \p residences is left unchanged, * * \sa glAreTexturesResident(). * * Looks up each texture in the hash and calls * dd_function_table::IsTextureResident. */ GLboolean GLAPIENTRY _mesa_AreTexturesResident(GLsizei n, const GLuint *texName, GLboolean *residences) { GET_CURRENT_CONTEXT(ctx); GLboolean allResident = GL_TRUE; GLint i, j; ASSERT_OUTSIDE_BEGIN_END_WITH_RETVAL(ctx, GL_FALSE); if (n < 0) { _mesa_error(ctx, GL_INVALID_VALUE, "glAreTexturesResident(n)"); return GL_FALSE; } if (!texName || !residences) return GL_FALSE; for (i = 0; i < n; i++) { struct gl_texture_object *t; if (texName[i] == 0) { _mesa_error(ctx, GL_INVALID_VALUE, "glAreTexturesResident"); return GL_FALSE; } t = _mesa_lookup_texture(ctx, texName[i]); if (!t) { _mesa_error(ctx, GL_INVALID_VALUE, "glAreTexturesResident"); return GL_FALSE; } if (!ctx->Driver.IsTextureResident || ctx->Driver.IsTextureResident(ctx, t)) { /* The texture is resident */ if (!allResident) residences[i] = GL_TRUE; } else { /* The texture is not resident */ if (allResident) { allResident = GL_FALSE; for (j = 0; j < i; j++) residences[j] = GL_TRUE; } residences[i] = GL_FALSE; } } return allResident; } /** * See if a name corresponds to a texture. * * \param texture texture name. * * \return GL_TRUE if texture name corresponds to a texture, or GL_FALSE * otherwise. * * \sa glIsTexture(). * * Calls _mesa_HashLookup(). */ GLboolean GLAPIENTRY _mesa_IsTexture( GLuint texture ) { struct gl_texture_object *t; GET_CURRENT_CONTEXT(ctx); ASSERT_OUTSIDE_BEGIN_END_WITH_RETVAL(ctx, GL_FALSE); if (!texture) return GL_FALSE; t = _mesa_lookup_texture(ctx, texture); /* IsTexture is true only after object has been bound once. */ return t && t->Target; } /** * Simplest implementation of texture locking: grab the shared tex * mutex. Examine the shared context state timestamp and if there has * been a change, set the appropriate bits in ctx->NewState. * * This is used to deal with synchronizing things when a texture object * is used/modified by different contexts (or threads) which are sharing * the texture. * * See also _mesa_lock/unlock_texture() in teximage.h */ void _mesa_lock_context_textures( struct gl_context *ctx ) { _glthread_LOCK_MUTEX(ctx->Shared->TexMutex); if (ctx->Shared->TextureStateStamp != ctx->TextureStateTimestamp) { ctx->NewState |= _NEW_TEXTURE; ctx->TextureStateTimestamp = ctx->Shared->TextureStateStamp; } } void _mesa_unlock_context_textures( struct gl_context *ctx ) { assert(ctx->Shared->TextureStateStamp == ctx->TextureStateTimestamp); _glthread_UNLOCK_MUTEX(ctx->Shared->TexMutex); } /*@}*/