/* crypto/ec/ecp_nistp521.c */
/*
 * Written by Adam Langley (Google) for the OpenSSL project
 */
/* Copyright 2011 Google Inc.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 *
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 */

/*
 * A 64-bit implementation of the NIST P-521 elliptic curve point multiplication
 *
 * OpenSSL integration was taken from Emilia Kasper's work in ecp_nistp224.c.
 * Otherwise based on Emilia's P224 work, which was inspired by my curve25519
 * work which got its smarts from Daniel J. Bernstein's work on the same.
 */

#include <openssl/opensslconf.h>
#ifndef OPENSSL_NO_EC_NISTP_64_GCC_128

#ifndef OPENSSL_SYS_VMS
#include <stdint.h>
#else
#include <inttypes.h>
#endif

#include <string.h>
#include <openssl/err.h>
#include "ec_lcl.h"

#if defined(__GNUC__) && (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 1))
  /* even with gcc, the typedef won't work for 32-bit platforms */
  typedef __uint128_t uint128_t; /* nonstandard; implemented by gcc on 64-bit platforms */
#else
  #error "Need GCC 3.1 or later to define type uint128_t"
#endif

typedef uint8_t u8;
typedef uint64_t u64;
typedef int64_t s64;

/* The underlying field.
 *
 * P521 operates over GF(2^521-1). We can serialise an element of this field
 * into 66 bytes where the most significant byte contains only a single bit. We
 * call this an felem_bytearray. */

typedef u8 felem_bytearray[66];

/* These are the parameters of P521, taken from FIPS 186-3, section D.1.2.5.
 * These values are big-endian. */
static const felem_bytearray nistp521_curve_params[5] =
	{
	{0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,  /* p */
	 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
	 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
	 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
	 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
	 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
	 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
	 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
	 0xff, 0xff},
	{0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,  /* a = -3 */
	 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
	 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
	 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
	 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
	 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
	 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
	 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
	 0xff, 0xfc},
	{0x00, 0x51, 0x95, 0x3e, 0xb9, 0x61, 0x8e, 0x1c,  /* b */
	 0x9a, 0x1f, 0x92, 0x9a, 0x21, 0xa0, 0xb6, 0x85,
	 0x40, 0xee, 0xa2, 0xda, 0x72, 0x5b, 0x99, 0xb3,
	 0x15, 0xf3, 0xb8, 0xb4, 0x89, 0x91, 0x8e, 0xf1,
	 0x09, 0xe1, 0x56, 0x19, 0x39, 0x51, 0xec, 0x7e,
	 0x93, 0x7b, 0x16, 0x52, 0xc0, 0xbd, 0x3b, 0xb1,
	 0xbf, 0x07, 0x35, 0x73, 0xdf, 0x88, 0x3d, 0x2c,
	 0x34, 0xf1, 0xef, 0x45, 0x1f, 0xd4, 0x6b, 0x50,
	 0x3f, 0x00},
	{0x00, 0xc6, 0x85, 0x8e, 0x06, 0xb7, 0x04, 0x04,  /* x */
	 0xe9, 0xcd, 0x9e, 0x3e, 0xcb, 0x66, 0x23, 0x95,
	 0xb4, 0x42, 0x9c, 0x64, 0x81, 0x39, 0x05, 0x3f,
	 0xb5, 0x21, 0xf8, 0x28, 0xaf, 0x60, 0x6b, 0x4d,
	 0x3d, 0xba, 0xa1, 0x4b, 0x5e, 0x77, 0xef, 0xe7,
	 0x59, 0x28, 0xfe, 0x1d, 0xc1, 0x27, 0xa2, 0xff,
	 0xa8, 0xde, 0x33, 0x48, 0xb3, 0xc1, 0x85, 0x6a,
	 0x42, 0x9b, 0xf9, 0x7e, 0x7e, 0x31, 0xc2, 0xe5,
	 0xbd, 0x66},
	{0x01, 0x18, 0x39, 0x29, 0x6a, 0x78, 0x9a, 0x3b,  /* y */
	 0xc0, 0x04, 0x5c, 0x8a, 0x5f, 0xb4, 0x2c, 0x7d,
	 0x1b, 0xd9, 0x98, 0xf5, 0x44, 0x49, 0x57, 0x9b,
	 0x44, 0x68, 0x17, 0xaf, 0xbd, 0x17, 0x27, 0x3e,
	 0x66, 0x2c, 0x97, 0xee, 0x72, 0x99, 0x5e, 0xf4,
	 0x26, 0x40, 0xc5, 0x50, 0xb9, 0x01, 0x3f, 0xad,
	 0x07, 0x61, 0x35, 0x3c, 0x70, 0x86, 0xa2, 0x72,
	 0xc2, 0x40, 0x88, 0xbe, 0x94, 0x76, 0x9f, 0xd1,
	 0x66, 0x50}
	};

/* The representation of field elements.
 * ------------------------------------
 *
 * We represent field elements with nine values. These values are either 64 or
 * 128 bits and the field element represented is:
 *   v[0]*2^0 + v[1]*2^58 + v[2]*2^116 + ... + v[8]*2^464  (mod p)
 * Each of the nine values is called a 'limb'. Since the limbs are spaced only
 * 58 bits apart, but are greater than 58 bits in length, the most significant
 * bits of each limb overlap with the least significant bits of the next.
 *
 * A field element with 64-bit limbs is an 'felem'. One with 128-bit limbs is a
 * 'largefelem' */

#define NLIMBS 9

typedef uint64_t limb;
typedef limb felem[NLIMBS];
typedef uint128_t largefelem[NLIMBS];

static const limb bottom57bits = 0x1ffffffffffffff;
static const limb bottom58bits = 0x3ffffffffffffff;

/* bin66_to_felem takes a little-endian byte array and converts it into felem
 * form. This assumes that the CPU is little-endian. */
static void bin66_to_felem(felem out, const u8 in[66])
	{
	out[0] = (*((limb*) &in[0])) & bottom58bits;
	out[1] = (*((limb*) &in[7]) >> 2) & bottom58bits;
	out[2] = (*((limb*) &in[14]) >> 4) & bottom58bits;
	out[3] = (*((limb*) &in[21]) >> 6) & bottom58bits;
	out[4] = (*((limb*) &in[29])) & bottom58bits;
	out[5] = (*((limb*) &in[36]) >> 2) & bottom58bits;
	out[6] = (*((limb*) &in[43]) >> 4) & bottom58bits;
	out[7] = (*((limb*) &in[50]) >> 6) & bottom58bits;
	out[8] = (*((limb*) &in[58])) & bottom57bits;
	}

/* felem_to_bin66 takes an felem and serialises into a little endian, 66 byte
 * array. This assumes that the CPU is little-endian. */
static void felem_to_bin66(u8 out[66], const felem in)
	{
	memset(out, 0, 66);
	(*((limb*) &out[0])) = in[0];
	(*((limb*) &out[7])) |= in[1] << 2;
	(*((limb*) &out[14])) |= in[2] << 4;
	(*((limb*) &out[21])) |= in[3] << 6;
	(*((limb*) &out[29])) = in[4];
	(*((limb*) &out[36])) |= in[5] << 2;
	(*((limb*) &out[43])) |= in[6] << 4;
	(*((limb*) &out[50])) |= in[7] << 6;
	(*((limb*) &out[58])) = in[8];
	}

/* To preserve endianness when using BN_bn2bin and BN_bin2bn */
static void flip_endian(u8 *out, const u8 *in, unsigned len)
	{
	unsigned i;
	for (i = 0; i < len; ++i)
		out[i] = in[len-1-i];
	}

/* BN_to_felem converts an OpenSSL BIGNUM into an felem */
static int BN_to_felem(felem out, const BIGNUM *bn)
	{
	felem_bytearray b_in;
	felem_bytearray b_out;
	unsigned num_bytes;

	/* BN_bn2bin eats leading zeroes */
	memset(b_out, 0, sizeof b_out);
	num_bytes = BN_num_bytes(bn);
	if (num_bytes > sizeof b_out)
		{
		ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
		return 0;
		}
	if (BN_is_negative(bn))
		{
		ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
		return 0;
		}
	num_bytes = BN_bn2bin(bn, b_in);
	flip_endian(b_out, b_in, num_bytes);
	bin66_to_felem(out, b_out);
	return 1;
	}

/* felem_to_BN converts an felem into an OpenSSL BIGNUM */
static BIGNUM *felem_to_BN(BIGNUM *out, const felem in)
	{
	felem_bytearray b_in, b_out;
	felem_to_bin66(b_in, in);
	flip_endian(b_out, b_in, sizeof b_out);
	return BN_bin2bn(b_out, sizeof b_out, out);
	}


/* Field operations
 * ---------------- */

static void felem_one(felem out)
	{
	out[0] = 1;
	out[1] = 0;
	out[2] = 0;
	out[3] = 0;
	out[4] = 0;
	out[5] = 0;
	out[6] = 0;
	out[7] = 0;
	out[8] = 0;
	}

static void felem_assign(felem out, const felem in)
	{
	out[0] = in[0];
	out[1] = in[1];
	out[2] = in[2];
	out[3] = in[3];
	out[4] = in[4];
	out[5] = in[5];
	out[6] = in[6];
	out[7] = in[7];
	out[8] = in[8];
	}

/* felem_sum64 sets out = out + in. */
static void felem_sum64(felem out, const felem in)
	{
	out[0] += in[0];
	out[1] += in[1];
	out[2] += in[2];
	out[3] += in[3];
	out[4] += in[4];
	out[5] += in[5];
	out[6] += in[6];
	out[7] += in[7];
	out[8] += in[8];
	}

/* felem_scalar sets out = in * scalar */
static void felem_scalar(felem out, const felem in, limb scalar)
	{
	out[0] = in[0] * scalar;
	out[1] = in[1] * scalar;
	out[2] = in[2] * scalar;
	out[3] = in[3] * scalar;
	out[4] = in[4] * scalar;
	out[5] = in[5] * scalar;
	out[6] = in[6] * scalar;
	out[7] = in[7] * scalar;
	out[8] = in[8] * scalar;
	}

/* felem_scalar64 sets out = out * scalar */
static void felem_scalar64(felem out, limb scalar)
	{
	out[0] *= scalar;
	out[1] *= scalar;
	out[2] *= scalar;
	out[3] *= scalar;
	out[4] *= scalar;
	out[5] *= scalar;
	out[6] *= scalar;
	out[7] *= scalar;
	out[8] *= scalar;
	}

/* felem_scalar128 sets out = out * scalar */
static void felem_scalar128(largefelem out, limb scalar)
	{
	out[0] *= scalar;
	out[1] *= scalar;
	out[2] *= scalar;
	out[3] *= scalar;
	out[4] *= scalar;
	out[5] *= scalar;
	out[6] *= scalar;
	out[7] *= scalar;
	out[8] *= scalar;
	}

/* felem_neg sets |out| to |-in|
 * On entry:
 *   in[i] < 2^59 + 2^14
 * On exit:
 *   out[i] < 2^62
 */
static void felem_neg(felem out, const felem in)
	{
	/* In order to prevent underflow, we subtract from 0 mod p. */
	static const limb two62m3 = (((limb)1) << 62) - (((limb)1) << 5);
	static const limb two62m2 = (((limb)1) << 62) - (((limb)1) << 4);

	out[0] = two62m3 - in[0];
	out[1] = two62m2 - in[1];
	out[2] = two62m2 - in[2];
	out[3] = two62m2 - in[3];
	out[4] = two62m2 - in[4];
	out[5] = two62m2 - in[5];
	out[6] = two62m2 - in[6];
	out[7] = two62m2 - in[7];
	out[8] = two62m2 - in[8];
	}

/* felem_diff64 subtracts |in| from |out|
 * On entry:
 *   in[i] < 2^59 + 2^14
 * On exit:
 *   out[i] < out[i] + 2^62
 */
static void felem_diff64(felem out, const felem in)
	{
	/* In order to prevent underflow, we add 0 mod p before subtracting. */
	static const limb two62m3 = (((limb)1) << 62) - (((limb)1) << 5);
	static const limb two62m2 = (((limb)1) << 62) - (((limb)1) << 4);

	out[0] += two62m3 - in[0];
	out[1] += two62m2 - in[1];
	out[2] += two62m2 - in[2];
	out[3] += two62m2 - in[3];
	out[4] += two62m2 - in[4];
	out[5] += two62m2 - in[5];
	out[6] += two62m2 - in[6];
	out[7] += two62m2 - in[7];
	out[8] += two62m2 - in[8];
	}

/* felem_diff_128_64 subtracts |in| from |out|
 * On entry:
 *   in[i] < 2^62 + 2^17
 * On exit:
 *   out[i] < out[i] + 2^63
 */
static void felem_diff_128_64(largefelem out, const felem in)
	{
	/* In order to prevent underflow, we add 0 mod p before subtracting. */
	static const limb two63m6 = (((limb)1) << 62) - (((limb)1) << 5);
	static const limb two63m5 = (((limb)1) << 62) - (((limb)1) << 4);

	out[0] += two63m6 - in[0];
	out[1] += two63m5 - in[1];
	out[2] += two63m5 - in[2];
	out[3] += two63m5 - in[3];
	out[4] += two63m5 - in[4];
	out[5] += two63m5 - in[5];
	out[6] += two63m5 - in[6];
	out[7] += two63m5 - in[7];
	out[8] += two63m5 - in[8];
	}

/* felem_diff_128_64 subtracts |in| from |out|
 * On entry:
 *   in[i] < 2^126
 * On exit:
 *   out[i] < out[i] + 2^127 - 2^69
 */
static void felem_diff128(largefelem out, const largefelem in)
	{
	/* In order to prevent underflow, we add 0 mod p before subtracting. */
	static const uint128_t two127m70 = (((uint128_t)1) << 127) - (((uint128_t)1) << 70);
	static const uint128_t two127m69 = (((uint128_t)1) << 127) - (((uint128_t)1) << 69);

	out[0] += (two127m70 - in[0]);
	out[1] += (two127m69 - in[1]);
	out[2] += (two127m69 - in[2]);
	out[3] += (two127m69 - in[3]);
	out[4] += (two127m69 - in[4]);
	out[5] += (two127m69 - in[5]);
	out[6] += (two127m69 - in[6]);
	out[7] += (two127m69 - in[7]);
	out[8] += (two127m69 - in[8]);
	}

/* felem_square sets |out| = |in|^2
 * On entry:
 *   in[i] < 2^62
 * On exit:
 *   out[i] < 17 * max(in[i]) * max(in[i])
 */
static void felem_square(largefelem out, const felem in)
	{
	felem inx2, inx4;
	felem_scalar(inx2, in, 2);
	felem_scalar(inx4, in, 4);

	/* We have many cases were we want to do
	 *   in[x] * in[y] +
	 *   in[y] * in[x]
	 * This is obviously just
	 *   2 * in[x] * in[y]
	 * However, rather than do the doubling on the 128 bit result, we
	 * double one of the inputs to the multiplication by reading from
	 * |inx2| */

	out[0] = ((uint128_t) in[0]) * in[0];
	out[1] = ((uint128_t) in[0]) * inx2[1];
	out[2] = ((uint128_t) in[0]) * inx2[2] +
		 ((uint128_t) in[1]) * in[1];
	out[3] = ((uint128_t) in[0]) * inx2[3] +
		 ((uint128_t) in[1]) * inx2[2];
	out[4] = ((uint128_t) in[0]) * inx2[4] +
		 ((uint128_t) in[1]) * inx2[3] +
		 ((uint128_t) in[2]) * in[2];
	out[5] = ((uint128_t) in[0]) * inx2[5] +
		 ((uint128_t) in[1]) * inx2[4] +
		 ((uint128_t) in[2]) * inx2[3];
	out[6] = ((uint128_t) in[0]) * inx2[6] +
		 ((uint128_t) in[1]) * inx2[5] +
		 ((uint128_t) in[2]) * inx2[4] +
		 ((uint128_t) in[3]) * in[3];
	out[7] = ((uint128_t) in[0]) * inx2[7] +
		 ((uint128_t) in[1]) * inx2[6] +
		 ((uint128_t) in[2]) * inx2[5] +
		 ((uint128_t) in[3]) * inx2[4];
	out[8] = ((uint128_t) in[0]) * inx2[8] +
		 ((uint128_t) in[1]) * inx2[7] +
		 ((uint128_t) in[2]) * inx2[6] +
		 ((uint128_t) in[3]) * inx2[5] +
		 ((uint128_t) in[4]) * in[4];

	/* The remaining limbs fall above 2^521, with the first falling at
	 * 2^522. They correspond to locations one bit up from the limbs
	 * produced above so we would have to multiply by two to align them.
	 * Again, rather than operate on the 128-bit result, we double one of
	 * the inputs to the multiplication. If we want to double for both this
	 * reason, and the reason above, then we end up multiplying by four. */

	/* 9 */
	out[0] += ((uint128_t) in[1]) * inx4[8] +
		  ((uint128_t) in[2]) * inx4[7] +
		  ((uint128_t) in[3]) * inx4[6] +
		  ((uint128_t) in[4]) * inx4[5];

	/* 10 */
	out[1] += ((uint128_t) in[2]) * inx4[8] +
		  ((uint128_t) in[3]) * inx4[7] +
		  ((uint128_t) in[4]) * inx4[6] +
		  ((uint128_t) in[5]) * inx2[5];

	/* 11 */
	out[2] += ((uint128_t) in[3]) * inx4[8] +
		  ((uint128_t) in[4]) * inx4[7] +
		  ((uint128_t) in[5]) * inx4[6];

	/* 12 */
	out[3] += ((uint128_t) in[4]) * inx4[8] +
		  ((uint128_t) in[5]) * inx4[7] +
		  ((uint128_t) in[6]) * inx2[6];

	/* 13 */
	out[4] += ((uint128_t) in[5]) * inx4[8] +
		  ((uint128_t) in[6]) * inx4[7];

	/* 14 */
	out[5] += ((uint128_t) in[6]) * inx4[8] +
		  ((uint128_t) in[7]) * inx2[7];

	/* 15 */
	out[6] += ((uint128_t) in[7]) * inx4[8];

	/* 16 */
	out[7] += ((uint128_t) in[8]) * inx2[8];
	}

/* felem_mul sets |out| = |in1| * |in2|
 * On entry:
 *   in1[i] < 2^64
 *   in2[i] < 2^63
 * On exit:
 *   out[i] < 17 * max(in1[i]) * max(in2[i])
 */
static void felem_mul(largefelem out, const felem in1, const felem in2)
	{
	felem in2x2;
	felem_scalar(in2x2, in2, 2);

	out[0] = ((uint128_t) in1[0]) * in2[0];

	out[1] = ((uint128_t) in1[0]) * in2[1] +
	         ((uint128_t) in1[1]) * in2[0];

	out[2] = ((uint128_t) in1[0]) * in2[2] +
		 ((uint128_t) in1[1]) * in2[1] +
	         ((uint128_t) in1[2]) * in2[0];

	out[3] = ((uint128_t) in1[0]) * in2[3] +
		 ((uint128_t) in1[1]) * in2[2] +
		 ((uint128_t) in1[2]) * in2[1] +
		 ((uint128_t) in1[3]) * in2[0];

	out[4] = ((uint128_t) in1[0]) * in2[4] +
		 ((uint128_t) in1[1]) * in2[3] +
		 ((uint128_t) in1[2]) * in2[2] +
		 ((uint128_t) in1[3]) * in2[1] +
		 ((uint128_t) in1[4]) * in2[0];

	out[5] = ((uint128_t) in1[0]) * in2[5] +
		 ((uint128_t) in1[1]) * in2[4] +
		 ((uint128_t) in1[2]) * in2[3] +
		 ((uint128_t) in1[3]) * in2[2] +
		 ((uint128_t) in1[4]) * in2[1] +
		 ((uint128_t) in1[5]) * in2[0];

	out[6] = ((uint128_t) in1[0]) * in2[6] +
		 ((uint128_t) in1[1]) * in2[5] +
		 ((uint128_t) in1[2]) * in2[4] +
		 ((uint128_t) in1[3]) * in2[3] +
		 ((uint128_t) in1[4]) * in2[2] +
		 ((uint128_t) in1[5]) * in2[1] +
		 ((uint128_t) in1[6]) * in2[0];

	out[7] = ((uint128_t) in1[0]) * in2[7] +
		 ((uint128_t) in1[1]) * in2[6] +
		 ((uint128_t) in1[2]) * in2[5] +
		 ((uint128_t) in1[3]) * in2[4] +
		 ((uint128_t) in1[4]) * in2[3] +
		 ((uint128_t) in1[5]) * in2[2] +
		 ((uint128_t) in1[6]) * in2[1] +
		 ((uint128_t) in1[7]) * in2[0];

	out[8] = ((uint128_t) in1[0]) * in2[8] +
		 ((uint128_t) in1[1]) * in2[7] +
		 ((uint128_t) in1[2]) * in2[6] +
		 ((uint128_t) in1[3]) * in2[5] +
		 ((uint128_t) in1[4]) * in2[4] +
		 ((uint128_t) in1[5]) * in2[3] +
		 ((uint128_t) in1[6]) * in2[2] +
		 ((uint128_t) in1[7]) * in2[1] +
		 ((uint128_t) in1[8]) * in2[0];

	/* See comment in felem_square about the use of in2x2 here */

	out[0] += ((uint128_t) in1[1]) * in2x2[8] +
		  ((uint128_t) in1[2]) * in2x2[7] +
		  ((uint128_t) in1[3]) * in2x2[6] +
		  ((uint128_t) in1[4]) * in2x2[5] +
		  ((uint128_t) in1[5]) * in2x2[4] +
		  ((uint128_t) in1[6]) * in2x2[3] +
		  ((uint128_t) in1[7]) * in2x2[2] +
		  ((uint128_t) in1[8]) * in2x2[1];

	out[1] += ((uint128_t) in1[2]) * in2x2[8] +
		  ((uint128_t) in1[3]) * in2x2[7] +
		  ((uint128_t) in1[4]) * in2x2[6] +
		  ((uint128_t) in1[5]) * in2x2[5] +
		  ((uint128_t) in1[6]) * in2x2[4] +
		  ((uint128_t) in1[7]) * in2x2[3] +
		  ((uint128_t) in1[8]) * in2x2[2];

	out[2] += ((uint128_t) in1[3]) * in2x2[8] +
		  ((uint128_t) in1[4]) * in2x2[7] +
		  ((uint128_t) in1[5]) * in2x2[6] +
		  ((uint128_t) in1[6]) * in2x2[5] +
		  ((uint128_t) in1[7]) * in2x2[4] +
		  ((uint128_t) in1[8]) * in2x2[3];

	out[3] += ((uint128_t) in1[4]) * in2x2[8] +
		  ((uint128_t) in1[5]) * in2x2[7] +
		  ((uint128_t) in1[6]) * in2x2[6] +
		  ((uint128_t) in1[7]) * in2x2[5] +
		  ((uint128_t) in1[8]) * in2x2[4];

	out[4] += ((uint128_t) in1[5]) * in2x2[8] +
		  ((uint128_t) in1[6]) * in2x2[7] +
		  ((uint128_t) in1[7]) * in2x2[6] +
		  ((uint128_t) in1[8]) * in2x2[5];

	out[5] += ((uint128_t) in1[6]) * in2x2[8] +
		  ((uint128_t) in1[7]) * in2x2[7] +
		  ((uint128_t) in1[8]) * in2x2[6];

	out[6] += ((uint128_t) in1[7]) * in2x2[8] +
		  ((uint128_t) in1[8]) * in2x2[7];

	out[7] += ((uint128_t) in1[8]) * in2x2[8];
	}

static const limb bottom52bits = 0xfffffffffffff;

/* felem_reduce converts a largefelem to an felem.
 * On entry:
 *   in[i] < 2^128
 * On exit:
 *   out[i] < 2^59 + 2^14
 */
static void felem_reduce(felem out, const largefelem in)
	{
	u64 overflow1, overflow2;

	out[0] = ((limb) in[0]) & bottom58bits;
	out[1] = ((limb) in[1]) & bottom58bits;
	out[2] = ((limb) in[2]) & bottom58bits;
	out[3] = ((limb) in[3]) & bottom58bits;
	out[4] = ((limb) in[4]) & bottom58bits;
	out[5] = ((limb) in[5]) & bottom58bits;
	out[6] = ((limb) in[6]) & bottom58bits;
	out[7] = ((limb) in[7]) & bottom58bits;
	out[8] = ((limb) in[8]) & bottom58bits;

	/* out[i] < 2^58 */

	out[1] += ((limb) in[0]) >> 58;
	out[1] += (((limb) (in[0] >> 64)) & bottom52bits) << 6;
	/* out[1] < 2^58 + 2^6 + 2^58
	 *        = 2^59 + 2^6 */
	out[2] += ((limb) (in[0] >> 64)) >> 52;

	out[2] += ((limb) in[1]) >> 58;
	out[2] += (((limb) (in[1] >> 64)) & bottom52bits) << 6;
	out[3] += ((limb) (in[1] >> 64)) >> 52;

	out[3] += ((limb) in[2]) >> 58;
	out[3] += (((limb) (in[2] >> 64)) & bottom52bits) << 6;
	out[4] += ((limb) (in[2] >> 64)) >> 52;

	out[4] += ((limb) in[3]) >> 58;
	out[4] += (((limb) (in[3] >> 64)) & bottom52bits) << 6;
	out[5] += ((limb) (in[3] >> 64)) >> 52;

	out[5] += ((limb) in[4]) >> 58;
	out[5] += (((limb) (in[4] >> 64)) & bottom52bits) << 6;
	out[6] += ((limb) (in[4] >> 64)) >> 52;

	out[6] += ((limb) in[5]) >> 58;
	out[6] += (((limb) (in[5] >> 64)) & bottom52bits) << 6;
	out[7] += ((limb) (in[5] >> 64)) >> 52;

	out[7] += ((limb) in[6]) >> 58;
	out[7] += (((limb) (in[6] >> 64)) & bottom52bits) << 6;
	out[8] += ((limb) (in[6] >> 64)) >> 52;

	out[8] += ((limb) in[7]) >> 58;
	out[8] += (((limb) (in[7] >> 64)) & bottom52bits) << 6;
	/* out[x > 1] < 2^58 + 2^6 + 2^58 + 2^12
	 *            < 2^59 + 2^13 */
	overflow1 = ((limb) (in[7] >> 64)) >> 52;

	overflow1 += ((limb) in[8]) >> 58;
	overflow1 += (((limb) (in[8] >> 64)) & bottom52bits) << 6;
	overflow2 = ((limb) (in[8] >> 64)) >> 52;

	overflow1 <<= 1;  /* overflow1 < 2^13 + 2^7 + 2^59 */
	overflow2 <<= 1;  /* overflow2 < 2^13 */

	out[0] += overflow1;  /* out[0] < 2^60 */
	out[1] += overflow2;  /* out[1] < 2^59 + 2^6 + 2^13 */

	out[1] += out[0] >> 58; out[0] &= bottom58bits;
	/* out[0] < 2^58
	 * out[1] < 2^59 + 2^6 + 2^13 + 2^2
	 *        < 2^59 + 2^14 */
	}

static void felem_square_reduce(felem out, const felem in)
	{
	largefelem tmp;
	felem_square(tmp, in);
	felem_reduce(out, tmp);
	}

static void felem_mul_reduce(felem out, const felem in1, const felem in2)
	{
	largefelem tmp;
	felem_mul(tmp, in1, in2);
	felem_reduce(out, tmp);
	}

/* felem_inv calculates |out| = |in|^{-1}
 *
 * Based on Fermat's Little Theorem:
 *   a^p = a (mod p)
 *   a^{p-1} = 1 (mod p)
 *   a^{p-2} = a^{-1} (mod p)
 */
static void felem_inv(felem out, const felem in)
	{
	felem ftmp, ftmp2, ftmp3, ftmp4;
	largefelem tmp;
	unsigned i;

	felem_square(tmp, in); felem_reduce(ftmp, tmp);		/* 2^1 */
	felem_mul(tmp, in, ftmp); felem_reduce(ftmp, tmp);	/* 2^2 - 2^0 */
	felem_assign(ftmp2, ftmp);
	felem_square(tmp, ftmp); felem_reduce(ftmp, tmp);	/* 2^3 - 2^1 */
	felem_mul(tmp, in, ftmp); felem_reduce(ftmp, tmp);	/* 2^3 - 2^0 */
	felem_square(tmp, ftmp); felem_reduce(ftmp, tmp);	/* 2^4 - 2^1 */

	felem_square(tmp, ftmp2); felem_reduce(ftmp3, tmp);	/* 2^3 - 2^1 */
	felem_square(tmp, ftmp3); felem_reduce(ftmp3, tmp);	/* 2^4 - 2^2 */
	felem_mul(tmp, ftmp3, ftmp2); felem_reduce(ftmp3, tmp);	/* 2^4 - 2^0 */

	felem_assign(ftmp2, ftmp3);
	felem_square(tmp, ftmp3); felem_reduce(ftmp3, tmp);	/* 2^5 - 2^1 */
	felem_square(tmp, ftmp3); felem_reduce(ftmp3, tmp);	/* 2^6 - 2^2 */
	felem_square(tmp, ftmp3); felem_reduce(ftmp3, tmp);	/* 2^7 - 2^3 */
	felem_square(tmp, ftmp3); felem_reduce(ftmp3, tmp);	/* 2^8 - 2^4 */
	felem_assign(ftmp4, ftmp3);
	felem_mul(tmp, ftmp3, ftmp); felem_reduce(ftmp4, tmp);	/* 2^8 - 2^1 */
	felem_square(tmp, ftmp4); felem_reduce(ftmp4, tmp);	/* 2^9 - 2^2 */
	felem_mul(tmp, ftmp3, ftmp2); felem_reduce(ftmp3, tmp);	/* 2^8 - 2^0 */
	felem_assign(ftmp2, ftmp3);

	for (i = 0; i < 8; i++)
		{
		felem_square(tmp, ftmp3); felem_reduce(ftmp3, tmp);	/* 2^16 - 2^8 */
		}
	felem_mul(tmp, ftmp3, ftmp2); felem_reduce(ftmp3, tmp);	/* 2^16 - 2^0 */
	felem_assign(ftmp2, ftmp3);

	for (i = 0; i < 16; i++)
		{
		felem_square(tmp, ftmp3); felem_reduce(ftmp3, tmp);	/* 2^32 - 2^16 */
		}
	felem_mul(tmp, ftmp3, ftmp2); felem_reduce(ftmp3, tmp);	/* 2^32 - 2^0 */
	felem_assign(ftmp2, ftmp3);

	for (i = 0; i < 32; i++)
		{
		felem_square(tmp, ftmp3); felem_reduce(ftmp3, tmp);	/* 2^64 - 2^32 */
		}
	felem_mul(tmp, ftmp3, ftmp2); felem_reduce(ftmp3, tmp);	/* 2^64 - 2^0 */
	felem_assign(ftmp2, ftmp3);

	for (i = 0; i < 64; i++)
		{
		felem_square(tmp, ftmp3); felem_reduce(ftmp3, tmp);	/* 2^128 - 2^64 */
		}
	felem_mul(tmp, ftmp3, ftmp2); felem_reduce(ftmp3, tmp);	/* 2^128 - 2^0 */
	felem_assign(ftmp2, ftmp3);

	for (i = 0; i < 128; i++)
		{
		felem_square(tmp, ftmp3); felem_reduce(ftmp3, tmp);	/* 2^256 - 2^128 */
		}
	felem_mul(tmp, ftmp3, ftmp2); felem_reduce(ftmp3, tmp);	/* 2^256 - 2^0 */
	felem_assign(ftmp2, ftmp3);

	for (i = 0; i < 256; i++)
		{
		felem_square(tmp, ftmp3); felem_reduce(ftmp3, tmp);	/* 2^512 - 2^256 */
		}
	felem_mul(tmp, ftmp3, ftmp2); felem_reduce(ftmp3, tmp);	/* 2^512 - 2^0 */

	for (i = 0; i < 9; i++)
		{
		felem_square(tmp, ftmp3); felem_reduce(ftmp3, tmp);	/* 2^521 - 2^9 */
		}
	felem_mul(tmp, ftmp3, ftmp4); felem_reduce(ftmp3, tmp);	/* 2^512 - 2^2 */
	felem_mul(tmp, ftmp3, in); felem_reduce(out, tmp);	/* 2^512 - 3 */
}

/* This is 2^521-1, expressed as an felem */
static const felem kPrime =
	{
	0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff,
	0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff,
	0x03ffffffffffffff, 0x03ffffffffffffff, 0x01ffffffffffffff
	};

/* felem_is_zero returns a limb with all bits set if |in| == 0 (mod p) and 0
 * otherwise.
 * On entry:
 *   in[i] < 2^59 + 2^14
 */
static limb felem_is_zero(const felem in)
	{
	felem ftmp;
	limb is_zero, is_p;
	felem_assign(ftmp, in);

	ftmp[0] += ftmp[8] >> 57; ftmp[8] &= bottom57bits;
	/* ftmp[8] < 2^57 */
	ftmp[1] += ftmp[0] >> 58; ftmp[0] &= bottom58bits;
	ftmp[2] += ftmp[1] >> 58; ftmp[1] &= bottom58bits;
	ftmp[3] += ftmp[2] >> 58; ftmp[2] &= bottom58bits;
	ftmp[4] += ftmp[3] >> 58; ftmp[3] &= bottom58bits;
	ftmp[5] += ftmp[4] >> 58; ftmp[4] &= bottom58bits;
	ftmp[6] += ftmp[5] >> 58; ftmp[5] &= bottom58bits;
	ftmp[7] += ftmp[6] >> 58; ftmp[6] &= bottom58bits;
	ftmp[8] += ftmp[7] >> 58; ftmp[7] &= bottom58bits;
	/* ftmp[8] < 2^57 + 4 */

	/* The ninth limb of 2*(2^521-1) is 0x03ffffffffffffff, which is
	 * greater than our bound for ftmp[8]. Therefore we only have to check
	 * if the zero is zero or 2^521-1. */

	is_zero = 0;
	is_zero |= ftmp[0];
	is_zero |= ftmp[1];
	is_zero |= ftmp[2];
	is_zero |= ftmp[3];
	is_zero |= ftmp[4];
	is_zero |= ftmp[5];
	is_zero |= ftmp[6];
	is_zero |= ftmp[7];
	is_zero |= ftmp[8];

	is_zero--;
	/* We know that ftmp[i] < 2^63, therefore the only way that the top bit
	 * can be set is if is_zero was 0 before the decrement. */
	is_zero = ((s64) is_zero) >> 63;

	is_p = ftmp[0] ^ kPrime[0];
	is_p |= ftmp[1] ^ kPrime[1];
	is_p |= ftmp[2] ^ kPrime[2];
	is_p |= ftmp[3] ^ kPrime[3];
	is_p |= ftmp[4] ^ kPrime[4];
	is_p |= ftmp[5] ^ kPrime[5];
	is_p |= ftmp[6] ^ kPrime[6];
	is_p |= ftmp[7] ^ kPrime[7];
	is_p |= ftmp[8] ^ kPrime[8];

	is_p--;
	is_p = ((s64) is_p) >> 63;

	is_zero |= is_p;
	return is_zero;
	}

static int felem_is_zero_int(const felem in)
	{
	return (int) (felem_is_zero(in) & ((limb)1));
	}

/* felem_contract converts |in| to its unique, minimal representation.
 * On entry:
 *   in[i] < 2^59 + 2^14
 */
static void felem_contract(felem out, const felem in)
	{
	limb is_p, is_greater, sign;
	static const limb two58 = ((limb)1) << 58;

	felem_assign(out, in);

	out[0] += out[8] >> 57; out[8] &= bottom57bits;
	/* out[8] < 2^57 */
	out[1] += out[0] >> 58; out[0] &= bottom58bits;
	out[2] += out[1] >> 58; out[1] &= bottom58bits;
	out[3] += out[2] >> 58; out[2] &= bottom58bits;
	out[4] += out[3] >> 58; out[3] &= bottom58bits;
	out[5] += out[4] >> 58; out[4] &= bottom58bits;
	out[6] += out[5] >> 58; out[5] &= bottom58bits;
	out[7] += out[6] >> 58; out[6] &= bottom58bits;
	out[8] += out[7] >> 58; out[7] &= bottom58bits;
	/* out[8] < 2^57 + 4 */

	/* If the value is greater than 2^521-1 then we have to subtract
	 * 2^521-1 out. See the comments in felem_is_zero regarding why we
	 * don't test for other multiples of the prime. */

	/* First, if |out| is equal to 2^521-1, we subtract it out to get zero. */

	is_p = out[0] ^ kPrime[0];
	is_p |= out[1] ^ kPrime[1];
	is_p |= out[2] ^ kPrime[2];
	is_p |= out[3] ^ kPrime[3];
	is_p |= out[4] ^ kPrime[4];
	is_p |= out[5] ^ kPrime[5];
	is_p |= out[6] ^ kPrime[6];
	is_p |= out[7] ^ kPrime[7];
	is_p |= out[8] ^ kPrime[8];

	is_p--;
	is_p &= is_p << 32;
	is_p &= is_p << 16;
	is_p &= is_p << 8;
	is_p &= is_p << 4;
	is_p &= is_p << 2;
	is_p &= is_p << 1;
	is_p = ((s64) is_p) >> 63;
	is_p = ~is_p;

	/* is_p is 0 iff |out| == 2^521-1 and all ones otherwise */

	out[0] &= is_p;
	out[1] &= is_p;
	out[2] &= is_p;
	out[3] &= is_p;
	out[4] &= is_p;
	out[5] &= is_p;
	out[6] &= is_p;
	out[7] &= is_p;
	out[8] &= is_p;

	/* In order to test that |out| >= 2^521-1 we need only test if out[8]
	 * >> 57 is greater than zero as (2^521-1) + x >= 2^522 */
	is_greater = out[8] >> 57;
	is_greater |= is_greater << 32;
	is_greater |= is_greater << 16;
	is_greater |= is_greater << 8;
	is_greater |= is_greater << 4;
	is_greater |= is_greater << 2;
	is_greater |= is_greater << 1;
	is_greater = ((s64) is_greater) >> 63;

	out[0] -= kPrime[0] & is_greater;
	out[1] -= kPrime[1] & is_greater;
	out[2] -= kPrime[2] & is_greater;
	out[3] -= kPrime[3] & is_greater;
	out[4] -= kPrime[4] & is_greater;
	out[5] -= kPrime[5] & is_greater;
	out[6] -= kPrime[6] & is_greater;
	out[7] -= kPrime[7] & is_greater;
	out[8] -= kPrime[8] & is_greater;

	/* Eliminate negative coefficients */
	sign = -(out[0] >> 63); out[0] += (two58 & sign); out[1] -= (1 & sign);
	sign = -(out[1] >> 63); out[1] += (two58 & sign); out[2] -= (1 & sign);
	sign = -(out[2] >> 63); out[2] += (two58 & sign); out[3] -= (1 & sign);
	sign = -(out[3] >> 63); out[3] += (two58 & sign); out[4] -= (1 & sign);
	sign = -(out[4] >> 63); out[4] += (two58 & sign); out[5] -= (1 & sign);
	sign = -(out[0] >> 63); out[5] += (two58 & sign); out[6] -= (1 & sign);
	sign = -(out[6] >> 63); out[6] += (two58 & sign); out[7] -= (1 & sign);
	sign = -(out[7] >> 63); out[7] += (two58 & sign); out[8] -= (1 & sign);
	sign = -(out[5] >> 63); out[5] += (two58 & sign); out[6] -= (1 & sign);
	sign = -(out[6] >> 63); out[6] += (two58 & sign); out[7] -= (1 & sign);
	sign = -(out[7] >> 63); out[7] += (two58 & sign); out[8] -= (1 & sign);
	}

/* Group operations
 * ----------------
 *
 * Building on top of the field operations we have the operations on the
 * elliptic curve group itself. Points on the curve are represented in Jacobian
 * coordinates */

/* point_double calcuates 2*(x_in, y_in, z_in)
 *
 * The method is taken from:
 *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
 *
 * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed.
 * while x_out == y_in is not (maybe this works, but it's not tested). */
static void
point_double(felem x_out, felem y_out, felem z_out,
	     const felem x_in, const felem y_in, const felem z_in)
	{
	largefelem tmp, tmp2;
	felem delta, gamma, beta, alpha, ftmp, ftmp2;

	felem_assign(ftmp, x_in);
	felem_assign(ftmp2, x_in);

	/* delta = z^2 */
	felem_square(tmp, z_in);
	felem_reduce(delta, tmp);  /* delta[i] < 2^59 + 2^14 */

	/* gamma = y^2 */
	felem_square(tmp, y_in);
	felem_reduce(gamma, tmp);  /* gamma[i] < 2^59 + 2^14 */

	/* beta = x*gamma */
	felem_mul(tmp, x_in, gamma);
	felem_reduce(beta, tmp);  /* beta[i] < 2^59 + 2^14 */

	/* alpha = 3*(x-delta)*(x+delta) */
	felem_diff64(ftmp, delta);
	/* ftmp[i] < 2^61 */
	felem_sum64(ftmp2, delta);
	/* ftmp2[i] < 2^60 + 2^15 */
	felem_scalar64(ftmp2, 3);
	/* ftmp2[i] < 3*2^60 + 3*2^15 */
	felem_mul(tmp, ftmp, ftmp2);
	/* tmp[i] < 17(3*2^121 + 3*2^76)
	 *        = 61*2^121 + 61*2^76
	 *        < 64*2^121 + 64*2^76
	 *        = 2^127 + 2^82
	 *        < 2^128 */
	felem_reduce(alpha, tmp);

	/* x' = alpha^2 - 8*beta */
	felem_square(tmp, alpha);
	/* tmp[i] < 17*2^120
	 *        < 2^125 */
	felem_assign(ftmp, beta);
	felem_scalar64(ftmp, 8);
	/* ftmp[i] < 2^62 + 2^17 */
	felem_diff_128_64(tmp, ftmp);
	/* tmp[i] < 2^125 + 2^63 + 2^62 + 2^17 */
	felem_reduce(x_out, tmp);

	/* z' = (y + z)^2 - gamma - delta */
	felem_sum64(delta, gamma);
	/* delta[i] < 2^60 + 2^15 */
	felem_assign(ftmp, y_in);
	felem_sum64(ftmp, z_in);
	/* ftmp[i] < 2^60 + 2^15 */
	felem_square(tmp, ftmp);
	/* tmp[i] < 17(2^122)
	 *        < 2^127 */
	felem_diff_128_64(tmp, delta);
	/* tmp[i] < 2^127 + 2^63 */
	felem_reduce(z_out, tmp);

	/* y' = alpha*(4*beta - x') - 8*gamma^2 */
	felem_scalar64(beta, 4);
	/* beta[i] < 2^61 + 2^16 */
	felem_diff64(beta, x_out);
	/* beta[i] < 2^61 + 2^60 + 2^16 */
	felem_mul(tmp, alpha, beta);
	/* tmp[i] < 17*((2^59 + 2^14)(2^61 + 2^60 + 2^16))
	 *        = 17*(2^120 + 2^75 + 2^119 + 2^74 + 2^75 + 2^30) 
	 *        = 17*(2^120 + 2^119 + 2^76 + 2^74 + 2^30)
	 *        < 2^128 */
	felem_square(tmp2, gamma);
	/* tmp2[i] < 17*(2^59 + 2^14)^2
	 *         = 17*(2^118 + 2^74 + 2^28) */
	felem_scalar128(tmp2, 8);
	/* tmp2[i] < 8*17*(2^118 + 2^74 + 2^28)
	 *         = 2^125 + 2^121 + 2^81 + 2^77 + 2^35 + 2^31
	 *         < 2^126 */
	felem_diff128(tmp, tmp2);
	/* tmp[i] < 2^127 - 2^69 + 17(2^120 + 2^119 + 2^76 + 2^74 + 2^30)
	 *        = 2^127 + 2^124 + 2^122 + 2^120 + 2^118 + 2^80 + 2^78 + 2^76 +
	 *          2^74 + 2^69 + 2^34 + 2^30
	 *        < 2^128 */
	felem_reduce(y_out, tmp);
	}

/* copy_conditional copies in to out iff mask is all ones. */
static void
copy_conditional(felem out, const felem in, limb mask)
	{
	unsigned i;
	for (i = 0; i < NLIMBS; ++i)
		{
		const limb tmp = mask & (in[i] ^ out[i]);
		out[i] ^= tmp;
		}
	}

/* point_add calcuates (x1, y1, z1) + (x2, y2, z2)
 *
 * The method is taken from
 *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl,
 * adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity).
 *
 * This function includes a branch for checking whether the two input points
 * are equal (while not equal to the point at infinity). This case never
 * happens during single point multiplication, so there is no timing leak for
 * ECDH or ECDSA signing. */
static void point_add(felem x3, felem y3, felem z3,
	const felem x1, const felem y1, const felem z1,
	const int mixed, const felem x2, const felem y2, const felem z2)
	{
	felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6, x_out, y_out, z_out;
	largefelem tmp, tmp2;
	limb x_equal, y_equal, z1_is_zero, z2_is_zero;

	z1_is_zero = felem_is_zero(z1);
	z2_is_zero = felem_is_zero(z2);

	/* ftmp = z1z1 = z1**2 */
	felem_square(tmp, z1);
	felem_reduce(ftmp, tmp);

	if (!mixed)
		{
		/* ftmp2 = z2z2 = z2**2 */
		felem_square(tmp, z2);
		felem_reduce(ftmp2, tmp);

		/* u1 = ftmp3 = x1*z2z2 */
		felem_mul(tmp, x1, ftmp2);
		felem_reduce(ftmp3, tmp);

		/* ftmp5 = z1 + z2 */
		felem_assign(ftmp5, z1);
		felem_sum64(ftmp5, z2);
		/* ftmp5[i] < 2^61 */

		/* ftmp5 = (z1 + z2)**2 - z1z1 - z2z2 = 2*z1z2 */
		felem_square(tmp, ftmp5);
		/* tmp[i] < 17*2^122 */
		felem_diff_128_64(tmp, ftmp);
		/* tmp[i] < 17*2^122 + 2^63 */
		felem_diff_128_64(tmp, ftmp2);
		/* tmp[i] < 17*2^122 + 2^64 */
		felem_reduce(ftmp5, tmp);

		/* ftmp2 = z2 * z2z2 */
		felem_mul(tmp, ftmp2, z2);
		felem_reduce(ftmp2, tmp);

		/* s1 = ftmp6 = y1 * z2**3 */
		felem_mul(tmp, y1, ftmp2);
		felem_reduce(ftmp6, tmp);
		}
	else
		{
		/* We'll assume z2 = 1 (special case z2 = 0 is handled later) */

		/* u1 = ftmp3 = x1*z2z2 */
		felem_assign(ftmp3, x1);

		/* ftmp5 = 2*z1z2 */
		felem_scalar(ftmp5, z1, 2);

		/* s1 = ftmp6 = y1 * z2**3 */
		felem_assign(ftmp6, y1);
		}

	/* u2 = x2*z1z1 */
	felem_mul(tmp, x2, ftmp);
	/* tmp[i] < 17*2^120 */

	/* h = ftmp4 = u2 - u1 */
	felem_diff_128_64(tmp, ftmp3);
	/* tmp[i] < 17*2^120 + 2^63 */
	felem_reduce(ftmp4, tmp);

	x_equal = felem_is_zero(ftmp4);

	/* z_out = ftmp5 * h */
	felem_mul(tmp, ftmp5, ftmp4);
	felem_reduce(z_out, tmp);

	/* ftmp = z1 * z1z1 */
	felem_mul(tmp, ftmp, z1);
	felem_reduce(ftmp, tmp);

	/* s2 = tmp = y2 * z1**3 */
	felem_mul(tmp, y2, ftmp);
	/* tmp[i] < 17*2^120 */

	/* r = ftmp5 = (s2 - s1)*2 */
	felem_diff_128_64(tmp, ftmp6);
	/* tmp[i] < 17*2^120 + 2^63 */
	felem_reduce(ftmp5, tmp);
	y_equal = felem_is_zero(ftmp5);
	felem_scalar64(ftmp5, 2);
	/* ftmp5[i] < 2^61 */

	if (x_equal && y_equal && !z1_is_zero && !z2_is_zero)
		{
		point_double(x3, y3, z3, x1, y1, z1);
		return;
		}

	/* I = ftmp = (2h)**2 */
	felem_assign(ftmp, ftmp4);
	felem_scalar64(ftmp, 2);
	/* ftmp[i] < 2^61 */
	felem_square(tmp, ftmp);
	/* tmp[i] < 17*2^122 */
	felem_reduce(ftmp, tmp);

	/* J = ftmp2 = h * I */
	felem_mul(tmp, ftmp4, ftmp);
	felem_reduce(ftmp2, tmp);

	/* V = ftmp4 = U1 * I */
	felem_mul(tmp, ftmp3, ftmp);
	felem_reduce(ftmp4, tmp);

	/* x_out = r**2 - J - 2V */
	felem_square(tmp, ftmp5);
	/* tmp[i] < 17*2^122 */
	felem_diff_128_64(tmp, ftmp2);
	/* tmp[i] < 17*2^122 + 2^63 */
	felem_assign(ftmp3, ftmp4);
	felem_scalar64(ftmp4, 2);
	/* ftmp4[i] < 2^61 */
	felem_diff_128_64(tmp, ftmp4);
	/* tmp[i] < 17*2^122 + 2^64 */
	felem_reduce(x_out, tmp);

	/* y_out = r(V-x_out) - 2 * s1 * J */
	felem_diff64(ftmp3, x_out);
	/* ftmp3[i] < 2^60 + 2^60
	 *          = 2^61 */
	felem_mul(tmp, ftmp5, ftmp3);
	/* tmp[i] < 17*2^122 */
	felem_mul(tmp2, ftmp6, ftmp2);
	/* tmp2[i] < 17*2^120 */
	felem_scalar128(tmp2, 2);
	/* tmp2[i] < 17*2^121 */
	felem_diff128(tmp, tmp2);
	/* tmp[i] < 2^127 - 2^69 + 17*2^122
	 *        = 2^126 - 2^122 - 2^6 - 2^2 - 1
	 *        < 2^127 */
	felem_reduce(y_out, tmp);

	copy_conditional(x_out, x2, z1_is_zero);
	copy_conditional(x_out, x1, z2_is_zero);
	copy_conditional(y_out, y2, z1_is_zero);
	copy_conditional(y_out, y1, z2_is_zero);
	copy_conditional(z_out, z2, z1_is_zero);
	copy_conditional(z_out, z1, z2_is_zero);
	felem_assign(x3, x_out);
	felem_assign(y3, y_out);
	felem_assign(z3, z_out);
	}

/* Base point pre computation
 * --------------------------
 *
 * Two different sorts of precomputed tables are used in the following code.
 * Each contain various points on the curve, where each point is three field
 * elements (x, y, z).
 *
 * For the base point table, z is usually 1 (0 for the point at infinity).
 * This table has 16 elements:
 * index | bits    | point
 * ------+---------+------------------------------
 *     0 | 0 0 0 0 | 0G
 *     1 | 0 0 0 1 | 1G
 *     2 | 0 0 1 0 | 2^130G
 *     3 | 0 0 1 1 | (2^130 + 1)G
 *     4 | 0 1 0 0 | 2^260G
 *     5 | 0 1 0 1 | (2^260 + 1)G
 *     6 | 0 1 1 0 | (2^260 + 2^130)G
 *     7 | 0 1 1 1 | (2^260 + 2^130 + 1)G
 *     8 | 1 0 0 0 | 2^390G
 *     9 | 1 0 0 1 | (2^390 + 1)G
 *    10 | 1 0 1 0 | (2^390 + 2^130)G
 *    11 | 1 0 1 1 | (2^390 + 2^130 + 1)G
 *    12 | 1 1 0 0 | (2^390 + 2^260)G
 *    13 | 1 1 0 1 | (2^390 + 2^260 + 1)G
 *    14 | 1 1 1 0 | (2^390 + 2^260 + 2^130)G
 *    15 | 1 1 1 1 | (2^390 + 2^260 + 2^130 + 1)G
 *
 * The reason for this is so that we can clock bits into four different
 * locations when doing simple scalar multiplies against the base point.
 *
 * Tables for other points have table[i] = iG for i in 0 .. 16. */

/* gmul is the table of precomputed base points */
static const felem gmul[16][3] =
	{{{0, 0, 0, 0, 0, 0, 0, 0, 0},
	  {0, 0, 0, 0, 0, 0, 0, 0, 0},
	  {0, 0, 0, 0, 0, 0, 0, 0, 0}},
	 {{0x017e7e31c2e5bd66, 0x022cf0615a90a6fe, 0x00127a2ffa8de334,
	   0x01dfbf9d64a3f877, 0x006b4d3dbaa14b5e, 0x014fed487e0a2bd8,
	   0x015b4429c6481390, 0x03a73678fb2d988e, 0x00c6858e06b70404},
	  {0x00be94769fd16650, 0x031c21a89cb09022, 0x039013fad0761353,
	   0x02657bd099031542, 0x03273e662c97ee72, 0x01e6d11a05ebef45,
	   0x03d1bd998f544495, 0x03001172297ed0b1, 0x011839296a789a3b},
	  {1, 0, 0, 0, 0, 0, 0, 0, 0}},
	 {{0x0373faacbc875bae, 0x00f325023721c671, 0x00f666fd3dbde5ad,
	   0x01a6932363f88ea7, 0x01fc6d9e13f9c47b, 0x03bcbffc2bbf734e,
	   0x013ee3c3647f3a92, 0x029409fefe75d07d, 0x00ef9199963d85e5},
	  {0x011173743ad5b178, 0x02499c7c21bf7d46, 0x035beaeabb8b1a58,
	   0x00f989c4752ea0a3, 0x0101e1de48a9c1a3, 0x01a20076be28ba6c,
	   0x02f8052e5eb2de95, 0x01bfe8f82dea117c, 0x0160074d3c36ddb7},
	  {1, 0, 0, 0, 0, 0, 0, 0, 0}},
	 {{0x012f3fc373393b3b, 0x03d3d6172f1419fa, 0x02adc943c0b86873,
	   0x00d475584177952b, 0x012a4d1673750ee2, 0x00512517a0f13b0c,
	   0x02b184671a7b1734, 0x0315b84236f1a50a, 0x00a4afc472edbdb9},
	  {0x00152a7077f385c4, 0x03044007d8d1c2ee, 0x0065829d61d52b52,
	   0x00494ff6b6631d0d, 0x00a11d94d5f06bcf, 0x02d2f89474d9282e,
	   0x0241c5727c06eeb9, 0x0386928710fbdb9d, 0x01f883f727b0dfbe},
	  {1, 0, 0, 0, 0, 0, 0, 0, 0}},
	 {{0x019b0c3c9185544d, 0x006243a37c9d97db, 0x02ee3cbe030a2ad2,
	   0x00cfdd946bb51e0d, 0x0271c00932606b91, 0x03f817d1ec68c561,
	   0x03f37009806a369c, 0x03c1f30baf184fd5, 0x01091022d6d2f065},
	  {0x0292c583514c45ed, 0x0316fca51f9a286c, 0x00300af507c1489a,
	   0x0295f69008298cf1, 0x02c0ed8274943d7b, 0x016509b9b47a431e,
	   0x02bc9de9634868ce, 0x005b34929bffcb09, 0x000c1a0121681524},
	  {1, 0, 0, 0, 0, 0, 0, 0, 0}},
	 {{0x0286abc0292fb9f2, 0x02665eee9805b3f7, 0x01ed7455f17f26d6,
	   0x0346355b83175d13, 0x006284944cd0a097, 0x0191895bcdec5e51,
	   0x02e288370afda7d9, 0x03b22312bfefa67a, 0x01d104d3fc0613fe},
	  {0x0092421a12f7e47f, 0x0077a83fa373c501, 0x03bd25c5f696bd0d,
	   0x035c41e4d5459761, 0x01ca0d1742b24f53, 0x00aaab27863a509c,
	   0x018b6de47df73917, 0x025c0b771705cd01, 0x01fd51d566d760a7},
	  {1, 0, 0, 0, 0, 0, 0, 0, 0}},
	 {{0x01dd92ff6b0d1dbd, 0x039c5e2e8f8afa69, 0x0261ed13242c3b27,
	   0x0382c6e67026e6a0, 0x01d60b10be2089f9, 0x03c15f3dce86723f,
	   0x03c764a32d2a062d, 0x017307eac0fad056, 0x018207c0b96c5256},
	  {0x0196a16d60e13154, 0x03e6ce74c0267030, 0x00ddbf2b4e52a5aa,
	   0x012738241bbf31c8, 0x00ebe8dc04685a28, 0x024c2ad6d380d4a2,
	   0x035ee062a6e62d0e, 0x0029ed74af7d3a0f, 0x00eef32aec142ebd},
	  {1, 0, 0, 0, 0, 0, 0, 0, 0}},
	 {{0x00c31ec398993b39, 0x03a9f45bcda68253, 0x00ac733c24c70890,
	   0x00872b111401ff01, 0x01d178c23195eafb, 0x03bca2c816b87f74,
	   0x0261a9af46fbad7a, 0x0324b2a8dd3d28f9, 0x00918121d8f24e23},
	  {0x032bc8c1ca983cd7, 0x00d869dfb08fc8c6, 0x01693cb61fce1516,
	   0x012a5ea68f4e88a8, 0x010869cab88d7ae3, 0x009081ad277ceee1,
	   0x033a77166d064cdc, 0x03955235a1fb3a95, 0x01251a4a9b25b65e},
	  {1, 0, 0, 0, 0, 0, 0, 0, 0}},
	 {{0x00148a3a1b27f40b, 0x0123186df1b31fdc, 0x00026e7beaad34ce,
	   0x01db446ac1d3dbba, 0x0299c1a33437eaec, 0x024540610183cbb7,
	   0x0173bb0e9ce92e46, 0x02b937e43921214b, 0x01ab0436a9bf01b5},
	  {0x0383381640d46948, 0x008dacbf0e7f330f, 0x03602122bcc3f318,
	   0x01ee596b200620d6, 0x03bd0585fda430b3, 0x014aed77fd123a83,
	   0x005ace749e52f742, 0x0390fe041da2b842, 0x0189a8ceb3299242},
	  {1, 0, 0, 0, 0, 0, 0, 0, 0}},
	 {{0x012a19d6b3282473, 0x00c0915918b423ce, 0x023a954eb94405ae,
	   0x00529f692be26158, 0x0289fa1b6fa4b2aa, 0x0198ae4ceea346ef,
	   0x0047d8cdfbdedd49, 0x00cc8c8953f0f6b8, 0x001424abbff49203},
	  {0x0256732a1115a03a, 0x0351bc38665c6733, 0x03f7b950fb4a6447,
	   0x000afffa94c22155, 0x025763d0a4dab540, 0x000511e92d4fc283,
	   0x030a7e9eda0ee96c, 0x004c3cd93a28bf0a, 0x017edb3a8719217f},
	  {1, 0, 0, 0, 0, 0, 0, 0, 0}},
	 {{0x011de5675a88e673, 0x031d7d0f5e567fbe, 0x0016b2062c970ae5,
	   0x03f4a2be49d90aa7, 0x03cef0bd13822866, 0x03f0923dcf774a6c,
	   0x0284bebc4f322f72, 0x016ab2645302bb2c, 0x01793f95dace0e2a},
	  {0x010646e13527a28f, 0x01ca1babd59dc5e7, 0x01afedfd9a5595df,
	   0x01f15785212ea6b1, 0x0324e5d64f6ae3f4, 0x02d680f526d00645,
	   0x0127920fadf627a7, 0x03b383f75df4f684, 0x0089e0057e783b0a},
	  {1, 0, 0, 0, 0, 0, 0, 0, 0}},
	 {{0x00f334b9eb3c26c6, 0x0298fdaa98568dce, 0x01c2d24843a82292,
	   0x020bcb24fa1b0711, 0x02cbdb3d2b1875e6, 0x0014907598f89422,
	   0x03abe3aa43b26664, 0x02cbf47f720bc168, 0x0133b5e73014b79b},
	  {0x034aab5dab05779d, 0x00cdc5d71fee9abb, 0x0399f16bd4bd9d30,
	   0x03582fa592d82647, 0x02be1cdfb775b0e9, 0x0034f7cea32e94cb,
	   0x0335a7f08f56f286, 0x03b707e9565d1c8b, 0x0015c946ea5b614f},
	  {1, 0, 0, 0, 0, 0, 0, 0, 0}},
	 {{0x024676f6cff72255, 0x00d14625cac96378, 0x00532b6008bc3767,
	   0x01fc16721b985322, 0x023355ea1b091668, 0x029de7afdc0317c3,
	   0x02fc8a7ca2da037c, 0x02de1217d74a6f30, 0x013f7173175b73bf},
	  {0x0344913f441490b5, 0x0200f9e272b61eca, 0x0258a246b1dd55d2,
	   0x03753db9ea496f36, 0x025e02937a09c5ef, 0x030cbd3d14012692,
	   0x01793a67e70dc72a, 0x03ec1d37048a662e, 0x006550f700c32a8d},
	  {1, 0, 0, 0, 0, 0, 0, 0, 0}},
	 {{0x00d3f48a347eba27, 0x008e636649b61bd8, 0x00d3b93716778fb3,
	   0x004d1915757bd209, 0x019d5311a3da44e0, 0x016d1afcbbe6aade,
	   0x0241bf5f73265616, 0x0384672e5d50d39b, 0x005009fee522b684},
	  {0x029b4fab064435fe, 0x018868ee095bbb07, 0x01ea3d6936cc92b8,
	   0x000608b00f78a2f3, 0x02db911073d1c20f, 0x018205938470100a,
	   0x01f1e4964cbe6ff2, 0x021a19a29eed4663, 0x01414485f42afa81},
	  {1, 0, 0, 0, 0, 0, 0, 0, 0}},
	 {{0x01612b3a17f63e34, 0x03813992885428e6, 0x022b3c215b5a9608,
	   0x029b4057e19f2fcb, 0x0384059a587af7e6, 0x02d6400ace6fe610,
	   0x029354d896e8e331, 0x00c047ee6dfba65e, 0x0037720542e9d49d},
	  {0x02ce9eed7c5e9278, 0x0374ed703e79643b, 0x01316c54c4072006,
	   0x005aaa09054b2ee8, 0x002824000c840d57, 0x03d4eba24771ed86,
	   0x0189c50aabc3bdae, 0x0338c01541e15510, 0x00466d56e38eed42},
	  {1, 0, 0, 0, 0, 0, 0, 0, 0}},
	 {{0x007efd8330ad8bd6, 0x02465ed48047710b, 0x0034c6606b215e0c,
	   0x016ae30c53cbf839, 0x01fa17bd37161216, 0x018ead4e61ce8ab9,
	   0x005482ed5f5dee46, 0x037543755bba1d7f, 0x005e5ac7e70a9d0f},
	  {0x0117e1bb2fdcb2a2, 0x03deea36249f40c4, 0x028d09b4a6246cb7,
	   0x03524b8855bcf756, 0x023d7d109d5ceb58, 0x0178e43e3223ef9c,
	   0x0154536a0c6e966a, 0x037964d1286ee9fe, 0x0199bcd90e125055},
	 {1, 0, 0, 0, 0, 0, 0, 0, 0}}};

/* select_point selects the |idx|th point from a precomputation table and
 * copies it to out. */
static void select_point(const limb idx, unsigned int size, const felem pre_comp[/* size */][3],
			 felem out[3])
	{
	unsigned i, j;
	limb *outlimbs = &out[0][0];
	memset(outlimbs, 0, 3 * sizeof(felem));

	for (i = 0; i < size; i++)
		{
		const limb *inlimbs = &pre_comp[i][0][0];
		limb mask = i ^ idx;
		mask |= mask >> 4;
		mask |= mask >> 2;
		mask |= mask >> 1;
		mask &= 1;
		mask--;
		for (j = 0; j < NLIMBS * 3; j++)
			outlimbs[j] |= inlimbs[j] & mask;
		}
	}

/* get_bit returns the |i|th bit in |in| */
static char get_bit(const felem_bytearray in, int i)
	{
	if (i < 0)
		return 0;
	return (in[i >> 3] >> (i & 7)) & 1;
	}

/* Interleaved point multiplication using precomputed point multiples:
 * The small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[],
 * the scalars in scalars[]. If g_scalar is non-NULL, we also add this multiple
 * of the generator, using certain (large) precomputed multiples in g_pre_comp.
 * Output point (X, Y, Z) is stored in x_out, y_out, z_out */
static void batch_mul(felem x_out, felem y_out, felem z_out,
	const felem_bytearray scalars[], const unsigned num_points, const u8 *g_scalar,
	const int mixed, const felem pre_comp[][17][3], const felem g_pre_comp[16][3])
	{
	int i, skip;
	unsigned num, gen_mul = (g_scalar != NULL);
	felem nq[3], tmp[4];
	limb bits;
	u8 sign, digit;

	/* set nq to the point at infinity */
	memset(nq, 0, 3 * sizeof(felem));

	/* Loop over all scalars msb-to-lsb, interleaving additions
	 * of multiples of the generator (last quarter of rounds)
	 * and additions of other points multiples (every 5th round).
	 */
	skip = 1; /* save two point operations in the first round */
	for (i = (num_points ? 520 : 130); i >= 0; --i)
		{
		/* double */
		if (!skip)
			point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);

		/* add multiples of the generator */
		if (gen_mul && (i <= 130))
			{
			bits = get_bit(g_scalar, i + 390) << 3;
			if (i < 130)
				{
				bits |= get_bit(g_scalar, i + 260) << 2;
				bits |= get_bit(g_scalar, i + 130) << 1;
				bits |= get_bit(g_scalar, i);
				}
			/* select the point to add, in constant time */
			select_point(bits, 16, g_pre_comp, tmp);
			if (!skip)
				{
				point_add(nq[0], nq[1], nq[2],
					nq[0], nq[1], nq[2],
					1 /* mixed */, tmp[0], tmp[1], tmp[2]);
				}
			else
				{
				memcpy(nq, tmp, 3 * sizeof(felem));
				skip = 0;
				}
			}

		/* do other additions every 5 doublings */
		if (num_points && (i % 5 == 0))
			{
			/* loop over all scalars */
			for (num = 0; num < num_points; ++num)
				{
				bits = get_bit(scalars[num], i + 4) << 5;
				bits |= get_bit(scalars[num], i + 3) << 4;
				bits |= get_bit(scalars[num], i + 2) << 3;
				bits |= get_bit(scalars[num], i + 1) << 2;
				bits |= get_bit(scalars[num], i) << 1;
				bits |= get_bit(scalars[num], i - 1);
				ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);

				/* select the point to add or subtract, in constant time */
				select_point(digit, 17, pre_comp[num], tmp);
				felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative point */
				copy_conditional(tmp[1], tmp[3], (-(limb) sign));

				if (!skip)
					{
					point_add(nq[0], nq[1], nq[2],
						nq[0], nq[1], nq[2],
						mixed, tmp[0], tmp[1], tmp[2]);
					}
				else
					{
					memcpy(nq, tmp, 3 * sizeof(felem));
					skip = 0;
					}
				}
			}
		}
	felem_assign(x_out, nq[0]);
	felem_assign(y_out, nq[1]);
	felem_assign(z_out, nq[2]);
	}


/* Precomputation for the group generator. */
typedef struct {
	felem g_pre_comp[16][3];
	int references;
} NISTP521_PRE_COMP;

const EC_METHOD *EC_GFp_nistp521_method(void)
	{
	static const EC_METHOD ret = {
		EC_FLAGS_DEFAULT_OCT,
		NID_X9_62_prime_field,
		ec_GFp_nistp521_group_init,
		ec_GFp_simple_group_finish,
		ec_GFp_simple_group_clear_finish,
		ec_GFp_nist_group_copy,
		ec_GFp_nistp521_group_set_curve,
		ec_GFp_simple_group_get_curve,
		ec_GFp_simple_group_get_degree,
		ec_GFp_simple_group_check_discriminant,
		ec_GFp_simple_point_init,
		ec_GFp_simple_point_finish,
		ec_GFp_simple_point_clear_finish,
		ec_GFp_simple_point_copy,
		ec_GFp_simple_point_set_to_infinity,
		ec_GFp_simple_set_Jprojective_coordinates_GFp,
		ec_GFp_simple_get_Jprojective_coordinates_GFp,
		ec_GFp_simple_point_set_affine_coordinates,
		ec_GFp_nistp521_point_get_affine_coordinates,
		0 /* point_set_compressed_coordinates */,
		0 /* point2oct */,
		0 /* oct2point */,
		ec_GFp_simple_add,
		ec_GFp_simple_dbl,
		ec_GFp_simple_invert,
		ec_GFp_simple_is_at_infinity,
		ec_GFp_simple_is_on_curve,
		ec_GFp_simple_cmp,
		ec_GFp_simple_make_affine,
		ec_GFp_simple_points_make_affine,
		ec_GFp_nistp521_points_mul,
		ec_GFp_nistp521_precompute_mult,
		ec_GFp_nistp521_have_precompute_mult,
		ec_GFp_nist_field_mul,
		ec_GFp_nist_field_sqr,
		0 /* field_div */,
		0 /* field_encode */,
		0 /* field_decode */,
		0 /* field_set_to_one */ };

	return &ret;
	}


/******************************************************************************/
/*		       FUNCTIONS TO MANAGE PRECOMPUTATION
 */

static NISTP521_PRE_COMP *nistp521_pre_comp_new()
	{
	NISTP521_PRE_COMP *ret = NULL;
	ret = (NISTP521_PRE_COMP *)OPENSSL_malloc(sizeof(NISTP521_PRE_COMP));
	if (!ret)
		{
		ECerr(EC_F_NISTP521_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
		return ret;
		}
	memset(ret->g_pre_comp, 0, sizeof(ret->g_pre_comp));
	ret->references = 1;
	return ret;
	}

static void *nistp521_pre_comp_dup(void *src_)
	{
	NISTP521_PRE_COMP *src = src_;

	/* no need to actually copy, these objects never change! */
	CRYPTO_add(&src->references, 1, CRYPTO_LOCK_EC_PRE_COMP);

	return src_;
	}

static void nistp521_pre_comp_free(void *pre_)
	{
	int i;
	NISTP521_PRE_COMP *pre = pre_;

	if (!pre)
		return;

	i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP);
	if (i > 0)
		return;

	OPENSSL_free(pre);
	}

static void nistp521_pre_comp_clear_free(void *pre_)
	{
	int i;
	NISTP521_PRE_COMP *pre = pre_;

	if (!pre)
		return;

	i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP);
	if (i > 0)
		return;

	OPENSSL_cleanse(pre, sizeof(*pre));
	OPENSSL_free(pre);
	}

/******************************************************************************/
/*			   OPENSSL EC_METHOD FUNCTIONS
 */

int ec_GFp_nistp521_group_init(EC_GROUP *group)
	{
	int ret;
	ret = ec_GFp_simple_group_init(group);
	group->a_is_minus3 = 1;
	return ret;
	}

int ec_GFp_nistp521_group_set_curve(EC_GROUP *group, const BIGNUM *p,
	const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
	{
	int ret = 0;
	BN_CTX *new_ctx = NULL;
	BIGNUM *curve_p, *curve_a, *curve_b;

	if (ctx == NULL)
		if ((ctx = new_ctx = BN_CTX_new()) == NULL) return 0;
	BN_CTX_start(ctx);
	if (((curve_p = BN_CTX_get(ctx)) == NULL) ||
		((curve_a = BN_CTX_get(ctx)) == NULL) ||
		((curve_b = BN_CTX_get(ctx)) == NULL)) goto err;
	BN_bin2bn(nistp521_curve_params[0], sizeof(felem_bytearray), curve_p);
	BN_bin2bn(nistp521_curve_params[1], sizeof(felem_bytearray), curve_a);
	BN_bin2bn(nistp521_curve_params[2], sizeof(felem_bytearray), curve_b);
	if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) ||
		(BN_cmp(curve_b, b)))
		{
		ECerr(EC_F_EC_GFP_NISTP521_GROUP_SET_CURVE,
			EC_R_WRONG_CURVE_PARAMETERS);
		goto err;
		}
	group->field_mod_func = BN_nist_mod_521;
	ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
err:
	BN_CTX_end(ctx);
	if (new_ctx != NULL)
		BN_CTX_free(new_ctx);
	return ret;
	}

/* Takes the Jacobian coordinates (X, Y, Z) of a point and returns
 * (X', Y') = (X/Z^2, Y/Z^3) */
int ec_GFp_nistp521_point_get_affine_coordinates(const EC_GROUP *group,
	const EC_POINT *point, BIGNUM *x, BIGNUM *y, BN_CTX *ctx)
	{
	felem z1, z2, x_in, y_in, x_out, y_out;
	largefelem tmp;

	if (EC_POINT_is_at_infinity(group, point))
		{
		ECerr(EC_F_EC_GFP_NISTP521_POINT_GET_AFFINE_COORDINATES,
			EC_R_POINT_AT_INFINITY);
		return 0;
		}
	if ((!BN_to_felem(x_in, &point->X)) || (!BN_to_felem(y_in, &point->Y)) ||
		(!BN_to_felem(z1, &point->Z))) return 0;
	felem_inv(z2, z1);
	felem_square(tmp, z2); felem_reduce(z1, tmp);
	felem_mul(tmp, x_in, z1); felem_reduce(x_in, tmp);
	felem_contract(x_out, x_in);
	if (x != NULL)
		{
		if (!felem_to_BN(x, x_out))
			{
			ECerr(EC_F_EC_GFP_NISTP521_POINT_GET_AFFINE_COORDINATES, ERR_R_BN_LIB);
			return 0;
			}
		}
	felem_mul(tmp, z1, z2); felem_reduce(z1, tmp);
	felem_mul(tmp, y_in, z1); felem_reduce(y_in, tmp);
	felem_contract(y_out, y_in);
	if (y != NULL)
		{
		if (!felem_to_BN(y, y_out))
			{
			ECerr(EC_F_EC_GFP_NISTP521_POINT_GET_AFFINE_COORDINATES, ERR_R_BN_LIB);
			return 0;
			}
		}
	return 1;
	}

static void make_points_affine(size_t num, felem points[/* num */][3], felem tmp_felems[/* num+1 */])
	{
	/* Runs in constant time, unless an input is the point at infinity
	 * (which normally shouldn't happen). */
	ec_GFp_nistp_points_make_affine_internal(
		num,
		points,
		sizeof(felem),
		tmp_felems,
		(void (*)(void *)) felem_one,
		(int (*)(const void *)) felem_is_zero_int,
		(void (*)(void *, const void *)) felem_assign,
		(void (*)(void *, const void *)) felem_square_reduce,
		(void (*)(void *, const void *, const void *)) felem_mul_reduce,
		(void (*)(void *, const void *)) felem_inv,
		(void (*)(void *, const void *)) felem_contract);
	}

/* Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL values
 * Result is stored in r (r can equal one of the inputs). */
int ec_GFp_nistp521_points_mul(const EC_GROUP *group, EC_POINT *r,
	const BIGNUM *scalar, size_t num, const EC_POINT *points[],
	const BIGNUM *scalars[], BN_CTX *ctx)
	{
	int ret = 0;
	int j;
	int mixed = 0;
	BN_CTX *new_ctx = NULL;
	BIGNUM *x, *y, *z, *tmp_scalar;
	felem_bytearray g_secret;
	felem_bytearray *secrets = NULL;
	felem (*pre_comp)[17][3] = NULL;
	felem *tmp_felems = NULL;
	felem_bytearray tmp;
	unsigned i, num_bytes;
	int have_pre_comp = 0;
	size_t num_points = num;
	felem x_in, y_in, z_in, x_out, y_out, z_out;
	NISTP521_PRE_COMP *pre = NULL;
	felem (*g_pre_comp)[3] = NULL;
	EC_POINT *generator = NULL;
	const EC_POINT *p = NULL;
	const BIGNUM *p_scalar = NULL;

	if (ctx == NULL)
		if ((ctx = new_ctx = BN_CTX_new()) == NULL) return 0;
	BN_CTX_start(ctx);
	if (((x = BN_CTX_get(ctx)) == NULL) ||
		((y = BN_CTX_get(ctx)) == NULL) ||
		((z = BN_CTX_get(ctx)) == NULL) ||
		((tmp_scalar = BN_CTX_get(ctx)) == NULL))
		goto err;

	if (scalar != NULL)
		{
		pre = EC_EX_DATA_get_data(group->extra_data,
			nistp521_pre_comp_dup, nistp521_pre_comp_free,
			nistp521_pre_comp_clear_free);
		if (pre)
			/* we have precomputation, try to use it */
			g_pre_comp = &pre->g_pre_comp[0];
		else
			/* try to use the standard precomputation */
			g_pre_comp = (felem (*)[3]) gmul;
		generator = EC_POINT_new(group);
		if (generator == NULL)
			goto err;
		/* get the generator from precomputation */
		if (!felem_to_BN(x, g_pre_comp[1][0]) ||
			!felem_to_BN(y, g_pre_comp[1][1]) ||
			!felem_to_BN(z, g_pre_comp[1][2]))
			{
			ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB);
			goto err;
			}
		if (!EC_POINT_set_Jprojective_coordinates_GFp(group,
				generator, x, y, z, ctx))
			goto err;
		if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
			/* precomputation matches generator */
			have_pre_comp = 1;
		else
			/* we don't have valid precomputation:
			 * treat the generator as a random point */
			num_points++;
		}

	if (num_points > 0)
		{
		if (num_points >= 2)
			{
			/* unless we precompute multiples for just one point,
			 * converting those into affine form is time well spent  */
			mixed = 1;
			}
		secrets = OPENSSL_malloc(num_points * sizeof(felem_bytearray));
		pre_comp = OPENSSL_malloc(num_points * 17 * 3 * sizeof(felem));
		if (mixed)
			tmp_felems = OPENSSL_malloc((num_points * 17 + 1) * sizeof(felem));
		if ((secrets == NULL) || (pre_comp == NULL) || (mixed && (tmp_felems == NULL)))
			{
			ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_MALLOC_FAILURE);
			goto err;
			}

		/* we treat NULL scalars as 0, and NULL points as points at infinity,
		 * i.e., they contribute nothing to the linear combination */
		memset(secrets, 0, num_points * sizeof(felem_bytearray));
		memset(pre_comp, 0, num_points * 17 * 3 * sizeof(felem));
		for (i = 0; i < num_points; ++i)
			{
			if (i == num)
				/* we didn't have a valid precomputation, so we pick
				 * the generator */
				{
				p = EC_GROUP_get0_generator(group);
				p_scalar = scalar;
				}
			else
				/* the i^th point */
				{
				p = points[i];
				p_scalar = scalars[i];
				}
			if ((p_scalar != NULL) && (p != NULL))
				{
				/* reduce scalar to 0 <= scalar < 2^521 */
				if ((BN_num_bits(p_scalar) > 521) || (BN_is_negative(p_scalar)))
					{
					/* this is an unusual input, and we don't guarantee
					 * constant-timeness */
					if (!BN_nnmod(tmp_scalar, p_scalar, &group->order, ctx))
						{
						ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB);
						goto err;
						}
					num_bytes = BN_bn2bin(tmp_scalar, tmp);
					}
				else
					num_bytes = BN_bn2bin(p_scalar, tmp);
				flip_endian(secrets[i], tmp, num_bytes);
				/* precompute multiples */
				if ((!BN_to_felem(x_out, &p->X)) ||
					(!BN_to_felem(y_out, &p->Y)) ||
					(!BN_to_felem(z_out, &p->Z))) goto err;
				memcpy(pre_comp[i][1][0], x_out, sizeof(felem));
				memcpy(pre_comp[i][1][1], y_out, sizeof(felem));
				memcpy(pre_comp[i][1][2], z_out, sizeof(felem));
				for (j = 2; j <= 16; ++j)
					{
					if (j & 1)
						{
						point_add(
							pre_comp[i][j][0], pre_comp[i][j][1], pre_comp[i][j][2],
							pre_comp[i][1][0], pre_comp[i][1][1], pre_comp[i][1][2],
							0, pre_comp[i][j-1][0], pre_comp[i][j-1][1], pre_comp[i][j-1][2]);
						}
					else
						{
						point_double(
							pre_comp[i][j][0], pre_comp[i][j][1], pre_comp[i][j][2],
							pre_comp[i][j/2][0], pre_comp[i][j/2][1], pre_comp[i][j/2][2]);
						}
					}
				}
			}
		if (mixed)
			make_points_affine(num_points * 17, pre_comp[0], tmp_felems);
		}

	/* the scalar for the generator */
	if ((scalar != NULL) && (have_pre_comp))
		{
		memset(g_secret, 0, sizeof(g_secret));
		/* reduce scalar to 0 <= scalar < 2^521 */
		if ((BN_num_bits(scalar) > 521) || (BN_is_negative(scalar)))
			{
			/* this is an unusual input, and we don't guarantee
			 * constant-timeness */
			if (!BN_nnmod(tmp_scalar, scalar, &group->order, ctx))
				{
				ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB);
				goto err;
				}
			num_bytes = BN_bn2bin(tmp_scalar, tmp);
			}
		else
			num_bytes = BN_bn2bin(scalar, tmp);
		flip_endian(g_secret, tmp, num_bytes);
		/* do the multiplication with generator precomputation*/
		batch_mul(x_out, y_out, z_out,
			(const felem_bytearray (*)) secrets, num_points,
			g_secret,
			mixed, (const felem (*)[17][3]) pre_comp,
			(const felem (*)[3]) g_pre_comp);
		}
	else
		/* do the multiplication without generator precomputation */
		batch_mul(x_out, y_out, z_out,
			(const felem_bytearray (*)) secrets, num_points,
			NULL, mixed, (const felem (*)[17][3]) pre_comp, NULL);
	/* reduce the output to its unique minimal representation */
	felem_contract(x_in, x_out);
	felem_contract(y_in, y_out);
	felem_contract(z_in, z_out);
	if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) ||
		(!felem_to_BN(z, z_in)))
		{
		ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB);
		goto err;
		}
	ret = EC_POINT_set_Jprojective_coordinates_GFp(group, r, x, y, z, ctx);

err:
	BN_CTX_end(ctx);
	if (generator != NULL)
		EC_POINT_free(generator);
	if (new_ctx != NULL)
		BN_CTX_free(new_ctx);
	if (secrets != NULL)
		OPENSSL_free(secrets);
	if (pre_comp != NULL)
		OPENSSL_free(pre_comp);
	if (tmp_felems != NULL)
		OPENSSL_free(tmp_felems);
	return ret;
	}

int ec_GFp_nistp521_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
	{
	int ret = 0;
	NISTP521_PRE_COMP *pre = NULL;
	int i, j;
	BN_CTX *new_ctx = NULL;
	BIGNUM *x, *y;
	EC_POINT *generator = NULL;
	felem tmp_felems[16];

	/* throw away old precomputation */
	EC_EX_DATA_free_data(&group->extra_data, nistp521_pre_comp_dup,
		nistp521_pre_comp_free, nistp521_pre_comp_clear_free);
	if (ctx == NULL)
		if ((ctx = new_ctx = BN_CTX_new()) == NULL) return 0;
	BN_CTX_start(ctx);
	if (((x = BN_CTX_get(ctx)) == NULL) ||
		((y = BN_CTX_get(ctx)) == NULL))
		goto err;
	/* get the generator */
	if (group->generator == NULL) goto err;
	generator = EC_POINT_new(group);
	if (generator == NULL)
		goto err;
	BN_bin2bn(nistp521_curve_params[3], sizeof (felem_bytearray), x);
	BN_bin2bn(nistp521_curve_params[4], sizeof (felem_bytearray), y);
	if (!EC_POINT_set_affine_coordinates_GFp(group, generator, x, y, ctx))
		goto err;
	if ((pre = nistp521_pre_comp_new()) == NULL)
		goto err;
	/* if the generator is the standard one, use built-in precomputation */
	if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
		{
		memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));
		ret = 1;
		goto err;
		}
	if ((!BN_to_felem(pre->g_pre_comp[1][0], &group->generator->X)) ||
		(!BN_to_felem(pre->g_pre_comp[1][1], &group->generator->Y)) ||
		(!BN_to_felem(pre->g_pre_comp[1][2], &group->generator->Z)))
		goto err;
	/* compute 2^130*G, 2^260*G, 2^390*G */
	for (i = 1; i <= 4; i <<= 1)
		{
		point_double(pre->g_pre_comp[2*i][0], pre->g_pre_comp[2*i][1],
			pre->g_pre_comp[2*i][2], pre->g_pre_comp[i][0],
			pre->g_pre_comp[i][1], pre->g_pre_comp[i][2]);
		for (j = 0; j < 129; ++j)
			{
			point_double(pre->g_pre_comp[2*i][0],
				pre->g_pre_comp[2*i][1],
				pre->g_pre_comp[2*i][2],
				pre->g_pre_comp[2*i][0],
				pre->g_pre_comp[2*i][1],
				pre->g_pre_comp[2*i][2]);
			}
		}
	/* g_pre_comp[0] is the point at infinity */
	memset(pre->g_pre_comp[0], 0, sizeof(pre->g_pre_comp[0]));
	/* the remaining multiples */
	/* 2^130*G + 2^260*G */
	point_add(pre->g_pre_comp[6][0], pre->g_pre_comp[6][1],
		pre->g_pre_comp[6][2], pre->g_pre_comp[4][0],
		pre->g_pre_comp[4][1], pre->g_pre_comp[4][2],
		0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
		pre->g_pre_comp[2][2]);
	/* 2^130*G + 2^390*G */
	point_add(pre->g_pre_comp[10][0], pre->g_pre_comp[10][1],
		pre->g_pre_comp[10][2], pre->g_pre_comp[8][0],
		pre->g_pre_comp[8][1], pre->g_pre_comp[8][2],
		0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
		pre->g_pre_comp[2][2]);
	/* 2^260*G + 2^390*G */
	point_add(pre->g_pre_comp[12][0], pre->g_pre_comp[12][1],
		pre->g_pre_comp[12][2], pre->g_pre_comp[8][0],
		pre->g_pre_comp[8][1], pre->g_pre_comp[8][2],
		0, pre->g_pre_comp[4][0], pre->g_pre_comp[4][1],
		pre->g_pre_comp[4][2]);
	/* 2^130*G + 2^260*G + 2^390*G */
	point_add(pre->g_pre_comp[14][0], pre->g_pre_comp[14][1],
		pre->g_pre_comp[14][2], pre->g_pre_comp[12][0],
		pre->g_pre_comp[12][1], pre->g_pre_comp[12][2],
		0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
		pre->g_pre_comp[2][2]);
	for (i = 1; i < 8; ++i)
		{
		/* odd multiples: add G */
		point_add(pre->g_pre_comp[2*i+1][0], pre->g_pre_comp[2*i+1][1],
			pre->g_pre_comp[2*i+1][2], pre->g_pre_comp[2*i][0],
			pre->g_pre_comp[2*i][1], pre->g_pre_comp[2*i][2],
			0, pre->g_pre_comp[1][0], pre->g_pre_comp[1][1],
			pre->g_pre_comp[1][2]);
		}
	make_points_affine(15, &(pre->g_pre_comp[1]), tmp_felems);

	if (!EC_EX_DATA_set_data(&group->extra_data, pre, nistp521_pre_comp_dup,
			nistp521_pre_comp_free, nistp521_pre_comp_clear_free))
		goto err;
	ret = 1;
	pre = NULL;
 err:
	BN_CTX_end(ctx);
	if (generator != NULL)
		EC_POINT_free(generator);
	if (new_ctx != NULL)
		BN_CTX_free(new_ctx);
	if (pre)
		nistp521_pre_comp_free(pre);
	return ret;
	}

int ec_GFp_nistp521_have_precompute_mult(const EC_GROUP *group)
	{
	if (EC_EX_DATA_get_data(group->extra_data, nistp521_pre_comp_dup,
			nistp521_pre_comp_free, nistp521_pre_comp_clear_free)
		!= NULL)
		return 1;
	else
		return 0;
	}

#else
static void *dummy=&dummy;
#endif