/* crypto/evp/e_des3.c */ /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ #include #include "cryptlib.h" #ifndef OPENSSL_NO_DES # include # include # include "evp_locl.h" # include # include /* Block use of implementations in FIPS mode */ # undef EVP_CIPH_FLAG_FIPS # define EVP_CIPH_FLAG_FIPS 0 typedef struct { union { double align; DES_key_schedule ks[3]; } ks; union { void (*cbc) (const void *, void *, size_t, const void *, void *); } stream; } DES_EDE_KEY; # define ks1 ks.ks[0] # define ks2 ks.ks[1] # define ks3 ks.ks[2] # if defined(AES_ASM) && (defined(__sparc) || defined(__sparc__)) /* ---------^^^ this is not a typo, just a way to detect that * assembler support was in general requested... */ # include "sparc_arch.h" extern unsigned int OPENSSL_sparcv9cap_P[]; # define SPARC_DES_CAPABLE (OPENSSL_sparcv9cap_P[1] & CFR_DES) void des_t4_key_expand(const void *key, DES_key_schedule *ks); void des_t4_ede3_cbc_encrypt(const void *inp, void *out, size_t len, DES_key_schedule *ks, unsigned char iv[8]); void des_t4_ede3_cbc_decrypt(const void *inp, void *out, size_t len, DES_key_schedule *ks, unsigned char iv[8]); # endif static int des_ede_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc); static int des_ede3_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc); static int des3_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr); # define data(ctx) ((DES_EDE_KEY *)(ctx)->cipher_data) /* * Because of various casts and different args can't use * IMPLEMENT_BLOCK_CIPHER */ static int des_ede_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t inl) { BLOCK_CIPHER_ecb_loop() DES_ecb3_encrypt((const_DES_cblock *)(in + i), (DES_cblock *)(out + i), &data(ctx)->ks1, &data(ctx)->ks2, &data(ctx)->ks3, ctx->encrypt); return 1; } static int des_ede_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t inl) { while (inl >= EVP_MAXCHUNK) { DES_ede3_ofb64_encrypt(in, out, (long)EVP_MAXCHUNK, &data(ctx)->ks1, &data(ctx)->ks2, &data(ctx)->ks3, (DES_cblock *)ctx->iv, &ctx->num); inl -= EVP_MAXCHUNK; in += EVP_MAXCHUNK; out += EVP_MAXCHUNK; } if (inl) DES_ede3_ofb64_encrypt(in, out, (long)inl, &data(ctx)->ks1, &data(ctx)->ks2, &data(ctx)->ks3, (DES_cblock *)ctx->iv, &ctx->num); return 1; } static int des_ede_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t inl) { DES_EDE_KEY *dat = data(ctx); # ifdef KSSL_DEBUG { int i; fprintf(stderr, "des_ede_cbc_cipher(ctx=%p, buflen=%d)\n", ctx, ctx->buf_len); fprintf(stderr, "\t iv= "); for (i = 0; i < 8; i++) fprintf(stderr, "%02X", ctx->iv[i]); fprintf(stderr, "\n"); } # endif /* KSSL_DEBUG */ if (dat->stream.cbc) { (*dat->stream.cbc) (in, out, inl, &dat->ks, ctx->iv); return 1; } while (inl >= EVP_MAXCHUNK) { DES_ede3_cbc_encrypt(in, out, (long)EVP_MAXCHUNK, &dat->ks1, &dat->ks2, &dat->ks3, (DES_cblock *)ctx->iv, ctx->encrypt); inl -= EVP_MAXCHUNK; in += EVP_MAXCHUNK; out += EVP_MAXCHUNK; } if (inl) DES_ede3_cbc_encrypt(in, out, (long)inl, &dat->ks1, &dat->ks2, &dat->ks3, (DES_cblock *)ctx->iv, ctx->encrypt); return 1; } static int des_ede_cfb64_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t inl) { while (inl >= EVP_MAXCHUNK) { DES_ede3_cfb64_encrypt(in, out, (long)EVP_MAXCHUNK, &data(ctx)->ks1, &data(ctx)->ks2, &data(ctx)->ks3, (DES_cblock *)ctx->iv, &ctx->num, ctx->encrypt); inl -= EVP_MAXCHUNK; in += EVP_MAXCHUNK; out += EVP_MAXCHUNK; } if (inl) DES_ede3_cfb64_encrypt(in, out, (long)inl, &data(ctx)->ks1, &data(ctx)->ks2, &data(ctx)->ks3, (DES_cblock *)ctx->iv, &ctx->num, ctx->encrypt); return 1; } /* * Although we have a CFB-r implementation for 3-DES, it doesn't pack the * right way, so wrap it here */ static int des_ede3_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t inl) { size_t n; unsigned char c[1], d[1]; for (n = 0; n < inl; ++n) { c[0] = (in[n / 8] & (1 << (7 - n % 8))) ? 0x80 : 0; DES_ede3_cfb_encrypt(c, d, 1, 1, &data(ctx)->ks1, &data(ctx)->ks2, &data(ctx)->ks3, (DES_cblock *)ctx->iv, ctx->encrypt); out[n / 8] = (out[n / 8] & ~(0x80 >> (unsigned int)(n % 8))) | ((d[0] & 0x80) >> (unsigned int)(n % 8)); } return 1; } static int des_ede3_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t inl) { while (inl >= EVP_MAXCHUNK) { DES_ede3_cfb_encrypt(in, out, 8, (long)EVP_MAXCHUNK, &data(ctx)->ks1, &data(ctx)->ks2, &data(ctx)->ks3, (DES_cblock *)ctx->iv, ctx->encrypt); inl -= EVP_MAXCHUNK; in += EVP_MAXCHUNK; out += EVP_MAXCHUNK; } if (inl) DES_ede3_cfb_encrypt(in, out, 8, (long)inl, &data(ctx)->ks1, &data(ctx)->ks2, &data(ctx)->ks3, (DES_cblock *)ctx->iv, ctx->encrypt); return 1; } BLOCK_CIPHER_defs(des_ede, DES_EDE_KEY, NID_des_ede, 8, 16, 8, 64, EVP_CIPH_RAND_KEY | EVP_CIPH_FLAG_DEFAULT_ASN1, des_ede_init_key, NULL, NULL, NULL, des3_ctrl) # define des_ede3_cfb64_cipher des_ede_cfb64_cipher # define des_ede3_ofb_cipher des_ede_ofb_cipher # define des_ede3_cbc_cipher des_ede_cbc_cipher # define des_ede3_ecb_cipher des_ede_ecb_cipher BLOCK_CIPHER_defs(des_ede3, DES_EDE_KEY, NID_des_ede3, 8, 24, 8, 64, EVP_CIPH_RAND_KEY | EVP_CIPH_FLAG_FIPS | EVP_CIPH_FLAG_DEFAULT_ASN1, des_ede3_init_key, NULL, NULL, NULL, des3_ctrl) BLOCK_CIPHER_def_cfb(des_ede3, DES_EDE_KEY, NID_des_ede3, 24, 8, 1, EVP_CIPH_RAND_KEY | EVP_CIPH_FLAG_FIPS | EVP_CIPH_FLAG_DEFAULT_ASN1, des_ede3_init_key, NULL, NULL, NULL, des3_ctrl) BLOCK_CIPHER_def_cfb(des_ede3, DES_EDE_KEY, NID_des_ede3, 24, 8, 8, EVP_CIPH_RAND_KEY | EVP_CIPH_FLAG_FIPS | EVP_CIPH_FLAG_DEFAULT_ASN1, des_ede3_init_key, NULL, NULL, NULL, des3_ctrl) static int des_ede_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { DES_cblock *deskey = (DES_cblock *)key; DES_EDE_KEY *dat = data(ctx); dat->stream.cbc = NULL; # if defined(SPARC_DES_CAPABLE) if (SPARC_DES_CAPABLE) { int mode = ctx->cipher->flags & EVP_CIPH_MODE; if (mode == EVP_CIPH_CBC_MODE) { des_t4_key_expand(&deskey[0], &dat->ks1); des_t4_key_expand(&deskey[1], &dat->ks2); memcpy(&dat->ks3, &dat->ks1, sizeof(dat->ks1)); dat->stream.cbc = enc ? des_t4_ede3_cbc_encrypt : des_t4_ede3_cbc_decrypt; return 1; } } # endif # ifdef EVP_CHECK_DES_KEY if (DES_set_key_checked(&deskey[0], &dat->ks1) ! !DES_set_key_checked(&deskey[1], &dat->ks2)) return 0; # else DES_set_key_unchecked(&deskey[0], &dat->ks1); DES_set_key_unchecked(&deskey[1], &dat->ks2); # endif memcpy(&dat->ks3, &dat->ks1, sizeof(dat->ks1)); return 1; } static int des_ede3_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { DES_cblock *deskey = (DES_cblock *)key; DES_EDE_KEY *dat = data(ctx); # ifdef KSSL_DEBUG { int i; fprintf(stderr, "des_ede3_init_key(ctx=%p)\n", ctx); fprintf(stderr, "\tKEY= "); for (i = 0; i < 24; i++) fprintf(stderr, "%02X", key[i]); fprintf(stderr, "\n"); if (iv) { fprintf(stderr, "\t IV= "); for (i = 0; i < 8; i++) fprintf(stderr, "%02X", iv[i]); fprintf(stderr, "\n"); } } # endif /* KSSL_DEBUG */ dat->stream.cbc = NULL; # if defined(SPARC_DES_CAPABLE) if (SPARC_DES_CAPABLE) { int mode = ctx->cipher->flags & EVP_CIPH_MODE; if (mode == EVP_CIPH_CBC_MODE) { des_t4_key_expand(&deskey[0], &dat->ks1); des_t4_key_expand(&deskey[1], &dat->ks2); des_t4_key_expand(&deskey[2], &dat->ks3); dat->stream.cbc = enc ? des_t4_ede3_cbc_encrypt : des_t4_ede3_cbc_decrypt; return 1; } } # endif # ifdef EVP_CHECK_DES_KEY if (DES_set_key_checked(&deskey[0], &dat->ks1) || DES_set_key_checked(&deskey[1], &dat->ks2) || DES_set_key_checked(&deskey[2], &dat->ks3)) return 0; # else DES_set_key_unchecked(&deskey[0], &dat->ks1); DES_set_key_unchecked(&deskey[1], &dat->ks2); DES_set_key_unchecked(&deskey[2], &dat->ks3); # endif return 1; } static int des3_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr) { DES_cblock *deskey = ptr; switch (type) { case EVP_CTRL_RAND_KEY: if (RAND_bytes(ptr, c->key_len) <= 0) return 0; DES_set_odd_parity(deskey); if (c->key_len >= 16) DES_set_odd_parity(deskey + 1); if (c->key_len >= 24) DES_set_odd_parity(deskey + 2); return 1; default: return -1; } } const EVP_CIPHER *EVP_des_ede(void) { return &des_ede_ecb; } const EVP_CIPHER *EVP_des_ede3(void) { return &des_ede3_ecb; } # ifndef OPENSSL_NO_SHA # include static const unsigned char wrap_iv[8] = { 0x4a, 0xdd, 0xa2, 0x2c, 0x79, 0xe8, 0x21, 0x05 }; static int des_ede3_unwrap(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t inl) { unsigned char icv[8], iv[8], sha1tmp[SHA_DIGEST_LENGTH]; int rv = -1; if (inl < 24) return -1; if (!out) return inl - 16; memcpy(ctx->iv, wrap_iv, 8); /* Decrypt first block which will end up as icv */ des_ede_cbc_cipher(ctx, icv, in, 8); /* Decrypt central blocks */ /* * If decrypting in place move whole output along a block so the next * des_ede_cbc_cipher is in place. */ if (out == in) { memmove(out, out + 8, inl - 8); in -= 8; } des_ede_cbc_cipher(ctx, out, in + 8, inl - 16); /* Decrypt final block which will be IV */ des_ede_cbc_cipher(ctx, iv, in + inl - 8, 8); /* Reverse order of everything */ BUF_reverse(icv, NULL, 8); BUF_reverse(out, NULL, inl - 16); BUF_reverse(ctx->iv, iv, 8); /* Decrypt again using new IV */ des_ede_cbc_cipher(ctx, out, out, inl - 16); des_ede_cbc_cipher(ctx, icv, icv, 8); /* Work out SHA1 hash of first portion */ SHA1(out, inl - 16, sha1tmp); if (!CRYPTO_memcmp(sha1tmp, icv, 8)) rv = inl - 16; OPENSSL_cleanse(icv, 8); OPENSSL_cleanse(sha1tmp, SHA_DIGEST_LENGTH); OPENSSL_cleanse(iv, 8); OPENSSL_cleanse(ctx->iv, 8); if (rv == -1) OPENSSL_cleanse(out, inl - 16); return rv; } static int des_ede3_wrap(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t inl) { unsigned char sha1tmp[SHA_DIGEST_LENGTH]; if (!out) return inl + 16; /* Copy input to output buffer + 8 so we have space for IV */ memmove(out + 8, in, inl); /* Work out ICV */ SHA1(in, inl, sha1tmp); memcpy(out + inl + 8, sha1tmp, 8); OPENSSL_cleanse(sha1tmp, SHA_DIGEST_LENGTH); /* Generate random IV */ RAND_bytes(ctx->iv, 8); memcpy(out, ctx->iv, 8); /* Encrypt everything after IV in place */ des_ede_cbc_cipher(ctx, out + 8, out + 8, inl + 8); BUF_reverse(out, NULL, inl + 16); memcpy(ctx->iv, wrap_iv, 8); des_ede_cbc_cipher(ctx, out, out, inl + 16); return inl + 16; } static int des_ede3_wrap_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t inl) { /* * Sanity check input length: we typically only wrap keys so EVP_MAXCHUNK * is more than will ever be needed. Also input length must be a multiple * of 8 bits. */ if (inl >= EVP_MAXCHUNK || inl % 8) return -1; if (ctx->encrypt) return des_ede3_wrap(ctx, out, in, inl); else return des_ede3_unwrap(ctx, out, in, inl); } static const EVP_CIPHER des3_wrap = { NID_id_smime_alg_CMS3DESwrap, 8, 24, 0, EVP_CIPH_WRAP_MODE | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER | EVP_CIPH_FLAG_DEFAULT_ASN1, des_ede3_init_key, des_ede3_wrap_cipher, NULL, sizeof(DES_EDE_KEY), NULL, NULL, NULL, NULL }; const EVP_CIPHER *EVP_des_ede3_wrap(void) { return &des3_wrap; } # endif #endif