/* crypto/engine/hw_cswift.c */ /* Written by Geoff Thorpe (geoff@geoffthorpe.net) for the OpenSSL * project 2000. */ /* ==================================================================== * Copyright (c) 1999-2001 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * licensing@OpenSSL.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). * */ #include <stdio.h> #include <string.h> #include <openssl/crypto.h> #include <openssl/buffer.h> #include <openssl/dso.h> #include <openssl/engine.h> #ifndef OPENSSL_NO_RSA #include <openssl/rsa.h> #endif #ifndef OPENSSL_NO_DSA #include <openssl/dsa.h> #endif #ifndef OPENSSL_NO_DH #include <openssl/dh.h> #endif #include <openssl/rand.h> #include <openssl/bn.h> #ifndef OPENSSL_NO_HW #ifndef OPENSSL_NO_HW_CSWIFT /* Attribution notice: Rainbow have generously allowed me to reproduce * the necessary definitions here from their API. This means the support * can build independently of whether application builders have the * API or hardware. This will allow developers to easily produce software * that has latent hardware support for any users that have accelerators * installed, without the developers themselves needing anything extra. * * I have only clipped the parts from the CryptoSwift header files that * are (or seem) relevant to the CryptoSwift support code. This is * simply to keep the file sizes reasonable. * [Geoff] */ #ifdef FLAT_INC #include "cswift.h" #else #include "vendor_defns/cswift.h" #endif #define CSWIFT_LIB_NAME "cswift engine" #include "e_cswift_err.c" #define DECIMAL_SIZE(type) ((sizeof(type)*8+2)/3+1) static int cswift_destroy(ENGINE *e); static int cswift_init(ENGINE *e); static int cswift_finish(ENGINE *e); static int cswift_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f)(void)); #ifndef OPENSSL_NO_RSA static int cswift_bn_32copy(SW_LARGENUMBER * out, const BIGNUM * in); #endif /* BIGNUM stuff */ static int cswift_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx); #ifndef OPENSSL_NO_RSA static int cswift_mod_exp_crt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *q, const BIGNUM *dmp1, const BIGNUM *dmq1, const BIGNUM *iqmp, BN_CTX *ctx); #endif #ifndef OPENSSL_NO_RSA /* RSA stuff */ static int cswift_rsa_mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa, BN_CTX *ctx); /* This function is aliased to mod_exp (with the mont stuff dropped). */ static int cswift_mod_exp_mont(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx); #endif #ifndef OPENSSL_NO_DSA /* DSA stuff */ static DSA_SIG *cswift_dsa_sign(const unsigned char *dgst, int dlen, DSA *dsa); static int cswift_dsa_verify(const unsigned char *dgst, int dgst_len, DSA_SIG *sig, DSA *dsa); #endif #ifndef OPENSSL_NO_DH /* DH stuff */ /* This function is alised to mod_exp (with the DH and mont dropped). */ static int cswift_mod_exp_dh(const DH *dh, BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx); #endif /* RAND stuff */ static int cswift_rand_bytes(unsigned char *buf, int num); static int cswift_rand_status(void); /* The definitions for control commands specific to this engine */ #define CSWIFT_CMD_SO_PATH ENGINE_CMD_BASE static const ENGINE_CMD_DEFN cswift_cmd_defns[] = { {CSWIFT_CMD_SO_PATH, "SO_PATH", "Specifies the path to the 'cswift' shared library", ENGINE_CMD_FLAG_STRING}, {0, NULL, NULL, 0} }; #ifndef OPENSSL_NO_RSA /* Our internal RSA_METHOD that we provide pointers to */ static RSA_METHOD cswift_rsa = { "CryptoSwift RSA method", NULL, NULL, NULL, NULL, cswift_rsa_mod_exp, cswift_mod_exp_mont, NULL, NULL, 0, NULL, NULL, NULL, NULL }; #endif #ifndef OPENSSL_NO_DSA /* Our internal DSA_METHOD that we provide pointers to */ static DSA_METHOD cswift_dsa = { "CryptoSwift DSA method", cswift_dsa_sign, NULL, /* dsa_sign_setup */ cswift_dsa_verify, NULL, /* dsa_mod_exp */ NULL, /* bn_mod_exp */ NULL, /* init */ NULL, /* finish */ 0, /* flags */ NULL, /* app_data */ NULL, /* dsa_paramgen */ NULL /* dsa_keygen */ }; #endif #ifndef OPENSSL_NO_DH /* Our internal DH_METHOD that we provide pointers to */ static DH_METHOD cswift_dh = { "CryptoSwift DH method", NULL, NULL, cswift_mod_exp_dh, NULL, NULL, 0, NULL, NULL }; #endif static RAND_METHOD cswift_random = { /* "CryptoSwift RAND method", */ NULL, cswift_rand_bytes, NULL, NULL, cswift_rand_bytes, cswift_rand_status, }; /* Constants used when creating the ENGINE */ static const char *engine_cswift_id = "cswift"; static const char *engine_cswift_name = "CryptoSwift hardware engine support"; /* This internal function is used by ENGINE_cswift() and possibly by the * "dynamic" ENGINE support too */ static int bind_helper(ENGINE *e) { #ifndef OPENSSL_NO_RSA const RSA_METHOD *meth1; #endif #ifndef OPENSSL_NO_DH const DH_METHOD *meth2; #endif if(!ENGINE_set_id(e, engine_cswift_id) || !ENGINE_set_name(e, engine_cswift_name) || #ifndef OPENSSL_NO_RSA !ENGINE_set_RSA(e, &cswift_rsa) || #endif #ifndef OPENSSL_NO_DSA !ENGINE_set_DSA(e, &cswift_dsa) || #endif #ifndef OPENSSL_NO_DH !ENGINE_set_DH(e, &cswift_dh) || #endif !ENGINE_set_RAND(e, &cswift_random) || !ENGINE_set_destroy_function(e, cswift_destroy) || !ENGINE_set_init_function(e, cswift_init) || !ENGINE_set_finish_function(e, cswift_finish) || !ENGINE_set_ctrl_function(e, cswift_ctrl) || !ENGINE_set_cmd_defns(e, cswift_cmd_defns)) return 0; #ifndef OPENSSL_NO_RSA /* We know that the "PKCS1_SSLeay()" functions hook properly * to the cswift-specific mod_exp and mod_exp_crt so we use * those functions. NB: We don't use ENGINE_openssl() or * anything "more generic" because something like the RSAref * code may not hook properly, and if you own one of these * cards then you have the right to do RSA operations on it * anyway! */ meth1 = RSA_PKCS1_SSLeay(); cswift_rsa.rsa_pub_enc = meth1->rsa_pub_enc; cswift_rsa.rsa_pub_dec = meth1->rsa_pub_dec; cswift_rsa.rsa_priv_enc = meth1->rsa_priv_enc; cswift_rsa.rsa_priv_dec = meth1->rsa_priv_dec; #endif #ifndef OPENSSL_NO_DH /* Much the same for Diffie-Hellman */ meth2 = DH_OpenSSL(); cswift_dh.generate_key = meth2->generate_key; cswift_dh.compute_key = meth2->compute_key; #endif /* Ensure the cswift error handling is set up */ ERR_load_CSWIFT_strings(); return 1; } #ifdef OPENSSL_NO_DYNAMIC_ENGINE static ENGINE *engine_cswift(void) { ENGINE *ret = ENGINE_new(); if(!ret) return NULL; if(!bind_helper(ret)) { ENGINE_free(ret); return NULL; } return ret; } void ENGINE_load_cswift(void) { /* Copied from eng_[openssl|dyn].c */ ENGINE *toadd = engine_cswift(); if(!toadd) return; ENGINE_add(toadd); ENGINE_free(toadd); ERR_clear_error(); } #endif /* This is a process-global DSO handle used for loading and unloading * the CryptoSwift library. NB: This is only set (or unset) during an * init() or finish() call (reference counts permitting) and they're * operating with global locks, so this should be thread-safe * implicitly. */ static DSO *cswift_dso = NULL; /* These are the function pointers that are (un)set when the library has * successfully (un)loaded. */ t_swAcquireAccContext *p_CSwift_AcquireAccContext = NULL; t_swAttachKeyParam *p_CSwift_AttachKeyParam = NULL; t_swSimpleRequest *p_CSwift_SimpleRequest = NULL; t_swReleaseAccContext *p_CSwift_ReleaseAccContext = NULL; /* Used in the DSO operations. */ static const char *CSWIFT_LIBNAME = NULL; static const char *get_CSWIFT_LIBNAME(void) { if(CSWIFT_LIBNAME) return CSWIFT_LIBNAME; return "swift"; } static void free_CSWIFT_LIBNAME(void) { if(CSWIFT_LIBNAME) OPENSSL_free((void*)CSWIFT_LIBNAME); CSWIFT_LIBNAME = NULL; } static long set_CSWIFT_LIBNAME(const char *name) { free_CSWIFT_LIBNAME(); return (((CSWIFT_LIBNAME = BUF_strdup(name)) != NULL) ? 1 : 0); } static const char *CSWIFT_F1 = "swAcquireAccContext"; static const char *CSWIFT_F2 = "swAttachKeyParam"; static const char *CSWIFT_F3 = "swSimpleRequest"; static const char *CSWIFT_F4 = "swReleaseAccContext"; /* CryptoSwift library functions and mechanics - these are used by the * higher-level functions further down. NB: As and where there's no * error checking, take a look lower down where these functions are * called, the checking and error handling is probably down there. */ /* utility function to obtain a context */ static int get_context(SW_CONTEXT_HANDLE *hac) { SW_STATUS status; status = p_CSwift_AcquireAccContext(hac); if(status != SW_OK) return 0; return 1; } /* similarly to release one. */ static void release_context(SW_CONTEXT_HANDLE hac) { p_CSwift_ReleaseAccContext(hac); } /* Destructor (complements the "ENGINE_cswift()" constructor) */ static int cswift_destroy(ENGINE *e) { free_CSWIFT_LIBNAME(); ERR_unload_CSWIFT_strings(); return 1; } /* (de)initialisation functions. */ static int cswift_init(ENGINE *e) { SW_CONTEXT_HANDLE hac; t_swAcquireAccContext *p1; t_swAttachKeyParam *p2; t_swSimpleRequest *p3; t_swReleaseAccContext *p4; if(cswift_dso != NULL) { CSWIFTerr(CSWIFT_F_CSWIFT_INIT,CSWIFT_R_ALREADY_LOADED); goto err; } /* Attempt to load libswift.so/swift.dll/whatever. */ cswift_dso = DSO_load(NULL, get_CSWIFT_LIBNAME(), NULL, 0); if(cswift_dso == NULL) { CSWIFTerr(CSWIFT_F_CSWIFT_INIT,CSWIFT_R_NOT_LOADED); goto err; } if(!(p1 = (t_swAcquireAccContext *) DSO_bind_func(cswift_dso, CSWIFT_F1)) || !(p2 = (t_swAttachKeyParam *) DSO_bind_func(cswift_dso, CSWIFT_F2)) || !(p3 = (t_swSimpleRequest *) DSO_bind_func(cswift_dso, CSWIFT_F3)) || !(p4 = (t_swReleaseAccContext *) DSO_bind_func(cswift_dso, CSWIFT_F4))) { CSWIFTerr(CSWIFT_F_CSWIFT_INIT,CSWIFT_R_NOT_LOADED); goto err; } /* Copy the pointers */ p_CSwift_AcquireAccContext = p1; p_CSwift_AttachKeyParam = p2; p_CSwift_SimpleRequest = p3; p_CSwift_ReleaseAccContext = p4; /* Try and get a context - if not, we may have a DSO but no * accelerator! */ if(!get_context(&hac)) { CSWIFTerr(CSWIFT_F_CSWIFT_INIT,CSWIFT_R_UNIT_FAILURE); goto err; } release_context(hac); /* Everything's fine. */ return 1; err: if(cswift_dso) { DSO_free(cswift_dso); cswift_dso = NULL; } p_CSwift_AcquireAccContext = NULL; p_CSwift_AttachKeyParam = NULL; p_CSwift_SimpleRequest = NULL; p_CSwift_ReleaseAccContext = NULL; return 0; } static int cswift_finish(ENGINE *e) { free_CSWIFT_LIBNAME(); if(cswift_dso == NULL) { CSWIFTerr(CSWIFT_F_CSWIFT_FINISH,CSWIFT_R_NOT_LOADED); return 0; } if(!DSO_free(cswift_dso)) { CSWIFTerr(CSWIFT_F_CSWIFT_FINISH,CSWIFT_R_UNIT_FAILURE); return 0; } cswift_dso = NULL; p_CSwift_AcquireAccContext = NULL; p_CSwift_AttachKeyParam = NULL; p_CSwift_SimpleRequest = NULL; p_CSwift_ReleaseAccContext = NULL; return 1; } static int cswift_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f)(void)) { int initialised = ((cswift_dso == NULL) ? 0 : 1); switch(cmd) { case CSWIFT_CMD_SO_PATH: if(p == NULL) { CSWIFTerr(CSWIFT_F_CSWIFT_CTRL,ERR_R_PASSED_NULL_PARAMETER); return 0; } if(initialised) { CSWIFTerr(CSWIFT_F_CSWIFT_CTRL,CSWIFT_R_ALREADY_LOADED); return 0; } return set_CSWIFT_LIBNAME((const char *)p); default: break; } CSWIFTerr(CSWIFT_F_CSWIFT_CTRL,CSWIFT_R_CTRL_COMMAND_NOT_IMPLEMENTED); return 0; } /* Un petit mod_exp */ static int cswift_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx) { /* I need somewhere to store temporary serialised values for * use with the CryptoSwift API calls. A neat cheat - I'll use * BIGNUMs from the BN_CTX but access their arrays directly as * byte arrays <grin>. This way I don't have to clean anything * up. */ BIGNUM *modulus; BIGNUM *exponent; BIGNUM *argument; BIGNUM *result; SW_STATUS sw_status; SW_LARGENUMBER arg, res; SW_PARAM sw_param; SW_CONTEXT_HANDLE hac; int to_return, acquired; modulus = exponent = argument = result = NULL; to_return = 0; /* expect failure */ acquired = 0; if(!get_context(&hac)) { CSWIFTerr(CSWIFT_F_CSWIFT_MOD_EXP,CSWIFT_R_UNIT_FAILURE); goto err; } acquired = 1; /* Prepare the params */ BN_CTX_start(ctx); modulus = BN_CTX_get(ctx); exponent = BN_CTX_get(ctx); argument = BN_CTX_get(ctx); result = BN_CTX_get(ctx); if(!result) { CSWIFTerr(CSWIFT_F_CSWIFT_MOD_EXP,CSWIFT_R_BN_CTX_FULL); goto err; } if(!bn_wexpand(modulus, m->top) || !bn_wexpand(exponent, p->top) || !bn_wexpand(argument, a->top) || !bn_wexpand(result, m->top)) { CSWIFTerr(CSWIFT_F_CSWIFT_MOD_EXP,CSWIFT_R_BN_EXPAND_FAIL); goto err; } sw_param.type = SW_ALG_EXP; sw_param.up.exp.modulus.nbytes = BN_bn2bin(m, (unsigned char *)modulus->d); sw_param.up.exp.modulus.value = (unsigned char *)modulus->d; sw_param.up.exp.exponent.nbytes = BN_bn2bin(p, (unsigned char *)exponent->d); sw_param.up.exp.exponent.value = (unsigned char *)exponent->d; /* Attach the key params */ sw_status = p_CSwift_AttachKeyParam(hac, &sw_param); switch(sw_status) { case SW_OK: break; case SW_ERR_INPUT_SIZE: CSWIFTerr(CSWIFT_F_CSWIFT_MOD_EXP,CSWIFT_R_BAD_KEY_SIZE); goto err; default: { char tmpbuf[DECIMAL_SIZE(sw_status)+1]; CSWIFTerr(CSWIFT_F_CSWIFT_MOD_EXP,CSWIFT_R_REQUEST_FAILED); sprintf(tmpbuf, "%ld", sw_status); ERR_add_error_data(2, "CryptoSwift error number is ",tmpbuf); } goto err; } /* Prepare the argument and response */ arg.nbytes = BN_bn2bin(a, (unsigned char *)argument->d); arg.value = (unsigned char *)argument->d; res.nbytes = BN_num_bytes(m); memset(result->d, 0, res.nbytes); res.value = (unsigned char *)result->d; /* Perform the operation */ if((sw_status = p_CSwift_SimpleRequest(hac, SW_CMD_MODEXP, &arg, 1, &res, 1)) != SW_OK) { char tmpbuf[DECIMAL_SIZE(sw_status)+1]; CSWIFTerr(CSWIFT_F_CSWIFT_MOD_EXP,CSWIFT_R_REQUEST_FAILED); sprintf(tmpbuf, "%ld", sw_status); ERR_add_error_data(2, "CryptoSwift error number is ",tmpbuf); goto err; } /* Convert the response */ BN_bin2bn((unsigned char *)result->d, res.nbytes, r); to_return = 1; err: if(acquired) release_context(hac); BN_CTX_end(ctx); return to_return; } #ifndef OPENSSL_NO_RSA int cswift_bn_32copy(SW_LARGENUMBER * out, const BIGNUM * in) { int mod; int numbytes = BN_num_bytes(in); mod = 0; while( ((out->nbytes = (numbytes+mod)) % 32) ) { mod++; } out->value = (unsigned char*)OPENSSL_malloc(out->nbytes); if(!out->value) { return 0; } BN_bn2bin(in, &out->value[mod]); if(mod) memset(out->value, 0, mod); return 1; } #endif #ifndef OPENSSL_NO_RSA /* Un petit mod_exp chinois */ static int cswift_mod_exp_crt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *q, const BIGNUM *dmp1, const BIGNUM *dmq1, const BIGNUM *iqmp, BN_CTX *ctx) { SW_STATUS sw_status; SW_LARGENUMBER arg, res; SW_PARAM sw_param; SW_CONTEXT_HANDLE hac; BIGNUM *result = NULL; BIGNUM *argument = NULL; int to_return = 0; /* expect failure */ int acquired = 0; sw_param.up.crt.p.value = NULL; sw_param.up.crt.q.value = NULL; sw_param.up.crt.dmp1.value = NULL; sw_param.up.crt.dmq1.value = NULL; sw_param.up.crt.iqmp.value = NULL; if(!get_context(&hac)) { CSWIFTerr(CSWIFT_F_CSWIFT_MOD_EXP_CRT,CSWIFT_R_UNIT_FAILURE); goto err; } acquired = 1; /* Prepare the params */ argument = BN_new(); result = BN_new(); if(!result || !argument) { CSWIFTerr(CSWIFT_F_CSWIFT_MOD_EXP_CRT,CSWIFT_R_BN_CTX_FULL); goto err; } sw_param.type = SW_ALG_CRT; /************************************************************************/ /* 04/02/2003 */ /* Modified by Frederic Giudicelli (deny-all.com) to overcome the */ /* limitation of cswift with values not a multiple of 32 */ /************************************************************************/ if(!cswift_bn_32copy(&sw_param.up.crt.p, p)) { CSWIFTerr(CSWIFT_F_CSWIFT_MOD_EXP_CRT,CSWIFT_R_BN_EXPAND_FAIL); goto err; } if(!cswift_bn_32copy(&sw_param.up.crt.q, q)) { CSWIFTerr(CSWIFT_F_CSWIFT_MOD_EXP_CRT,CSWIFT_R_BN_EXPAND_FAIL); goto err; } if(!cswift_bn_32copy(&sw_param.up.crt.dmp1, dmp1)) { CSWIFTerr(CSWIFT_F_CSWIFT_MOD_EXP_CRT,CSWIFT_R_BN_EXPAND_FAIL); goto err; } if(!cswift_bn_32copy(&sw_param.up.crt.dmq1, dmq1)) { CSWIFTerr(CSWIFT_F_CSWIFT_MOD_EXP_CRT,CSWIFT_R_BN_EXPAND_FAIL); goto err; } if(!cswift_bn_32copy(&sw_param.up.crt.iqmp, iqmp)) { CSWIFTerr(CSWIFT_F_CSWIFT_MOD_EXP_CRT,CSWIFT_R_BN_EXPAND_FAIL); goto err; } if( !bn_wexpand(argument, a->top) || !bn_wexpand(result, p->top + q->top)) { CSWIFTerr(CSWIFT_F_CSWIFT_MOD_EXP_CRT,CSWIFT_R_BN_EXPAND_FAIL); goto err; } /* Attach the key params */ sw_status = p_CSwift_AttachKeyParam(hac, &sw_param); switch(sw_status) { case SW_OK: break; case SW_ERR_INPUT_SIZE: CSWIFTerr(CSWIFT_F_CSWIFT_MOD_EXP_CRT,CSWIFT_R_BAD_KEY_SIZE); goto err; default: { char tmpbuf[DECIMAL_SIZE(sw_status)+1]; CSWIFTerr(CSWIFT_F_CSWIFT_MOD_EXP_CRT,CSWIFT_R_REQUEST_FAILED); sprintf(tmpbuf, "%ld", sw_status); ERR_add_error_data(2, "CryptoSwift error number is ",tmpbuf); } goto err; } /* Prepare the argument and response */ arg.nbytes = BN_bn2bin(a, (unsigned char *)argument->d); arg.value = (unsigned char *)argument->d; res.nbytes = 2 * BN_num_bytes(p); memset(result->d, 0, res.nbytes); res.value = (unsigned char *)result->d; /* Perform the operation */ if((sw_status = p_CSwift_SimpleRequest(hac, SW_CMD_MODEXP_CRT, &arg, 1, &res, 1)) != SW_OK) { char tmpbuf[DECIMAL_SIZE(sw_status)+1]; CSWIFTerr(CSWIFT_F_CSWIFT_MOD_EXP_CRT,CSWIFT_R_REQUEST_FAILED); sprintf(tmpbuf, "%ld", sw_status); ERR_add_error_data(2, "CryptoSwift error number is ",tmpbuf); goto err; } /* Convert the response */ BN_bin2bn((unsigned char *)result->d, res.nbytes, r); to_return = 1; err: if(sw_param.up.crt.p.value) OPENSSL_free(sw_param.up.crt.p.value); if(sw_param.up.crt.q.value) OPENSSL_free(sw_param.up.crt.q.value); if(sw_param.up.crt.dmp1.value) OPENSSL_free(sw_param.up.crt.dmp1.value); if(sw_param.up.crt.dmq1.value) OPENSSL_free(sw_param.up.crt.dmq1.value); if(sw_param.up.crt.iqmp.value) OPENSSL_free(sw_param.up.crt.iqmp.value); if(result) BN_free(result); if(argument) BN_free(argument); if(acquired) release_context(hac); return to_return; } #endif #ifndef OPENSSL_NO_RSA static int cswift_rsa_mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa, BN_CTX *ctx) { int to_return = 0; const RSA_METHOD * def_rsa_method; if(!rsa->p || !rsa->q || !rsa->dmp1 || !rsa->dmq1 || !rsa->iqmp) { CSWIFTerr(CSWIFT_F_CSWIFT_RSA_MOD_EXP,CSWIFT_R_MISSING_KEY_COMPONENTS); goto err; } /* Try the limits of RSA (2048 bits) */ if(BN_num_bytes(rsa->p) > 128 || BN_num_bytes(rsa->q) > 128 || BN_num_bytes(rsa->dmp1) > 128 || BN_num_bytes(rsa->dmq1) > 128 || BN_num_bytes(rsa->iqmp) > 128) { #ifdef RSA_NULL def_rsa_method=RSA_null_method(); #else #if 0 def_rsa_method=RSA_PKCS1_RSAref(); #else def_rsa_method=RSA_PKCS1_SSLeay(); #endif #endif if(def_rsa_method) return def_rsa_method->rsa_mod_exp(r0, I, rsa, ctx); } to_return = cswift_mod_exp_crt(r0, I, rsa->p, rsa->q, rsa->dmp1, rsa->dmq1, rsa->iqmp, ctx); err: return to_return; } /* This function is aliased to mod_exp (with the mont stuff dropped). */ static int cswift_mod_exp_mont(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx) { const RSA_METHOD * def_rsa_method; /* Try the limits of RSA (2048 bits) */ if(BN_num_bytes(r) > 256 || BN_num_bytes(a) > 256 || BN_num_bytes(m) > 256) { #ifdef RSA_NULL def_rsa_method=RSA_null_method(); #else #if 0 def_rsa_method=RSA_PKCS1_RSAref(); #else def_rsa_method=RSA_PKCS1_SSLeay(); #endif #endif if(def_rsa_method) return def_rsa_method->bn_mod_exp(r, a, p, m, ctx, m_ctx); } return cswift_mod_exp(r, a, p, m, ctx); } #endif /* OPENSSL_NO_RSA */ #ifndef OPENSSL_NO_DSA static DSA_SIG *cswift_dsa_sign(const unsigned char *dgst, int dlen, DSA *dsa) { SW_CONTEXT_HANDLE hac; SW_PARAM sw_param; SW_STATUS sw_status; SW_LARGENUMBER arg, res; unsigned char *ptr; BN_CTX *ctx; BIGNUM *dsa_p = NULL; BIGNUM *dsa_q = NULL; BIGNUM *dsa_g = NULL; BIGNUM *dsa_key = NULL; BIGNUM *result = NULL; DSA_SIG *to_return = NULL; int acquired = 0; if((ctx = BN_CTX_new()) == NULL) goto err; if(!get_context(&hac)) { CSWIFTerr(CSWIFT_F_CSWIFT_DSA_SIGN,CSWIFT_R_UNIT_FAILURE); goto err; } acquired = 1; /* Prepare the params */ BN_CTX_start(ctx); dsa_p = BN_CTX_get(ctx); dsa_q = BN_CTX_get(ctx); dsa_g = BN_CTX_get(ctx); dsa_key = BN_CTX_get(ctx); result = BN_CTX_get(ctx); if(!result) { CSWIFTerr(CSWIFT_F_CSWIFT_DSA_SIGN,CSWIFT_R_BN_CTX_FULL); goto err; } if(!bn_wexpand(dsa_p, dsa->p->top) || !bn_wexpand(dsa_q, dsa->q->top) || !bn_wexpand(dsa_g, dsa->g->top) || !bn_wexpand(dsa_key, dsa->priv_key->top) || !bn_wexpand(result, dsa->p->top)) { CSWIFTerr(CSWIFT_F_CSWIFT_DSA_SIGN,CSWIFT_R_BN_EXPAND_FAIL); goto err; } sw_param.type = SW_ALG_DSA; sw_param.up.dsa.p.nbytes = BN_bn2bin(dsa->p, (unsigned char *)dsa_p->d); sw_param.up.dsa.p.value = (unsigned char *)dsa_p->d; sw_param.up.dsa.q.nbytes = BN_bn2bin(dsa->q, (unsigned char *)dsa_q->d); sw_param.up.dsa.q.value = (unsigned char *)dsa_q->d; sw_param.up.dsa.g.nbytes = BN_bn2bin(dsa->g, (unsigned char *)dsa_g->d); sw_param.up.dsa.g.value = (unsigned char *)dsa_g->d; sw_param.up.dsa.key.nbytes = BN_bn2bin(dsa->priv_key, (unsigned char *)dsa_key->d); sw_param.up.dsa.key.value = (unsigned char *)dsa_key->d; /* Attach the key params */ sw_status = p_CSwift_AttachKeyParam(hac, &sw_param); switch(sw_status) { case SW_OK: break; case SW_ERR_INPUT_SIZE: CSWIFTerr(CSWIFT_F_CSWIFT_DSA_SIGN,CSWIFT_R_BAD_KEY_SIZE); goto err; default: { char tmpbuf[DECIMAL_SIZE(sw_status)+1]; CSWIFTerr(CSWIFT_F_CSWIFT_DSA_SIGN,CSWIFT_R_REQUEST_FAILED); sprintf(tmpbuf, "%ld", sw_status); ERR_add_error_data(2, "CryptoSwift error number is ",tmpbuf); } goto err; } /* Prepare the argument and response */ arg.nbytes = dlen; arg.value = (unsigned char *)dgst; res.nbytes = BN_num_bytes(dsa->p); memset(result->d, 0, res.nbytes); res.value = (unsigned char *)result->d; /* Perform the operation */ sw_status = p_CSwift_SimpleRequest(hac, SW_CMD_DSS_SIGN, &arg, 1, &res, 1); if(sw_status != SW_OK) { char tmpbuf[DECIMAL_SIZE(sw_status)+1]; CSWIFTerr(CSWIFT_F_CSWIFT_DSA_SIGN,CSWIFT_R_REQUEST_FAILED); sprintf(tmpbuf, "%ld", sw_status); ERR_add_error_data(2, "CryptoSwift error number is ",tmpbuf); goto err; } /* Convert the response */ ptr = (unsigned char *)result->d; if((to_return = DSA_SIG_new()) == NULL) goto err; to_return->r = BN_bin2bn((unsigned char *)result->d, 20, NULL); to_return->s = BN_bin2bn((unsigned char *)result->d + 20, 20, NULL); err: if(acquired) release_context(hac); if(ctx) { BN_CTX_end(ctx); BN_CTX_free(ctx); } return to_return; } static int cswift_dsa_verify(const unsigned char *dgst, int dgst_len, DSA_SIG *sig, DSA *dsa) { SW_CONTEXT_HANDLE hac; SW_PARAM sw_param; SW_STATUS sw_status; SW_LARGENUMBER arg[2], res; unsigned long sig_result; BN_CTX *ctx; BIGNUM *dsa_p = NULL; BIGNUM *dsa_q = NULL; BIGNUM *dsa_g = NULL; BIGNUM *dsa_key = NULL; BIGNUM *argument = NULL; int to_return = -1; int acquired = 0; if((ctx = BN_CTX_new()) == NULL) goto err; if(!get_context(&hac)) { CSWIFTerr(CSWIFT_F_CSWIFT_DSA_VERIFY,CSWIFT_R_UNIT_FAILURE); goto err; } acquired = 1; /* Prepare the params */ BN_CTX_start(ctx); dsa_p = BN_CTX_get(ctx); dsa_q = BN_CTX_get(ctx); dsa_g = BN_CTX_get(ctx); dsa_key = BN_CTX_get(ctx); argument = BN_CTX_get(ctx); if(!argument) { CSWIFTerr(CSWIFT_F_CSWIFT_DSA_VERIFY,CSWIFT_R_BN_CTX_FULL); goto err; } if(!bn_wexpand(dsa_p, dsa->p->top) || !bn_wexpand(dsa_q, dsa->q->top) || !bn_wexpand(dsa_g, dsa->g->top) || !bn_wexpand(dsa_key, dsa->pub_key->top) || !bn_wexpand(argument, 40)) { CSWIFTerr(CSWIFT_F_CSWIFT_DSA_VERIFY,CSWIFT_R_BN_EXPAND_FAIL); goto err; } sw_param.type = SW_ALG_DSA; sw_param.up.dsa.p.nbytes = BN_bn2bin(dsa->p, (unsigned char *)dsa_p->d); sw_param.up.dsa.p.value = (unsigned char *)dsa_p->d; sw_param.up.dsa.q.nbytes = BN_bn2bin(dsa->q, (unsigned char *)dsa_q->d); sw_param.up.dsa.q.value = (unsigned char *)dsa_q->d; sw_param.up.dsa.g.nbytes = BN_bn2bin(dsa->g, (unsigned char *)dsa_g->d); sw_param.up.dsa.g.value = (unsigned char *)dsa_g->d; sw_param.up.dsa.key.nbytes = BN_bn2bin(dsa->pub_key, (unsigned char *)dsa_key->d); sw_param.up.dsa.key.value = (unsigned char *)dsa_key->d; /* Attach the key params */ sw_status = p_CSwift_AttachKeyParam(hac, &sw_param); switch(sw_status) { case SW_OK: break; case SW_ERR_INPUT_SIZE: CSWIFTerr(CSWIFT_F_CSWIFT_DSA_VERIFY,CSWIFT_R_BAD_KEY_SIZE); goto err; default: { char tmpbuf[DECIMAL_SIZE(sw_status)+1]; CSWIFTerr(CSWIFT_F_CSWIFT_DSA_VERIFY,CSWIFT_R_REQUEST_FAILED); sprintf(tmpbuf, "%ld", sw_status); ERR_add_error_data(2, "CryptoSwift error number is ",tmpbuf); } goto err; } /* Prepare the argument and response */ arg[0].nbytes = dgst_len; arg[0].value = (unsigned char *)dgst; arg[1].nbytes = 40; arg[1].value = (unsigned char *)argument->d; memset(arg[1].value, 0, 40); BN_bn2bin(sig->r, arg[1].value + 20 - BN_num_bytes(sig->r)); BN_bn2bin(sig->s, arg[1].value + 40 - BN_num_bytes(sig->s)); res.nbytes = 4; /* unsigned long */ res.value = (unsigned char *)(&sig_result); /* Perform the operation */ sw_status = p_CSwift_SimpleRequest(hac, SW_CMD_DSS_VERIFY, arg, 2, &res, 1); if(sw_status != SW_OK) { char tmpbuf[DECIMAL_SIZE(sw_status)+1]; CSWIFTerr(CSWIFT_F_CSWIFT_DSA_VERIFY,CSWIFT_R_REQUEST_FAILED); sprintf(tmpbuf, "%ld", sw_status); ERR_add_error_data(2, "CryptoSwift error number is ",tmpbuf); goto err; } /* Convert the response */ to_return = ((sig_result == 0) ? 0 : 1); err: if(acquired) release_context(hac); if(ctx) { BN_CTX_end(ctx); BN_CTX_free(ctx); } return to_return; } #endif #ifndef OPENSSL_NO_DH /* This function is aliased to mod_exp (with the dh and mont dropped). */ static int cswift_mod_exp_dh(const DH *dh, BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx) { return cswift_mod_exp(r, a, p, m, ctx); } #endif /* Random bytes are good */ static int cswift_rand_bytes(unsigned char *buf, int num) { SW_CONTEXT_HANDLE hac; SW_STATUS swrc; SW_LARGENUMBER largenum; int acquired = 0; int to_return = 0; /* assume failure */ unsigned char buf32[1024]; if (!get_context(&hac)) { CSWIFTerr(CSWIFT_F_CSWIFT_RAND_BYTES, CSWIFT_R_UNIT_FAILURE); goto err; } acquired = 1; /************************************************************************/ /* 04/02/2003 */ /* Modified by Frederic Giudicelli (deny-all.com) to overcome the */ /* limitation of cswift with values not a multiple of 32 */ /************************************************************************/ while(num >= (int)sizeof(buf32)) { largenum.value = buf; largenum.nbytes = sizeof(buf32); /* tell CryptoSwift how many bytes we want and where we want it. * Note: - CryptoSwift cannot do more than 4096 bytes at a time. * - CryptoSwift can only do multiple of 32-bits. */ swrc = p_CSwift_SimpleRequest(hac, SW_CMD_RAND, NULL, 0, &largenum, 1); if (swrc != SW_OK) { char tmpbuf[20]; CSWIFTerr(CSWIFT_F_CSWIFT_RAND_BYTES, CSWIFT_R_REQUEST_FAILED); sprintf(tmpbuf, "%ld", swrc); ERR_add_error_data(2, "CryptoSwift error number is ", tmpbuf); goto err; } buf += sizeof(buf32); num -= sizeof(buf32); } if(num) { largenum.nbytes = sizeof(buf32); largenum.value = buf32; swrc = p_CSwift_SimpleRequest(hac, SW_CMD_RAND, NULL, 0, &largenum, 1); if (swrc != SW_OK) { char tmpbuf[20]; CSWIFTerr(CSWIFT_F_CSWIFT_RAND_BYTES, CSWIFT_R_REQUEST_FAILED); sprintf(tmpbuf, "%ld", swrc); ERR_add_error_data(2, "CryptoSwift error number is ", tmpbuf); goto err; } memcpy(buf, largenum.value, num); } to_return = 1; /* success */ err: if (acquired) release_context(hac); return to_return; } static int cswift_rand_status(void) { return 1; } /* This stuff is needed if this ENGINE is being compiled into a self-contained * shared-library. */ #ifndef OPENSSL_NO_DYNAMIC_ENGINE static int bind_fn(ENGINE *e, const char *id) { if(id && (strcmp(id, engine_cswift_id) != 0)) return 0; if(!bind_helper(e)) return 0; return 1; } IMPLEMENT_DYNAMIC_CHECK_FN() IMPLEMENT_DYNAMIC_BIND_FN(bind_fn) #endif /* OPENSSL_NO_DYNAMIC_ENGINE */ #endif /* !OPENSSL_NO_HW_CSWIFT */ #endif /* !OPENSSL_NO_HW */