/* * pthread_mutex_lock.c * * Description: * This translation unit implements mutual exclusion (mutex) primitives. * * -------------------------------------------------------------------------- * * Pthreads-win32 - POSIX Threads Library for Win32 * Copyright(C) 1998 John E. Bossom * Copyright(C) 1999,2005 Pthreads-win32 contributors * * Contact Email: rpj@callisto.canberra.edu.au * * The current list of contributors is contained * in the file CONTRIBUTORS included with the source * code distribution. The list can also be seen at the * following World Wide Web location: * http://sources.redhat.com/pthreads-win32/contributors.html * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library in the file COPYING.LIB; * if not, write to the Free Software Foundation, Inc., * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA */ #ifndef _UWIN //# include <process.h> #endif #include "pthread.h" #include "implement.h" int pthread_mutex_lock (pthread_mutex_t * mutex) { int result = 0; pthread_mutex_t mx; /* * Let the system deal with invalid pointers. */ if (*mutex == NULL) { return EINVAL; } /* * We do a quick check to see if we need to do more work * to initialise a static mutex. We check * again inside the guarded section of ptw32_mutex_check_need_init() * to avoid race conditions. */ if (*mutex >= PTHREAD_ERRORCHECK_MUTEX_INITIALIZER) { if ((result = ptw32_mutex_check_need_init (mutex)) != 0) { return (result); } } mx = *mutex; if (mx->kind == PTHREAD_MUTEX_NORMAL) { if ((LONG) PTW32_INTERLOCKED_EXCHANGE( (LPLONG) &mx->lock_idx, (LONG) 1) != 0) { while ((LONG) PTW32_INTERLOCKED_EXCHANGE( (LPLONG) &mx->lock_idx, (LONG) -1) != 0) { if (WAIT_OBJECT_0 != WaitForSingleObject (mx->event, INFINITE)) { result = EINVAL; break; } } } } else { pthread_t self = pthread_self(); if ((PTW32_INTERLOCKED_LONG) PTW32_INTERLOCKED_COMPARE_EXCHANGE( (PTW32_INTERLOCKED_LPLONG) &mx->lock_idx, (PTW32_INTERLOCKED_LONG) 1, (PTW32_INTERLOCKED_LONG) 0) == 0) { mx->recursive_count = 1; mx->ownerThread = self; } else { if (pthread_equal (mx->ownerThread, self)) { if (mx->kind == PTHREAD_MUTEX_RECURSIVE) { mx->recursive_count++; } else { result = EDEADLK; } } else { while ((LONG) PTW32_INTERLOCKED_EXCHANGE( (LPLONG) &mx->lock_idx, (LONG) -1) != 0) { if (WAIT_OBJECT_0 != WaitForSingleObject (mx->event, INFINITE)) { result = EINVAL; break; } } if (0 == result) { mx->recursive_count = 1; mx->ownerThread = self; } } } } return (result); }