/*
 * Zlib (RFC1950 / RFC1951) compression for PuTTY.
 * 
 * There will no doubt be criticism of my decision to reimplement
 * Zlib compression from scratch instead of using the existing zlib
 * code. People will cry `reinventing the wheel'; they'll claim
 * that the `fundamental basis of OSS' is code reuse; they'll want
 * to see a really good reason for me having chosen not to use the
 * existing code.
 * 
 * Well, here are my reasons. Firstly, I don't want to link the
 * whole of zlib into the PuTTY binary; PuTTY is justifiably proud
 * of its small size and I think zlib contains a lot of unnecessary
 * baggage for the kind of compression that SSH requires.
 * 
 * Secondly, I also don't like the alternative of using zlib.dll.
 * Another thing PuTTY is justifiably proud of is its ease of
 * installation, and the last thing I want to do is to start
 * mandating DLLs. Not only that, but there are two _kinds_ of
 * zlib.dll kicking around, one with C calling conventions on the
 * exported functions and another with WINAPI conventions, and
 * there would be a significant danger of getting the wrong one.
 * 
 * Thirdly, there seems to be a difference of opinion on the IETF
 * secsh mailing list about the correct way to round off a
 * compressed packet and start the next. In particular, there's
 * some talk of switching to a mechanism zlib isn't currently
 * capable of supporting (see below for an explanation). Given that
 * sort of uncertainty, I thought it might be better to have code
 * that will support even the zlib-incompatible worst case.
 * 
 * Fourthly, it's a _second implementation_. Second implementations
 * are fundamentally a Good Thing in standardisation efforts. The
 * difference of opinion mentioned above has arisen _precisely_
 * because there has been only one zlib implementation and
 * everybody has used it. I don't intend that this should happen
 * again.
 */

#include <stdlib.h>
#include <assert.h>

#ifdef ZLIB_STANDALONE

/*
 * This module also makes a handy zlib decoding tool for when
 * you're picking apart Zip files or PDFs or PNGs. If you compile
 * it with ZLIB_STANDALONE defined, it builds on its own and
 * becomes a command-line utility.
 * 
 * Therefore, here I provide a self-contained implementation of the
 * macros required from the rest of the PuTTY sources.
 */
#define snew(type) ( (type *) malloc(sizeof(type)) )
#define snewn(n, type) ( (type *) malloc((n) * sizeof(type)) )
#define sresize(x, n, type) ( (type *) realloc((x), (n) * sizeof(type)) )
#define sfree(x) ( free((x)) )

#else
#include "ssh.h"
#endif

#ifndef FALSE
#define FALSE 0
#define TRUE (!FALSE)
#endif

/* ----------------------------------------------------------------------
 * Basic LZ77 code. This bit is designed modularly, so it could be
 * ripped out and used in a different LZ77 compressor. Go to it,
 * and good luck :-)
 */

struct LZ77InternalContext;
struct LZ77Context {
    struct LZ77InternalContext *ictx;
    void *userdata;
    void (*literal) (struct LZ77Context * ctx, unsigned char c);
    void (*match) (struct LZ77Context * ctx, int distance, int len);
};

/*
 * Initialise the private fields of an LZ77Context. It's up to the
 * user to initialise the public fields.
 */
static int lz77_init(struct LZ77Context *ctx);

/*
 * Supply data to be compressed. Will update the private fields of
 * the LZ77Context, and will call literal() and match() to output.
 * If `compress' is FALSE, it will never emit a match, but will
 * instead call literal() for everything.
 */
static void lz77_compress(struct LZ77Context *ctx,
			  unsigned char *data, int len, int compress);

/*
 * Modifiable parameters.
 */
#define WINSIZE 32768		       /* window size. Must be power of 2! */
#define HASHMAX 2039		       /* one more than max hash value */
#define MAXMATCH 32		       /* how many matches we track */
#define HASHCHARS 3		       /* how many chars make a hash */

/*
 * This compressor takes a less slapdash approach than the
 * gzip/zlib one. Rather than allowing our hash chains to fall into
 * disuse near the far end, we keep them doubly linked so we can
 * _find_ the far end, and then every time we add a new byte to the
 * window (thus rolling round by one and removing the previous
 * byte), we can carefully remove the hash chain entry.
 */

#define INVALID -1		       /* invalid hash _and_ invalid offset */
struct WindowEntry {
    short next, prev;		       /* array indices within the window */
    short hashval;
};

struct HashEntry {
    short first;		       /* window index of first in chain */
};

struct Match {
    int distance, len;
};

struct LZ77InternalContext {
    struct WindowEntry win[WINSIZE];
    unsigned char data[WINSIZE];
    int winpos;
    struct HashEntry hashtab[HASHMAX];
    unsigned char pending[HASHCHARS];
    int npending;
};

static int lz77_hash(unsigned char *data)
{
    return (257 * data[0] + 263 * data[1] + 269 * data[2]) % HASHMAX;
}

static int lz77_init(struct LZ77Context *ctx)
{
    struct LZ77InternalContext *st;
    int i;

    st = snew(struct LZ77InternalContext);
    if (!st)
	return 0;

    ctx->ictx = st;

    for (i = 0; i < WINSIZE; i++)
	st->win[i].next = st->win[i].prev = st->win[i].hashval = INVALID;
    for (i = 0; i < HASHMAX; i++)
	st->hashtab[i].first = INVALID;
    st->winpos = 0;

    st->npending = 0;

    return 1;
}

static void lz77_advance(struct LZ77InternalContext *st,
			 unsigned char c, int hash)
{
    int off;

    /*
     * Remove the hash entry at winpos from the tail of its chain,
     * or empty the chain if it's the only thing on the chain.
     */
    if (st->win[st->winpos].prev != INVALID) {
	st->win[st->win[st->winpos].prev].next = INVALID;
    } else if (st->win[st->winpos].hashval != INVALID) {
	st->hashtab[st->win[st->winpos].hashval].first = INVALID;
    }

    /*
     * Create a new entry at winpos and add it to the head of its
     * hash chain.
     */
    st->win[st->winpos].hashval = hash;
    st->win[st->winpos].prev = INVALID;
    off = st->win[st->winpos].next = st->hashtab[hash].first;
    st->hashtab[hash].first = st->winpos;
    if (off != INVALID)
	st->win[off].prev = st->winpos;
    st->data[st->winpos] = c;

    /*
     * Advance the window pointer.
     */
    st->winpos = (st->winpos + 1) & (WINSIZE - 1);
}

#define CHARAT(k) ( (k)<0 ? st->data[(st->winpos+k)&(WINSIZE-1)] : data[k] )

static void lz77_compress(struct LZ77Context *ctx,
			  unsigned char *data, int len, int compress)
{
    struct LZ77InternalContext *st = ctx->ictx;
    int i, hash, distance, off, nmatch, matchlen, advance;
    struct Match defermatch, matches[MAXMATCH];
    int deferchr;

    /*
     * Add any pending characters from last time to the window. (We
     * might not be able to.)
     */
    for (i = 0; i < st->npending; i++) {
	unsigned char foo[HASHCHARS];
	int j;
	if (len + st->npending - i < HASHCHARS) {
	    /* Update the pending array. */
	    for (j = i; j < st->npending; j++)
		st->pending[j - i] = st->pending[j];
	    break;
	}
	for (j = 0; j < HASHCHARS; j++)
	    foo[j] = (i + j < st->npending ? st->pending[i + j] :
		      data[i + j - st->npending]);
	lz77_advance(st, foo[0], lz77_hash(foo));
    }
    st->npending -= i;

    defermatch.distance = 0; /* appease compiler */
    defermatch.len = 0;
    deferchr = '\0';
    while (len > 0) {

	/* Don't even look for a match, if we're not compressing. */
	if (compress && len >= HASHCHARS) {
	    /*
	     * Hash the next few characters.
	     */
	    hash = lz77_hash(data);

	    /*
	     * Look the hash up in the corresponding hash chain and see
	     * what we can find.
	     */
	    nmatch = 0;
	    for (off = st->hashtab[hash].first;
		 off != INVALID; off = st->win[off].next) {
		/* distance = 1       if off == st->winpos-1 */
		/* distance = WINSIZE if off == st->winpos   */
		distance =
		    WINSIZE - (off + WINSIZE - st->winpos) % WINSIZE;
		for (i = 0; i < HASHCHARS; i++)
		    if (CHARAT(i) != CHARAT(i - distance))
			break;
		if (i == HASHCHARS) {
		    matches[nmatch].distance = distance;
		    matches[nmatch].len = 3;
		    if (++nmatch >= MAXMATCH)
			break;
		}
	    }
	} else {
	    nmatch = 0;
	    hash = INVALID;
	}

	if (nmatch > 0) {
	    /*
	     * We've now filled up matches[] with nmatch potential
	     * matches. Follow them down to find the longest. (We
	     * assume here that it's always worth favouring a
	     * longer match over a shorter one.)
	     */
	    matchlen = HASHCHARS;
	    while (matchlen < len) {
		int j;
		for (i = j = 0; i < nmatch; i++) {
		    if (CHARAT(matchlen) ==
			CHARAT(matchlen - matches[i].distance)) {
			matches[j++] = matches[i];
		    }
		}
		if (j == 0)
		    break;
		matchlen++;
		nmatch = j;
	    }

	    /*
	     * We've now got all the longest matches. We favour the
	     * shorter distances, which means we go with matches[0].
	     * So see if we want to defer it or throw it away.
	     */
	    matches[0].len = matchlen;
	    if (defermatch.len > 0) {
		if (matches[0].len > defermatch.len + 1) {
		    /* We have a better match. Emit the deferred char,
		     * and defer this match. */
		    ctx->literal(ctx, (unsigned char) deferchr);
		    defermatch = matches[0];
		    deferchr = data[0];
		    advance = 1;
		} else {
		    /* We don't have a better match. Do the deferred one. */
		    ctx->match(ctx, defermatch.distance, defermatch.len);
		    advance = defermatch.len - 1;
		    defermatch.len = 0;
		}
	    } else {
		/* There was no deferred match. Defer this one. */
		defermatch = matches[0];
		deferchr = data[0];
		advance = 1;
	    }
	} else {
	    /*
	     * We found no matches. Emit the deferred match, if
	     * any; otherwise emit a literal.
	     */
	    if (defermatch.len > 0) {
		ctx->match(ctx, defermatch.distance, defermatch.len);
		advance = defermatch.len - 1;
		defermatch.len = 0;
	    } else {
		ctx->literal(ctx, data[0]);
		advance = 1;
	    }
	}

	/*
	 * Now advance the position by `advance' characters,
	 * keeping the window and hash chains consistent.
	 */
	while (advance > 0) {
	    if (len >= HASHCHARS) {
		lz77_advance(st, *data, lz77_hash(data));
	    } else {
		st->pending[st->npending++] = *data;
	    }
	    data++;
	    len--;
	    advance--;
	}
    }
}

/* ----------------------------------------------------------------------
 * Zlib compression. We always use the static Huffman tree option.
 * Mostly this is because it's hard to scan a block in advance to
 * work out better trees; dynamic trees are great when you're
 * compressing a large file under no significant time constraint,
 * but when you're compressing little bits in real time, things get
 * hairier.
 * 
 * I suppose it's possible that I could compute Huffman trees based
 * on the frequencies in the _previous_ block, as a sort of
 * heuristic, but I'm not confident that the gain would balance out
 * having to transmit the trees.
 */

struct Outbuf {
    unsigned char *outbuf;
    int outlen, outsize;
    unsigned long outbits;
    int noutbits;
    int firstblock;
    int comp_disabled;
};

static void outbits(struct Outbuf *out, unsigned long bits, int nbits)
{
    assert(out->noutbits + nbits <= 32);
    out->outbits |= bits << out->noutbits;
    out->noutbits += nbits;
    while (out->noutbits >= 8) {
	if (out->outlen >= out->outsize) {
	    out->outsize = out->outlen + 64;
	    out->outbuf = sresize(out->outbuf, out->outsize, unsigned char);
	}
	out->outbuf[out->outlen++] = (unsigned char) (out->outbits & 0xFF);
	out->outbits >>= 8;
	out->noutbits -= 8;
    }
}

static const unsigned char mirrorbytes[256] = {
    0x00, 0x80, 0x40, 0xc0, 0x20, 0xa0, 0x60, 0xe0,
    0x10, 0x90, 0x50, 0xd0, 0x30, 0xb0, 0x70, 0xf0,
    0x08, 0x88, 0x48, 0xc8, 0x28, 0xa8, 0x68, 0xe8,
    0x18, 0x98, 0x58, 0xd8, 0x38, 0xb8, 0x78, 0xf8,
    0x04, 0x84, 0x44, 0xc4, 0x24, 0xa4, 0x64, 0xe4,
    0x14, 0x94, 0x54, 0xd4, 0x34, 0xb4, 0x74, 0xf4,
    0x0c, 0x8c, 0x4c, 0xcc, 0x2c, 0xac, 0x6c, 0xec,
    0x1c, 0x9c, 0x5c, 0xdc, 0x3c, 0xbc, 0x7c, 0xfc,
    0x02, 0x82, 0x42, 0xc2, 0x22, 0xa2, 0x62, 0xe2,
    0x12, 0x92, 0x52, 0xd2, 0x32, 0xb2, 0x72, 0xf2,
    0x0a, 0x8a, 0x4a, 0xca, 0x2a, 0xaa, 0x6a, 0xea,
    0x1a, 0x9a, 0x5a, 0xda, 0x3a, 0xba, 0x7a, 0xfa,
    0x06, 0x86, 0x46, 0xc6, 0x26, 0xa6, 0x66, 0xe6,
    0x16, 0x96, 0x56, 0xd6, 0x36, 0xb6, 0x76, 0xf6,
    0x0e, 0x8e, 0x4e, 0xce, 0x2e, 0xae, 0x6e, 0xee,
    0x1e, 0x9e, 0x5e, 0xde, 0x3e, 0xbe, 0x7e, 0xfe,
    0x01, 0x81, 0x41, 0xc1, 0x21, 0xa1, 0x61, 0xe1,
    0x11, 0x91, 0x51, 0xd1, 0x31, 0xb1, 0x71, 0xf1,
    0x09, 0x89, 0x49, 0xc9, 0x29, 0xa9, 0x69, 0xe9,
    0x19, 0x99, 0x59, 0xd9, 0x39, 0xb9, 0x79, 0xf9,
    0x05, 0x85, 0x45, 0xc5, 0x25, 0xa5, 0x65, 0xe5,
    0x15, 0x95, 0x55, 0xd5, 0x35, 0xb5, 0x75, 0xf5,
    0x0d, 0x8d, 0x4d, 0xcd, 0x2d, 0xad, 0x6d, 0xed,
    0x1d, 0x9d, 0x5d, 0xdd, 0x3d, 0xbd, 0x7d, 0xfd,
    0x03, 0x83, 0x43, 0xc3, 0x23, 0xa3, 0x63, 0xe3,
    0x13, 0x93, 0x53, 0xd3, 0x33, 0xb3, 0x73, 0xf3,
    0x0b, 0x8b, 0x4b, 0xcb, 0x2b, 0xab, 0x6b, 0xeb,
    0x1b, 0x9b, 0x5b, 0xdb, 0x3b, 0xbb, 0x7b, 0xfb,
    0x07, 0x87, 0x47, 0xc7, 0x27, 0xa7, 0x67, 0xe7,
    0x17, 0x97, 0x57, 0xd7, 0x37, 0xb7, 0x77, 0xf7,
    0x0f, 0x8f, 0x4f, 0xcf, 0x2f, 0xaf, 0x6f, 0xef,
    0x1f, 0x9f, 0x5f, 0xdf, 0x3f, 0xbf, 0x7f, 0xff,
};

typedef struct {
    short code, extrabits;
    int min, max;
} coderecord;

static const coderecord lencodes[] = {
    {257, 0, 3, 3},
    {258, 0, 4, 4},
    {259, 0, 5, 5},
    {260, 0, 6, 6},
    {261, 0, 7, 7},
    {262, 0, 8, 8},
    {263, 0, 9, 9},
    {264, 0, 10, 10},
    {265, 1, 11, 12},
    {266, 1, 13, 14},
    {267, 1, 15, 16},
    {268, 1, 17, 18},
    {269, 2, 19, 22},
    {270, 2, 23, 26},
    {271, 2, 27, 30},
    {272, 2, 31, 34},
    {273, 3, 35, 42},
    {274, 3, 43, 50},
    {275, 3, 51, 58},
    {276, 3, 59, 66},
    {277, 4, 67, 82},
    {278, 4, 83, 98},
    {279, 4, 99, 114},
    {280, 4, 115, 130},
    {281, 5, 131, 162},
    {282, 5, 163, 194},
    {283, 5, 195, 226},
    {284, 5, 227, 257},
    {285, 0, 258, 258},
};

static const coderecord distcodes[] = {
    {0, 0, 1, 1},
    {1, 0, 2, 2},
    {2, 0, 3, 3},
    {3, 0, 4, 4},
    {4, 1, 5, 6},
    {5, 1, 7, 8},
    {6, 2, 9, 12},
    {7, 2, 13, 16},
    {8, 3, 17, 24},
    {9, 3, 25, 32},
    {10, 4, 33, 48},
    {11, 4, 49, 64},
    {12, 5, 65, 96},
    {13, 5, 97, 128},
    {14, 6, 129, 192},
    {15, 6, 193, 256},
    {16, 7, 257, 384},
    {17, 7, 385, 512},
    {18, 8, 513, 768},
    {19, 8, 769, 1024},
    {20, 9, 1025, 1536},
    {21, 9, 1537, 2048},
    {22, 10, 2049, 3072},
    {23, 10, 3073, 4096},
    {24, 11, 4097, 6144},
    {25, 11, 6145, 8192},
    {26, 12, 8193, 12288},
    {27, 12, 12289, 16384},
    {28, 13, 16385, 24576},
    {29, 13, 24577, 32768},
};

static void zlib_literal(struct LZ77Context *ectx, unsigned char c)
{
    struct Outbuf *out = (struct Outbuf *) ectx->userdata;

    if (out->comp_disabled) {
	/*
	 * We're in an uncompressed block, so just output the byte.
	 */
	outbits(out, c, 8);
	return;
    }

    if (c <= 143) {
	/* 0 through 143 are 8 bits long starting at 00110000. */
	outbits(out, mirrorbytes[0x30 + c], 8);
    } else {
	/* 144 through 255 are 9 bits long starting at 110010000. */
	outbits(out, 1 + 2 * mirrorbytes[0x90 - 144 + c], 9);
    }
}

static void zlib_match(struct LZ77Context *ectx, int distance, int len)
{
    const coderecord *d, *l;
    int i, j, k;
    struct Outbuf *out = (struct Outbuf *) ectx->userdata;

    assert(!out->comp_disabled);

    while (len > 0) {
	int thislen;

	/*
	 * We can transmit matches of lengths 3 through 258
	 * inclusive. So if len exceeds 258, we must transmit in
	 * several steps, with 258 or less in each step.
	 * 
	 * Specifically: if len >= 261, we can transmit 258 and be
	 * sure of having at least 3 left for the next step. And if
	 * len <= 258, we can just transmit len. But if len == 259
	 * or 260, we must transmit len-3.
	 */
	thislen = (len > 260 ? 258 : len <= 258 ? len : len - 3);
	len -= thislen;

	/*
	 * Binary-search to find which length code we're
	 * transmitting.
	 */
	i = -1;
	j = sizeof(lencodes) / sizeof(*lencodes);
	while (1) {
	    assert(j - i >= 2);
	    k = (j + i) / 2;
	    if (thislen < lencodes[k].min)
		j = k;
	    else if (thislen > lencodes[k].max)
		i = k;
	    else {
		l = &lencodes[k];
		break;		       /* found it! */
	    }
	}

	/*
	 * Transmit the length code. 256-279 are seven bits
	 * starting at 0000000; 280-287 are eight bits starting at
	 * 11000000.
	 */
	if (l->code <= 279) {
	    outbits(out, mirrorbytes[(l->code - 256) * 2], 7);
	} else {
	    outbits(out, mirrorbytes[0xc0 - 280 + l->code], 8);
	}

	/*
	 * Transmit the extra bits.
	 */
	if (l->extrabits)
	    outbits(out, thislen - l->min, l->extrabits);

	/*
	 * Binary-search to find which distance code we're
	 * transmitting.
	 */
	i = -1;
	j = sizeof(distcodes) / sizeof(*distcodes);
	while (1) {
	    assert(j - i >= 2);
	    k = (j + i) / 2;
	    if (distance < distcodes[k].min)
		j = k;
	    else if (distance > distcodes[k].max)
		i = k;
	    else {
		d = &distcodes[k];
		break;		       /* found it! */
	    }
	}

	/*
	 * Transmit the distance code. Five bits starting at 00000.
	 */
	outbits(out, mirrorbytes[d->code * 8], 5);

	/*
	 * Transmit the extra bits.
	 */
	if (d->extrabits)
	    outbits(out, distance - d->min, d->extrabits);
    }
}

void *zlib_compress_init(void)
{
    struct Outbuf *out;
    struct LZ77Context *ectx = snew(struct LZ77Context);

    lz77_init(ectx);
    ectx->literal = zlib_literal;
    ectx->match = zlib_match;

    out = snew(struct Outbuf);
    out->outbits = out->noutbits = 0;
    out->firstblock = 1;
    out->comp_disabled = FALSE;
    ectx->userdata = out;

    return ectx;
}

void zlib_compress_cleanup(void *handle)
{
    struct LZ77Context *ectx = (struct LZ77Context *)handle;
    sfree(ectx->userdata);
    sfree(ectx->ictx);
    sfree(ectx);
}

/*
 * Turn off actual LZ77 analysis for one block, to facilitate
 * construction of a precise-length IGNORE packet. Returns the
 * length adjustment (which is only valid for packets < 65536
 * bytes, but that seems reasonable enough).
 */
static int zlib_disable_compression(void *handle)
{
    struct LZ77Context *ectx = (struct LZ77Context *)handle;
    struct Outbuf *out = (struct Outbuf *) ectx->userdata;
    int n;

    out->comp_disabled = TRUE;

    n = 0;
    /*
     * If this is the first block, we will start by outputting two
     * header bytes, and then three bits to begin an uncompressed
     * block. This will cost three bytes (because we will start on
     * a byte boundary, this is certain).
     */
    if (out->firstblock) {
	n = 3;
    } else {
	/*
	 * Otherwise, we will output seven bits to close the
	 * previous static block, and _then_ three bits to begin an
	 * uncompressed block, and then flush the current byte.
	 * This may cost two bytes or three, depending on noutbits.
	 */
	n += (out->noutbits + 10) / 8;
    }

    /*
     * Now we output four bytes for the length / ~length pair in
     * the uncompressed block.
     */
    n += 4;

    return n;
}

int zlib_compress_block(void *handle, unsigned char *block, int len,
			unsigned char **outblock, int *outlen)
{
    struct LZ77Context *ectx = (struct LZ77Context *)handle;
    struct Outbuf *out = (struct Outbuf *) ectx->userdata;
    int in_block;

    out->outbuf = NULL;
    out->outlen = out->outsize = 0;

    /*
     * If this is the first block, output the Zlib (RFC1950) header
     * bytes 78 9C. (Deflate compression, 32K window size, default
     * algorithm.)
     */
    if (out->firstblock) {
	outbits(out, 0x9C78, 16);
	out->firstblock = 0;

	in_block = FALSE;
    } else
	in_block = TRUE;

    if (out->comp_disabled) {
	if (in_block)
	    outbits(out, 0, 7);	       /* close static block */

	while (len > 0) {
	    int blen = (len < 65535 ? len : 65535);

	    /*
	     * Start a Deflate (RFC1951) uncompressed block. We
	     * transmit a zero bit (BFINAL=0), followed by two more
	     * zero bits (BTYPE=00). Of course these are in the
	     * wrong order (00 0), not that it matters.
	     */
	    outbits(out, 0, 3);

	    /*
	     * Output zero bits to align to a byte boundary.
	     */
	    if (out->noutbits)
		outbits(out, 0, 8 - out->noutbits);

	    /*
	     * Output the block length, and then its one's
	     * complement. They're little-endian, so all we need to
	     * do is pass them straight to outbits() with bit count
	     * 16.
	     */
	    outbits(out, blen, 16);
	    outbits(out, blen ^ 0xFFFF, 16);

	    /*
	     * Do the `compression': we need to pass the data to
	     * lz77_compress so that it will be taken into account
	     * for subsequent (distance,length) pairs. But
	     * lz77_compress is passed FALSE, which means it won't
	     * actually find (or even look for) any matches; so
	     * every character will be passed straight to
	     * zlib_literal which will spot out->comp_disabled and
	     * emit in the uncompressed format.
	     */
	    lz77_compress(ectx, block, blen, FALSE);

	    len -= blen;
	    block += blen;
	}
	outbits(out, 2, 3);	       /* open new block */
    } else {
	if (!in_block) {
	    /*
	     * Start a Deflate (RFC1951) fixed-trees block. We
	     * transmit a zero bit (BFINAL=0), followed by a zero
	     * bit and a one bit (BTYPE=01). Of course these are in
	     * the wrong order (01 0).
	     */
	    outbits(out, 2, 3);
	}

	/*
	 * Do the compression.
	 */
	lz77_compress(ectx, block, len, TRUE);

	/*
	 * End the block (by transmitting code 256, which is
	 * 0000000 in fixed-tree mode), and transmit some empty
	 * blocks to ensure we have emitted the byte containing the
	 * last piece of genuine data. There are three ways we can
	 * do this:
	 *
	 *  - Minimal flush. Output end-of-block and then open a
	 *    new static block. This takes 9 bits, which is
	 *    guaranteed to flush out the last genuine code in the
	 *    closed block; but allegedly zlib can't handle it.
	 *
	 *  - Zlib partial flush. Output EOB, open and close an
	 *    empty static block, and _then_ open the new block.
	 *    This is the best zlib can handle.
	 *
	 *  - Zlib sync flush. Output EOB, then an empty
	 *    _uncompressed_ block (000, then sync to byte
	 *    boundary, then send bytes 00 00 FF FF). Then open the
	 *    new block.
	 *
	 * For the moment, we will use Zlib partial flush.
	 */
	outbits(out, 0, 7);	       /* close block */
	outbits(out, 2, 3 + 7);	       /* empty static block */
	outbits(out, 2, 3);	       /* open new block */
    }

    out->comp_disabled = FALSE;

    *outblock = out->outbuf;
    *outlen = out->outlen;

    return 1;
}

/* ----------------------------------------------------------------------
 * Zlib decompression. Of course, even though our compressor always
 * uses static trees, our _decompressor_ has to be capable of
 * handling dynamic trees if it sees them.
 */

/*
 * The way we work the Huffman decode is to have a table lookup on
 * the first N bits of the input stream (in the order they arrive,
 * of course, i.e. the first bit of the Huffman code is in bit 0).
 * Each table entry lists the number of bits to consume, plus
 * either an output code or a pointer to a secondary table.
 */
struct zlib_table;
struct zlib_tableentry;

struct zlib_tableentry {
    unsigned char nbits;
    short code;
    struct zlib_table *nexttable;
};

struct zlib_table {
    int mask;			       /* mask applied to input bit stream */
    struct zlib_tableentry *table;
};

#define MAXCODELEN 16
#define MAXSYMS 288

/*
 * Build a single-level decode table for elements
 * [minlength,maxlength) of the provided code/length tables, and
 * recurse to build subtables.
 */
static struct zlib_table *zlib_mkonetab(int *codes, unsigned char *lengths,
					int nsyms,
					int pfx, int pfxbits, int bits)
{
    struct zlib_table *tab = snew(struct zlib_table);
    int pfxmask = (1 << pfxbits) - 1;
    int nbits, i, j, code;

    tab->table = snewn(1 << bits, struct zlib_tableentry);
    tab->mask = (1 << bits) - 1;

    for (code = 0; code <= tab->mask; code++) {
	tab->table[code].code = -1;
	tab->table[code].nbits = 0;
	tab->table[code].nexttable = NULL;
    }

    for (i = 0; i < nsyms; i++) {
	if (lengths[i] <= pfxbits || (codes[i] & pfxmask) != pfx)
	    continue;
	code = (codes[i] >> pfxbits) & tab->mask;
	for (j = code; j <= tab->mask; j += 1 << (lengths[i] - pfxbits)) {
	    tab->table[j].code = i;
	    nbits = lengths[i] - pfxbits;
	    if (tab->table[j].nbits < nbits)
		tab->table[j].nbits = nbits;
	}
    }
    for (code = 0; code <= tab->mask; code++) {
	if (tab->table[code].nbits <= bits)
	    continue;
	/* Generate a subtable. */
	tab->table[code].code = -1;
	nbits = tab->table[code].nbits - bits;
	if (nbits > 7)
	    nbits = 7;
	tab->table[code].nbits = bits;
	tab->table[code].nexttable = zlib_mkonetab(codes, lengths, nsyms,
						   pfx | (code << pfxbits),
						   pfxbits + bits, nbits);
    }

    return tab;
}

/*
 * Build a decode table, given a set of Huffman tree lengths.
 */
static struct zlib_table *zlib_mktable(unsigned char *lengths,
				       int nlengths)
{
    int count[MAXCODELEN], startcode[MAXCODELEN], codes[MAXSYMS];
    int code, maxlen;
    int i, j;

    /* Count the codes of each length. */
    maxlen = 0;
    for (i = 1; i < MAXCODELEN; i++)
	count[i] = 0;
    for (i = 0; i < nlengths; i++) {
	count[lengths[i]]++;
	if (maxlen < lengths[i])
	    maxlen = lengths[i];
    }
    /* Determine the starting code for each length block. */
    code = 0;
    for (i = 1; i < MAXCODELEN; i++) {
	startcode[i] = code;
	code += count[i];
	code <<= 1;
    }
    /* Determine the code for each symbol. Mirrored, of course. */
    for (i = 0; i < nlengths; i++) {
	code = startcode[lengths[i]]++;
	codes[i] = 0;
	for (j = 0; j < lengths[i]; j++) {
	    codes[i] = (codes[i] << 1) | (code & 1);
	    code >>= 1;
	}
    }

    /*
     * Now we have the complete list of Huffman codes. Build a
     * table.
     */
    return zlib_mkonetab(codes, lengths, nlengths, 0, 0,
			 maxlen < 9 ? maxlen : 9);
}

static int zlib_freetable(struct zlib_table **ztab)
{
    struct zlib_table *tab;
    int code;

    if (ztab == NULL)
	return -1;

    if (*ztab == NULL)
	return 0;

    tab = *ztab;

    for (code = 0; code <= tab->mask; code++)
	if (tab->table[code].nexttable != NULL)
	    zlib_freetable(&tab->table[code].nexttable);

    sfree(tab->table);
    tab->table = NULL;

    sfree(tab);
    *ztab = NULL;

    return (0);
}

struct zlib_decompress_ctx {
    struct zlib_table *staticlentable, *staticdisttable;
    struct zlib_table *currlentable, *currdisttable, *lenlentable;
    enum {
	START, OUTSIDEBLK,
	TREES_HDR, TREES_LENLEN, TREES_LEN, TREES_LENREP,
	INBLK, GOTLENSYM, GOTLEN, GOTDISTSYM,
	UNCOMP_LEN, UNCOMP_NLEN, UNCOMP_DATA
    } state;
    int sym, hlit, hdist, hclen, lenptr, lenextrabits, lenaddon, len,
	lenrep;
    int uncomplen;
    unsigned char lenlen[19];
    unsigned char lengths[286 + 32];
    unsigned long bits;
    int nbits;
    unsigned char window[WINSIZE];
    int winpos;
    unsigned char *outblk;
    int outlen, outsize;
};

void *zlib_decompress_init(void)
{
    struct zlib_decompress_ctx *dctx = snew(struct zlib_decompress_ctx);
    unsigned char lengths[288];

    memset(lengths, 8, 144);
    memset(lengths + 144, 9, 256 - 144);
    memset(lengths + 256, 7, 280 - 256);
    memset(lengths + 280, 8, 288 - 280);
    dctx->staticlentable = zlib_mktable(lengths, 288);
    memset(lengths, 5, 32);
    dctx->staticdisttable = zlib_mktable(lengths, 32);
    dctx->state = START;		       /* even before header */
    dctx->currlentable = dctx->currdisttable = dctx->lenlentable = NULL;
    dctx->bits = 0;
    dctx->nbits = 0;
    dctx->winpos = 0;

    return dctx;
}

void zlib_decompress_cleanup(void *handle)
{
    struct zlib_decompress_ctx *dctx = (struct zlib_decompress_ctx *)handle;

    if (dctx->currlentable && dctx->currlentable != dctx->staticlentable)
	zlib_freetable(&dctx->currlentable);
    if (dctx->currdisttable && dctx->currdisttable != dctx->staticdisttable)
	zlib_freetable(&dctx->currdisttable);
    if (dctx->lenlentable)
	zlib_freetable(&dctx->lenlentable);
    zlib_freetable(&dctx->staticlentable);
    zlib_freetable(&dctx->staticdisttable);
    sfree(dctx);
}

static int zlib_huflookup(unsigned long *bitsp, int *nbitsp,
		   struct zlib_table *tab)
{
    unsigned long bits = *bitsp;
    int nbits = *nbitsp;
    while (1) {
	struct zlib_tableentry *ent;
	ent = &tab->table[bits & tab->mask];
	if (ent->nbits > nbits)
	    return -1;		       /* not enough data */
	bits >>= ent->nbits;
	nbits -= ent->nbits;
	if (ent->code == -1)
	    tab = ent->nexttable;
	else {
	    *bitsp = bits;
	    *nbitsp = nbits;
	    return ent->code;
	}

	if (!tab) {
	    /*
	     * There was a missing entry in the table, presumably
	     * due to an invalid Huffman table description, and the
	     * subsequent data has attempted to use the missing
	     * entry. Return a decoding failure.
	     */
	    return -2;
	}
    }
}

static void zlib_emit_char(struct zlib_decompress_ctx *dctx, int c)
{
    dctx->window[dctx->winpos] = c;
    dctx->winpos = (dctx->winpos + 1) & (WINSIZE - 1);
    if (dctx->outlen >= dctx->outsize) {
	dctx->outsize = dctx->outlen + 512;
	dctx->outblk = sresize(dctx->outblk, dctx->outsize, unsigned char);
    }
    dctx->outblk[dctx->outlen++] = c;
}

#define EATBITS(n) ( dctx->nbits -= (n), dctx->bits >>= (n) )

int zlib_decompress_block(void *handle, unsigned char *block, int len,
			  unsigned char **outblock, int *outlen)
{
    struct zlib_decompress_ctx *dctx = (struct zlib_decompress_ctx *)handle;
    const coderecord *rec;
    int code, blktype, rep, dist, nlen, header;
    static const unsigned char lenlenmap[] = {
	16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15
    };

    dctx->outblk = snewn(256, unsigned char);
    dctx->outsize = 256;
    dctx->outlen = 0;

    while (len > 0 || dctx->nbits > 0) {
	while (dctx->nbits < 24 && len > 0) {
	    dctx->bits |= (*block++) << dctx->nbits;
	    dctx->nbits += 8;
	    len--;
	}
	switch (dctx->state) {
	  case START:
	    /* Expect 16-bit zlib header. */
	    if (dctx->nbits < 16)
		goto finished;	       /* done all we can */

            /*
             * The header is stored as a big-endian 16-bit integer,
             * in contrast to the general little-endian policy in
             * the rest of the format :-(
             */
            header = (((dctx->bits & 0xFF00) >> 8) |
                      ((dctx->bits & 0x00FF) << 8));
            EATBITS(16);

            /*
             * Check the header:
             *
             *  - bits 8-11 should be 1000 (Deflate/RFC1951)
             *  - bits 12-15 should be at most 0111 (window size)
             *  - bit 5 should be zero (no dictionary present)
             *  - we don't care about bits 6-7 (compression rate)
             *  - bits 0-4 should be set up to make the whole thing
             *    a multiple of 31 (checksum).
             */
            if ((header & 0x0F00) != 0x0800 ||
                (header & 0xF000) >  0x7000 ||
                (header & 0x0020) != 0x0000 ||
                (header % 31) != 0)
                goto decode_error;

	    dctx->state = OUTSIDEBLK;
	    break;
	  case OUTSIDEBLK:
	    /* Expect 3-bit block header. */
	    if (dctx->nbits < 3)
		goto finished;	       /* done all we can */
	    EATBITS(1);
	    blktype = dctx->bits & 3;
	    EATBITS(2);
	    if (blktype == 0) {
		int to_eat = dctx->nbits & 7;
		dctx->state = UNCOMP_LEN;
		EATBITS(to_eat);       /* align to byte boundary */
	    } else if (blktype == 1) {
		dctx->currlentable = dctx->staticlentable;
		dctx->currdisttable = dctx->staticdisttable;
		dctx->state = INBLK;
	    } else if (blktype == 2) {
		dctx->state = TREES_HDR;
	    }
	    break;
	  case TREES_HDR:
	    /*
	     * Dynamic block header. Five bits of HLIT, five of
	     * HDIST, four of HCLEN.
	     */
	    if (dctx->nbits < 5 + 5 + 4)
		goto finished;	       /* done all we can */
	    dctx->hlit = 257 + (dctx->bits & 31);
	    EATBITS(5);
	    dctx->hdist = 1 + (dctx->bits & 31);
	    EATBITS(5);
	    dctx->hclen = 4 + (dctx->bits & 15);
	    EATBITS(4);
	    dctx->lenptr = 0;
	    dctx->state = TREES_LENLEN;
	    memset(dctx->lenlen, 0, sizeof(dctx->lenlen));
	    break;
	  case TREES_LENLEN:
	    if (dctx->nbits < 3)
		goto finished;
	    while (dctx->lenptr < dctx->hclen && dctx->nbits >= 3) {
		dctx->lenlen[lenlenmap[dctx->lenptr++]] =
		    (unsigned char) (dctx->bits & 7);
		EATBITS(3);
	    }
	    if (dctx->lenptr == dctx->hclen) {
		dctx->lenlentable = zlib_mktable(dctx->lenlen, 19);
		dctx->state = TREES_LEN;
		dctx->lenptr = 0;
	    }
	    break;
	  case TREES_LEN:
	    if (dctx->lenptr >= dctx->hlit + dctx->hdist) {
		dctx->currlentable = zlib_mktable(dctx->lengths, dctx->hlit);
		dctx->currdisttable = zlib_mktable(dctx->lengths + dctx->hlit,
						  dctx->hdist);
		zlib_freetable(&dctx->lenlentable);
		dctx->lenlentable = NULL;
		dctx->state = INBLK;
		break;
	    }
	    code =
		zlib_huflookup(&dctx->bits, &dctx->nbits, dctx->lenlentable);
	    if (code == -1)
		goto finished;
	    if (code == -2)
		goto decode_error;
	    if (code < 16)
		dctx->lengths[dctx->lenptr++] = code;
	    else {
		dctx->lenextrabits = (code == 16 ? 2 : code == 17 ? 3 : 7);
		dctx->lenaddon = (code == 18 ? 11 : 3);
		dctx->lenrep = (code == 16 && dctx->lenptr > 0 ?
			       dctx->lengths[dctx->lenptr - 1] : 0);
		dctx->state = TREES_LENREP;
	    }
	    break;
	  case TREES_LENREP:
	    if (dctx->nbits < dctx->lenextrabits)
		goto finished;
	    rep =
		dctx->lenaddon +
		(dctx->bits & ((1 << dctx->lenextrabits) - 1));
	    EATBITS(dctx->lenextrabits);
	    while (rep > 0 && dctx->lenptr < dctx->hlit + dctx->hdist) {
		dctx->lengths[dctx->lenptr] = dctx->lenrep;
		dctx->lenptr++;
		rep--;
	    }
	    dctx->state = TREES_LEN;
	    break;
	  case INBLK:
	    code =
		zlib_huflookup(&dctx->bits, &dctx->nbits, dctx->currlentable);
	    if (code == -1)
		goto finished;
	    if (code == -2)
		goto decode_error;
	    if (code < 256)
		zlib_emit_char(dctx, code);
	    else if (code == 256) {
		dctx->state = OUTSIDEBLK;
		if (dctx->currlentable != dctx->staticlentable) {
		    zlib_freetable(&dctx->currlentable);
		    dctx->currlentable = NULL;
		}
		if (dctx->currdisttable != dctx->staticdisttable) {
		    zlib_freetable(&dctx->currdisttable);
		    dctx->currdisttable = NULL;
		}
	    } else if (code < 286) {   /* static tree can give >285; ignore */
		dctx->state = GOTLENSYM;
		dctx->sym = code;
	    }
	    break;
	  case GOTLENSYM:
	    rec = &lencodes[dctx->sym - 257];
	    if (dctx->nbits < rec->extrabits)
		goto finished;
	    dctx->len =
		rec->min + (dctx->bits & ((1 << rec->extrabits) - 1));
	    EATBITS(rec->extrabits);
	    dctx->state = GOTLEN;
	    break;
	  case GOTLEN:
	    code =
		zlib_huflookup(&dctx->bits, &dctx->nbits,
			       dctx->currdisttable);
	    if (code == -1)
		goto finished;
	    if (code == -2)
		goto decode_error;
	    dctx->state = GOTDISTSYM;
	    dctx->sym = code;
	    break;
	  case GOTDISTSYM:
	    rec = &distcodes[dctx->sym];
	    if (dctx->nbits < rec->extrabits)
		goto finished;
	    dist = rec->min + (dctx->bits & ((1 << rec->extrabits) - 1));
	    EATBITS(rec->extrabits);
	    dctx->state = INBLK;
	    while (dctx->len--)
		zlib_emit_char(dctx, dctx->window[(dctx->winpos - dist) &
						  (WINSIZE - 1)]);
	    break;
	  case UNCOMP_LEN:
	    /*
	     * Uncompressed block. We expect to see a 16-bit LEN.
	     */
	    if (dctx->nbits < 16)
		goto finished;
	    dctx->uncomplen = dctx->bits & 0xFFFF;
	    EATBITS(16);
	    dctx->state = UNCOMP_NLEN;
	    break;
	  case UNCOMP_NLEN:
	    /*
	     * Uncompressed block. We expect to see a 16-bit NLEN,
	     * which should be the one's complement of the previous
	     * LEN.
	     */
	    if (dctx->nbits < 16)
		goto finished;
	    nlen = dctx->bits & 0xFFFF;
	    EATBITS(16);
	    if (dctx->uncomplen != (nlen ^ 0xFFFF))
		goto decode_error;
	    if (dctx->uncomplen == 0)
		dctx->state = OUTSIDEBLK;	/* block is empty */
	    else
		dctx->state = UNCOMP_DATA;
	    break;
	  case UNCOMP_DATA:
	    if (dctx->nbits < 8)
		goto finished;
	    zlib_emit_char(dctx, dctx->bits & 0xFF);
	    EATBITS(8);
	    if (--dctx->uncomplen == 0)
		dctx->state = OUTSIDEBLK;	/* end of uncompressed block */
	    break;
	}
    }

  finished:
    *outblock = dctx->outblk;
    *outlen = dctx->outlen;
    return 1;

  decode_error:
    sfree(dctx->outblk);
    *outblock = dctx->outblk = NULL;
    *outlen = 0;
    return 0;
}

#ifdef ZLIB_STANDALONE

#include <stdio.h>
#include <string.h>

int main(int argc, char **argv)
{
    unsigned char buf[16], *outbuf;
    int ret, outlen;
    void *handle;
    int noheader = FALSE, opts = TRUE;
    char *filename = NULL;
    FILE *fp;

    while (--argc) {
        char *p = *++argv;

        if (p[0] == '-' && opts) {
            if (!strcmp(p, "-d"))
                noheader = TRUE;
            else if (!strcmp(p, "--"))
                opts = FALSE;          /* next thing is filename */
            else {
                fprintf(stderr, "unknown command line option '%s'\n", p);
                return 1;
            }
        } else if (!filename) {
            filename = p;
        } else {
            fprintf(stderr, "can only handle one filename\n");
            return 1;
        }
    }

    handle = zlib_decompress_init();

    if (noheader) {
        /*
         * Provide missing zlib header if -d was specified.
         */
        zlib_decompress_block(handle, "\x78\x9C", 2, &outbuf, &outlen);
        assert(outlen == 0);
    }

    if (filename)
        fp = fopen(filename, "rb");
    else
        fp = stdin;

    if (!fp) {
        assert(filename);
        fprintf(stderr, "unable to open '%s'\n", filename);
        return 1;
    }

    while (1) {
	ret = fread(buf, 1, sizeof(buf), fp);
	if (ret <= 0)
	    break;
	zlib_decompress_block(handle, buf, ret, &outbuf, &outlen);
        if (outbuf) {
            if (outlen)
                fwrite(outbuf, 1, outlen, stdout);
            sfree(outbuf);
        } else {
            fprintf(stderr, "decoding error\n");
            return 1;
        }
    }

    zlib_decompress_cleanup(handle);

    if (filename)
        fclose(fp);

    return 0;
}

#else

const struct ssh_compress ssh_zlib = {
    "zlib",
    "zlib@openssh.com", /* delayed version */
    zlib_compress_init,
    zlib_compress_cleanup,
    zlib_compress_block,
    zlib_decompress_init,
    zlib_decompress_cleanup,
    zlib_decompress_block,
    zlib_disable_compression,
    "zlib (RFC1950)"
};

#endif