/* * tree234.c: reasonably generic counted 2-3-4 tree routines. * * This file is copyright 1999-2001 Simon Tatham. * * Permission is hereby granted, free of charge, to any person * obtaining a copy of this software and associated documentation * files (the "Software"), to deal in the Software without * restriction, including without limitation the rights to use, * copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following * conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL SIMON TATHAM BE LIABLE FOR * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include <stdio.h> #include <stdlib.h> #include <assert.h> #include "tree234.h" #ifdef TEST #define LOG(x) (printf x) #define snew(type) ((type *)malloc(sizeof(type))) #define snewn(n, type) ((type *)malloc((n) * sizeof(type))) #define sresize(ptr, n, type) \ ((type *)realloc(sizeof((type *)0 == (ptr)) ? (ptr) : (ptr), \ (n) * sizeof(type))) #define sfree(ptr) free(ptr) #else #include "puttymem.h" #define LOG(x) #endif typedef struct node234_Tag node234; struct tree234_Tag { node234 *root; cmpfn234 cmp; }; struct node234_Tag { node234 *parent; node234 *kids[4]; int counts[4]; void *elems[3]; }; /* * Create a 2-3-4 tree. */ tree234 *newtree234(cmpfn234 cmp) { tree234 *ret = snew(tree234); LOG(("created tree %p\n", ret)); ret->root = NULL; ret->cmp = cmp; return ret; } /* * Free a 2-3-4 tree (not including freeing the elements). */ static void freenode234(node234 * n) { if (!n) return; freenode234(n->kids[0]); freenode234(n->kids[1]); freenode234(n->kids[2]); freenode234(n->kids[3]); sfree(n); } void freetree234(tree234 * t) { freenode234(t->root); sfree(t); } /* * Internal function to count a node. */ static int countnode234(node234 * n) { int count = 0; int i; if (!n) return 0; for (i = 0; i < 4; i++) count += n->counts[i]; for (i = 0; i < 3; i++) if (n->elems[i]) count++; return count; } /* * Count the elements in a tree. */ int count234(tree234 * t) { if (t->root) return countnode234(t->root); else return 0; } /* * Add an element e to a 2-3-4 tree t. Returns e on success, or if * an existing element compares equal, returns that. */ static void *add234_internal(tree234 * t, void *e, int index) { node234 *n, **np, *left, *right; void *orig_e = e; int c, lcount, rcount; LOG(("adding node %p to tree %p\n", e, t)); if (t->root == NULL) { t->root = snew(node234); t->root->elems[1] = t->root->elems[2] = NULL; t->root->kids[0] = t->root->kids[1] = NULL; t->root->kids[2] = t->root->kids[3] = NULL; t->root->counts[0] = t->root->counts[1] = 0; t->root->counts[2] = t->root->counts[3] = 0; t->root->parent = NULL; t->root->elems[0] = e; LOG((" created root %p\n", t->root)); return orig_e; } n = NULL; /* placate gcc; will always be set below since t->root != NULL */ np = &t->root; while (*np) { int childnum; n = *np; LOG((" node %p: %p/%d [%p] %p/%d [%p] %p/%d [%p] %p/%d\n", n, n->kids[0], n->counts[0], n->elems[0], n->kids[1], n->counts[1], n->elems[1], n->kids[2], n->counts[2], n->elems[2], n->kids[3], n->counts[3])); if (index >= 0) { if (!n->kids[0]) { /* * Leaf node. We want to insert at kid position * equal to the index: * * 0 A 1 B 2 C 3 */ childnum = index; } else { /* * Internal node. We always descend through it (add * always starts at the bottom, never in the * middle). */ do { /* this is a do ... while (0) to allow `break' */ if (index <= n->counts[0]) { childnum = 0; break; } index -= n->counts[0] + 1; if (index <= n->counts[1]) { childnum = 1; break; } index -= n->counts[1] + 1; if (index <= n->counts[2]) { childnum = 2; break; } index -= n->counts[2] + 1; if (index <= n->counts[3]) { childnum = 3; break; } return NULL; /* error: index out of range */ } while (0); } } else { if ((c = t->cmp(e, n->elems[0])) < 0) childnum = 0; else if (c == 0) return n->elems[0]; /* already exists */ else if (n->elems[1] == NULL || (c = t->cmp(e, n->elems[1])) < 0) childnum = 1; else if (c == 0) return n->elems[1]; /* already exists */ else if (n->elems[2] == NULL || (c = t->cmp(e, n->elems[2])) < 0) childnum = 2; else if (c == 0) return n->elems[2]; /* already exists */ else childnum = 3; } np = &n->kids[childnum]; LOG((" moving to child %d (%p)\n", childnum, *np)); } /* * We need to insert the new element in n at position np. */ left = NULL; lcount = 0; right = NULL; rcount = 0; while (n) { LOG((" at %p: %p/%d [%p] %p/%d [%p] %p/%d [%p] %p/%d\n", n, n->kids[0], n->counts[0], n->elems[0], n->kids[1], n->counts[1], n->elems[1], n->kids[2], n->counts[2], n->elems[2], n->kids[3], n->counts[3])); LOG((" need to insert %p/%d [%p] %p/%d at position %d\n", left, lcount, e, right, rcount, (int)(np - n->kids))); if (n->elems[1] == NULL) { /* * Insert in a 2-node; simple. */ if (np == &n->kids[0]) { LOG((" inserting on left of 2-node\n")); n->kids[2] = n->kids[1]; n->counts[2] = n->counts[1]; n->elems[1] = n->elems[0]; n->kids[1] = right; n->counts[1] = rcount; n->elems[0] = e; n->kids[0] = left; n->counts[0] = lcount; } else { /* np == &n->kids[1] */ LOG((" inserting on right of 2-node\n")); n->kids[2] = right; n->counts[2] = rcount; n->elems[1] = e; n->kids[1] = left; n->counts[1] = lcount; } if (n->kids[0]) n->kids[0]->parent = n; if (n->kids[1]) n->kids[1]->parent = n; if (n->kids[2]) n->kids[2]->parent = n; LOG((" done\n")); break; } else if (n->elems[2] == NULL) { /* * Insert in a 3-node; simple. */ if (np == &n->kids[0]) { LOG((" inserting on left of 3-node\n")); n->kids[3] = n->kids[2]; n->counts[3] = n->counts[2]; n->elems[2] = n->elems[1]; n->kids[2] = n->kids[1]; n->counts[2] = n->counts[1]; n->elems[1] = n->elems[0]; n->kids[1] = right; n->counts[1] = rcount; n->elems[0] = e; n->kids[0] = left; n->counts[0] = lcount; } else if (np == &n->kids[1]) { LOG((" inserting in middle of 3-node\n")); n->kids[3] = n->kids[2]; n->counts[3] = n->counts[2]; n->elems[2] = n->elems[1]; n->kids[2] = right; n->counts[2] = rcount; n->elems[1] = e; n->kids[1] = left; n->counts[1] = lcount; } else { /* np == &n->kids[2] */ LOG((" inserting on right of 3-node\n")); n->kids[3] = right; n->counts[3] = rcount; n->elems[2] = e; n->kids[2] = left; n->counts[2] = lcount; } if (n->kids[0]) n->kids[0]->parent = n; if (n->kids[1]) n->kids[1]->parent = n; if (n->kids[2]) n->kids[2]->parent = n; if (n->kids[3]) n->kids[3]->parent = n; LOG((" done\n")); break; } else { node234 *m = snew(node234); m->parent = n->parent; LOG((" splitting a 4-node; created new node %p\n", m)); /* * Insert in a 4-node; split into a 2-node and a * 3-node, and move focus up a level. * * I don't think it matters which way round we put the * 2 and the 3. For simplicity, we'll put the 3 first * always. */ if (np == &n->kids[0]) { m->kids[0] = left; m->counts[0] = lcount; m->elems[0] = e; m->kids[1] = right; m->counts[1] = rcount; m->elems[1] = n->elems[0]; m->kids[2] = n->kids[1]; m->counts[2] = n->counts[1]; e = n->elems[1]; n->kids[0] = n->kids[2]; n->counts[0] = n->counts[2]; n->elems[0] = n->elems[2]; n->kids[1] = n->kids[3]; n->counts[1] = n->counts[3]; } else if (np == &n->kids[1]) { m->kids[0] = n->kids[0]; m->counts[0] = n->counts[0]; m->elems[0] = n->elems[0]; m->kids[1] = left; m->counts[1] = lcount; m->elems[1] = e; m->kids[2] = right; m->counts[2] = rcount; e = n->elems[1]; n->kids[0] = n->kids[2]; n->counts[0] = n->counts[2]; n->elems[0] = n->elems[2]; n->kids[1] = n->kids[3]; n->counts[1] = n->counts[3]; } else if (np == &n->kids[2]) { m->kids[0] = n->kids[0]; m->counts[0] = n->counts[0]; m->elems[0] = n->elems[0]; m->kids[1] = n->kids[1]; m->counts[1] = n->counts[1]; m->elems[1] = n->elems[1]; m->kids[2] = left; m->counts[2] = lcount; /* e = e; */ n->kids[0] = right; n->counts[0] = rcount; n->elems[0] = n->elems[2]; n->kids[1] = n->kids[3]; n->counts[1] = n->counts[3]; } else { /* np == &n->kids[3] */ m->kids[0] = n->kids[0]; m->counts[0] = n->counts[0]; m->elems[0] = n->elems[0]; m->kids[1] = n->kids[1]; m->counts[1] = n->counts[1]; m->elems[1] = n->elems[1]; m->kids[2] = n->kids[2]; m->counts[2] = n->counts[2]; n->kids[0] = left; n->counts[0] = lcount; n->elems[0] = e; n->kids[1] = right; n->counts[1] = rcount; e = n->elems[2]; } m->kids[3] = n->kids[3] = n->kids[2] = NULL; m->counts[3] = n->counts[3] = n->counts[2] = 0; m->elems[2] = n->elems[2] = n->elems[1] = NULL; if (m->kids[0]) m->kids[0]->parent = m; if (m->kids[1]) m->kids[1]->parent = m; if (m->kids[2]) m->kids[2]->parent = m; if (n->kids[0]) n->kids[0]->parent = n; if (n->kids[1]) n->kids[1]->parent = n; LOG((" left (%p): %p/%d [%p] %p/%d [%p] %p/%d\n", m, m->kids[0], m->counts[0], m->elems[0], m->kids[1], m->counts[1], m->elems[1], m->kids[2], m->counts[2])); LOG((" right (%p): %p/%d [%p] %p/%d\n", n, n->kids[0], n->counts[0], n->elems[0], n->kids[1], n->counts[1])); left = m; lcount = countnode234(left); right = n; rcount = countnode234(right); } if (n->parent) np = (n->parent->kids[0] == n ? &n->parent->kids[0] : n->parent->kids[1] == n ? &n->parent->kids[1] : n->parent->kids[2] == n ? &n->parent->kids[2] : &n->parent->kids[3]); n = n->parent; } /* * If we've come out of here by `break', n will still be * non-NULL and all we need to do is go back up the tree * updating counts. If we've come here because n is NULL, we * need to create a new root for the tree because the old one * has just split into two. */ if (n) { while (n->parent) { int count = countnode234(n); int childnum; childnum = (n->parent->kids[0] == n ? 0 : n->parent->kids[1] == n ? 1 : n->parent->kids[2] == n ? 2 : 3); n->parent->counts[childnum] = count; n = n->parent; } } else { LOG((" root is overloaded, split into two\n")); t->root = snew(node234); t->root->kids[0] = left; t->root->counts[0] = lcount; t->root->elems[0] = e; t->root->kids[1] = right; t->root->counts[1] = rcount; t->root->elems[1] = NULL; t->root->kids[2] = NULL; t->root->counts[2] = 0; t->root->elems[2] = NULL; t->root->kids[3] = NULL; t->root->counts[3] = 0; t->root->parent = NULL; if (t->root->kids[0]) t->root->kids[0]->parent = t->root; if (t->root->kids[1]) t->root->kids[1]->parent = t->root; LOG((" new root is %p/%d [%p] %p/%d\n", t->root->kids[0], t->root->counts[0], t->root->elems[0], t->root->kids[1], t->root->counts[1])); } return orig_e; } void *add234(tree234 * t, void *e) { if (!t->cmp) /* tree is unsorted */ return NULL; return add234_internal(t, e, -1); } void *addpos234(tree234 * t, void *e, int index) { if (index < 0 || /* index out of range */ t->cmp) /* tree is sorted */ return NULL; /* return failure */ return add234_internal(t, e, index); /* this checks the upper bound */ } /* * Look up the element at a given numeric index in a 2-3-4 tree. * Returns NULL if the index is out of range. */ void *index234(tree234 * t, int index) { node234 *n; if (!t->root) return NULL; /* tree is empty */ if (index < 0 || index >= countnode234(t->root)) return NULL; /* out of range */ n = t->root; while (n) { if (index < n->counts[0]) n = n->kids[0]; else if (index -= n->counts[0] + 1, index < 0) return n->elems[0]; else if (index < n->counts[1]) n = n->kids[1]; else if (index -= n->counts[1] + 1, index < 0) return n->elems[1]; else if (index < n->counts[2]) n = n->kids[2]; else if (index -= n->counts[2] + 1, index < 0) return n->elems[2]; else n = n->kids[3]; } /* We shouldn't ever get here. I wonder how we did. */ return NULL; } /* * Find an element e in a sorted 2-3-4 tree t. Returns NULL if not * found. e is always passed as the first argument to cmp, so cmp * can be an asymmetric function if desired. cmp can also be passed * as NULL, in which case the compare function from the tree proper * will be used. */ void *findrelpos234(tree234 * t, void *e, cmpfn234 cmp, int relation, int *index) { node234 *n; void *ret; int c; int idx, ecount, kcount, cmpret; if (t->root == NULL) return NULL; if (cmp == NULL) cmp = t->cmp; n = t->root; /* * Attempt to find the element itself. */ idx = 0; ecount = -1; /* * Prepare a fake `cmp' result if e is NULL. */ cmpret = 0; if (e == NULL) { assert(relation == REL234_LT || relation == REL234_GT); if (relation == REL234_LT) cmpret = +1; /* e is a max: always greater */ else if (relation == REL234_GT) cmpret = -1; /* e is a min: always smaller */ } while (1) { for (kcount = 0; kcount < 4; kcount++) { if (kcount >= 3 || n->elems[kcount] == NULL || (c = cmpret ? cmpret : cmp(e, n->elems[kcount])) < 0) { break; } if (n->kids[kcount]) idx += n->counts[kcount]; if (c == 0) { ecount = kcount; break; } idx++; } if (ecount >= 0) break; if (n->kids[kcount]) n = n->kids[kcount]; else break; } if (ecount >= 0) { /* * We have found the element we're looking for. It's * n->elems[ecount], at tree index idx. If our search * relation is EQ, LE or GE we can now go home. */ if (relation != REL234_LT && relation != REL234_GT) { if (index) *index = idx; return n->elems[ecount]; } /* * Otherwise, we'll do an indexed lookup for the previous * or next element. (It would be perfectly possible to * implement these search types in a non-counted tree by * going back up from where we are, but far more fiddly.) */ if (relation == REL234_LT) idx--; else idx++; } else { /* * We've found our way to the bottom of the tree and we * know where we would insert this node if we wanted to: * we'd put it in in place of the (empty) subtree * n->kids[kcount], and it would have index idx * * But the actual element isn't there. So if our search * relation is EQ, we're doomed. */ if (relation == REL234_EQ) return NULL; /* * Otherwise, we must do an index lookup for index idx-1 * (if we're going left - LE or LT) or index idx (if we're * going right - GE or GT). */ if (relation == REL234_LT || relation == REL234_LE) { idx--; } } /* * We know the index of the element we want; just call index234 * to do the rest. This will return NULL if the index is out of * bounds, which is exactly what we want. */ ret = index234(t, idx); if (ret && index) *index = idx; return ret; } void *find234(tree234 * t, void *e, cmpfn234 cmp) { return findrelpos234(t, e, cmp, REL234_EQ, NULL); } void *findrel234(tree234 * t, void *e, cmpfn234 cmp, int relation) { return findrelpos234(t, e, cmp, relation, NULL); } void *findpos234(tree234 * t, void *e, cmpfn234 cmp, int *index) { return findrelpos234(t, e, cmp, REL234_EQ, index); } /* * Delete an element e in a 2-3-4 tree. Does not free the element, * merely removes all links to it from the tree nodes. */ static void *delpos234_internal(tree234 * t, int index) { node234 *n; void *retval; int ei = -1; retval = 0; n = t->root; LOG(("deleting item %d from tree %p\n", index, t)); while (1) { while (n) { int ki; node234 *sub; LOG( (" node %p: %p/%d [%p] %p/%d [%p] %p/%d [%p] %p/%d index=%d\n", n, n->kids[0], n->counts[0], n->elems[0], n->kids[1], n->counts[1], n->elems[1], n->kids[2], n->counts[2], n->elems[2], n->kids[3], n->counts[3], index)); if (index < n->counts[0]) { ki = 0; } else if (index -= n->counts[0] + 1, index < 0) { ei = 0; break; } else if (index < n->counts[1]) { ki = 1; } else if (index -= n->counts[1] + 1, index < 0) { ei = 1; break; } else if (index < n->counts[2]) { ki = 2; } else if (index -= n->counts[2] + 1, index < 0) { ei = 2; break; } else { ki = 3; } /* * Recurse down to subtree ki. If it has only one element, * we have to do some transformation to start with. */ LOG((" moving to subtree %d\n", ki)); sub = n->kids[ki]; if (!sub->elems[1]) { LOG((" subtree has only one element!\n", ki)); if (ki > 0 && n->kids[ki - 1]->elems[1]) { /* * Case 3a, left-handed variant. Child ki has * only one element, but child ki-1 has two or * more. So we need to move a subtree from ki-1 * to ki. * * . C . . B . * / \ -> / \ * [more] a A b B c d D e [more] a A b c C d D e */ node234 *sib = n->kids[ki - 1]; int lastelem = (sib->elems[2] ? 2 : sib->elems[1] ? 1 : 0); sub->kids[2] = sub->kids[1]; sub->counts[2] = sub->counts[1]; sub->elems[1] = sub->elems[0]; sub->kids[1] = sub->kids[0]; sub->counts[1] = sub->counts[0]; sub->elems[0] = n->elems[ki - 1]; sub->kids[0] = sib->kids[lastelem + 1]; sub->counts[0] = sib->counts[lastelem + 1]; if (sub->kids[0]) sub->kids[0]->parent = sub; n->elems[ki - 1] = sib->elems[lastelem]; sib->kids[lastelem + 1] = NULL; sib->counts[lastelem + 1] = 0; sib->elems[lastelem] = NULL; n->counts[ki] = countnode234(sub); LOG((" case 3a left\n")); LOG( (" index and left subtree count before adjustment: %d, %d\n", index, n->counts[ki - 1])); index += n->counts[ki - 1]; n->counts[ki - 1] = countnode234(sib); index -= n->counts[ki - 1]; LOG( (" index and left subtree count after adjustment: %d, %d\n", index, n->counts[ki - 1])); } else if (ki < 3 && n->kids[ki + 1] && n->kids[ki + 1]->elems[1]) { /* * Case 3a, right-handed variant. ki has only * one element but ki+1 has two or more. Move a * subtree from ki+1 to ki. * * . B . . C . * / \ -> / \ * a A b c C d D e [more] a A b B c d D e [more] */ node234 *sib = n->kids[ki + 1]; int j; sub->elems[1] = n->elems[ki]; sub->kids[2] = sib->kids[0]; sub->counts[2] = sib->counts[0]; if (sub->kids[2]) sub->kids[2]->parent = sub; n->elems[ki] = sib->elems[0]; sib->kids[0] = sib->kids[1]; sib->counts[0] = sib->counts[1]; for (j = 0; j < 2 && sib->elems[j + 1]; j++) { sib->kids[j + 1] = sib->kids[j + 2]; sib->counts[j + 1] = sib->counts[j + 2]; sib->elems[j] = sib->elems[j + 1]; } sib->kids[j + 1] = NULL; sib->counts[j + 1] = 0; sib->elems[j] = NULL; n->counts[ki] = countnode234(sub); n->counts[ki + 1] = countnode234(sib); LOG((" case 3a right\n")); } else { /* * Case 3b. ki has only one element, and has no * neighbour with more than one. So pick a * neighbour and merge it with ki, taking an * element down from n to go in the middle. * * . B . . * / \ -> | * a A b c C d a A b B c C d * * (Since at all points we have avoided * descending to a node with only one element, * we can be sure that n is not reduced to * nothingness by this move, _unless_ it was * the very first node, ie the root of the * tree. In that case we remove the now-empty * root and replace it with its single large * child as shown.) */ node234 *sib; int j; if (ki > 0) { ki--; index += n->counts[ki] + 1; } sib = n->kids[ki]; sub = n->kids[ki + 1]; sub->kids[3] = sub->kids[1]; sub->counts[3] = sub->counts[1]; sub->elems[2] = sub->elems[0]; sub->kids[2] = sub->kids[0]; sub->counts[2] = sub->counts[0]; sub->elems[1] = n->elems[ki]; sub->kids[1] = sib->kids[1]; sub->counts[1] = sib->counts[1]; if (sub->kids[1]) sub->kids[1]->parent = sub; sub->elems[0] = sib->elems[0]; sub->kids[0] = sib->kids[0]; sub->counts[0] = sib->counts[0]; if (sub->kids[0]) sub->kids[0]->parent = sub; n->counts[ki + 1] = countnode234(sub); sfree(sib); /* * That's built the big node in sub. Now we * need to remove the reference to sib in n. */ for (j = ki; j < 3 && n->kids[j + 1]; j++) { n->kids[j] = n->kids[j + 1]; n->counts[j] = n->counts[j + 1]; n->elems[j] = j < 2 ? n->elems[j + 1] : NULL; } n->kids[j] = NULL; n->counts[j] = 0; if (j < 3) n->elems[j] = NULL; LOG((" case 3b ki=%d\n", ki)); if (!n->elems[0]) { /* * The root is empty and needs to be * removed. */ LOG((" shifting root!\n")); t->root = sub; sub->parent = NULL; sfree(n); } } } n = sub; } if (!retval) retval = n->elems[ei]; if (ei == -1) return NULL; /* although this shouldn't happen */ /* * Treat special case: this is the one remaining item in * the tree. n is the tree root (no parent), has one * element (no elems[1]), and has no kids (no kids[0]). */ if (!n->parent && !n->elems[1] && !n->kids[0]) { LOG((" removed last element in tree\n")); sfree(n); t->root = NULL; return retval; } /* * Now we have the element we want, as n->elems[ei], and we * have also arranged for that element not to be the only * one in its node. So... */ if (!n->kids[0] && n->elems[1]) { /* * Case 1. n is a leaf node with more than one element, * so it's _really easy_. Just delete the thing and * we're done. */ int i; LOG((" case 1\n")); for (i = ei; i < 2 && n->elems[i + 1]; i++) n->elems[i] = n->elems[i + 1]; n->elems[i] = NULL; /* * Having done that to the leaf node, we now go back up * the tree fixing the counts. */ while (n->parent) { int childnum; childnum = (n->parent->kids[0] == n ? 0 : n->parent->kids[1] == n ? 1 : n->parent->kids[2] == n ? 2 : 3); n->parent->counts[childnum]--; n = n->parent; } return retval; /* finished! */ } else if (n->kids[ei]->elems[1]) { /* * Case 2a. n is an internal node, and the root of the * subtree to the left of e has more than one element. * So find the predecessor p to e (ie the largest node * in that subtree), place it where e currently is, and * then start the deletion process over again on the * subtree with p as target. */ node234 *m = n->kids[ei]; void *target; LOG((" case 2a\n")); while (m->kids[0]) { m = (m->kids[3] ? m->kids[3] : m->kids[2] ? m->kids[2] : m->kids[1] ? m->kids[1] : m->kids[0]); } target = (m->elems[2] ? m->elems[2] : m->elems[1] ? m->elems[1] : m->elems[0]); n->elems[ei] = target; index = n->counts[ei] - 1; n = n->kids[ei]; } else if (n->kids[ei + 1]->elems[1]) { /* * Case 2b, symmetric to 2a but s/left/right/ and * s/predecessor/successor/. (And s/largest/smallest/). */ node234 *m = n->kids[ei + 1]; void *target; LOG((" case 2b\n")); while (m->kids[0]) { m = m->kids[0]; } target = m->elems[0]; n->elems[ei] = target; n = n->kids[ei + 1]; index = 0; } else { /* * Case 2c. n is an internal node, and the subtrees to * the left and right of e both have only one element. * So combine the two subnodes into a single big node * with their own elements on the left and right and e * in the middle, then restart the deletion process on * that subtree, with e still as target. */ node234 *a = n->kids[ei], *b = n->kids[ei + 1]; int j; LOG((" case 2c\n")); a->elems[1] = n->elems[ei]; a->kids[2] = b->kids[0]; a->counts[2] = b->counts[0]; if (a->kids[2]) a->kids[2]->parent = a; a->elems[2] = b->elems[0]; a->kids[3] = b->kids[1]; a->counts[3] = b->counts[1]; if (a->kids[3]) a->kids[3]->parent = a; sfree(b); n->counts[ei] = countnode234(a); /* * That's built the big node in a, and destroyed b. Now * remove the reference to b (and e) in n. */ for (j = ei; j < 2 && n->elems[j + 1]; j++) { n->elems[j] = n->elems[j + 1]; n->kids[j + 1] = n->kids[j + 2]; n->counts[j + 1] = n->counts[j + 2]; } n->elems[j] = NULL; n->kids[j + 1] = NULL; n->counts[j + 1] = 0; /* * It's possible, in this case, that we've just removed * the only element in the root of the tree. If so, * shift the root. */ if (n->elems[0] == NULL) { LOG((" shifting root!\n")); t->root = a; a->parent = NULL; sfree(n); } /* * Now go round the deletion process again, with n * pointing at the new big node and e still the same. */ n = a; index = a->counts[0] + a->counts[1] + 1; } } } void *delpos234(tree234 * t, int index) { if (index < 0 || index >= countnode234(t->root)) return NULL; return delpos234_internal(t, index); } void *del234(tree234 * t, void *e) { int index; if (!findrelpos234(t, e, NULL, REL234_EQ, &index)) return NULL; /* it wasn't in there anyway */ return delpos234_internal(t, index); /* it's there; delete it. */ } #ifdef TEST /* * Test code for the 2-3-4 tree. This code maintains an alternative * representation of the data in the tree, in an array (using the * obvious and slow insert and delete functions). After each tree * operation, the verify() function is called, which ensures all * the tree properties are preserved: * - node->child->parent always equals node * - tree->root->parent always equals NULL * - number of kids == 0 or number of elements + 1; * - tree has the same depth everywhere * - every node has at least one element * - subtree element counts are accurate * - any NULL kid pointer is accompanied by a zero count * - in a sorted tree: ordering property between elements of a * node and elements of its children is preserved * and also ensures the list represented by the tree is the same * list it should be. (This last check also doubly verifies the * ordering properties, because the `same list it should be' is by * definition correctly ordered. It also ensures all nodes are * distinct, because the enum functions would get caught in a loop * if not.) */ #include <stdarg.h> /* * Error reporting function. */ void error(char *fmt, ...) { va_list ap; printf("ERROR: "); va_start(ap, fmt); vfprintf(stdout, fmt, ap); va_end(ap); printf("\n"); } /* The array representation of the data. */ void **array; int arraylen, arraysize; cmpfn234 cmp; /* The tree representation of the same data. */ tree234 *tree; typedef struct { int treedepth; int elemcount; } chkctx; int chknode(chkctx * ctx, int level, node234 * node, void *lowbound, void *highbound) { int nkids, nelems; int i; int count; /* Count the non-NULL kids. */ for (nkids = 0; nkids < 4 && node->kids[nkids]; nkids++); /* Ensure no kids beyond the first NULL are non-NULL. */ for (i = nkids; i < 4; i++) if (node->kids[i]) { error("node %p: nkids=%d but kids[%d] non-NULL", node, nkids, i); } else if (node->counts[i]) { error("node %p: kids[%d] NULL but count[%d]=%d nonzero", node, i, i, node->counts[i]); } /* Count the non-NULL elements. */ for (nelems = 0; nelems < 3 && node->elems[nelems]; nelems++); /* Ensure no elements beyond the first NULL are non-NULL. */ for (i = nelems; i < 3; i++) if (node->elems[i]) { error("node %p: nelems=%d but elems[%d] non-NULL", node, nelems, i); } if (nkids == 0) { /* * If nkids==0, this is a leaf node; verify that the tree * depth is the same everywhere. */ if (ctx->treedepth < 0) ctx->treedepth = level; /* we didn't know the depth yet */ else if (ctx->treedepth != level) error("node %p: leaf at depth %d, previously seen depth %d", node, level, ctx->treedepth); } else { /* * If nkids != 0, then it should be nelems+1, unless nelems * is 0 in which case nkids should also be 0 (and so we * shouldn't be in this condition at all). */ int shouldkids = (nelems ? nelems + 1 : 0); if (nkids != shouldkids) { error("node %p: %d elems should mean %d kids but has %d", node, nelems, shouldkids, nkids); } } /* * nelems should be at least 1. */ if (nelems == 0) { error("node %p: no elems", node, nkids); } /* * Add nelems to the running element count of the whole tree. */ ctx->elemcount += nelems; /* * Check ordering property: all elements should be strictly > * lowbound, strictly < highbound, and strictly < each other in * sequence. (lowbound and highbound are NULL at edges of tree * - both NULL at root node - and NULL is considered to be < * everything and > everything. IYSWIM.) */ if (cmp) { for (i = -1; i < nelems; i++) { void *lower = (i == -1 ? lowbound : node->elems[i]); void *higher = (i + 1 == nelems ? highbound : node->elems[i + 1]); if (lower && higher && cmp(lower, higher) >= 0) { error("node %p: kid comparison [%d=%s,%d=%s] failed", node, i, lower, i + 1, higher); } } } /* * Check parent pointers: all non-NULL kids should have a * parent pointer coming back to this node. */ for (i = 0; i < nkids; i++) if (node->kids[i]->parent != node) { error("node %p kid %d: parent ptr is %p not %p", node, i, node->kids[i]->parent, node); } /* * Now (finally!) recurse into subtrees. */ count = nelems; for (i = 0; i < nkids; i++) { void *lower = (i == 0 ? lowbound : node->elems[i - 1]); void *higher = (i >= nelems ? highbound : node->elems[i]); int subcount = chknode(ctx, level + 1, node->kids[i], lower, higher); if (node->counts[i] != subcount) { error("node %p kid %d: count says %d, subtree really has %d", node, i, node->counts[i], subcount); } count += subcount; } return count; } void verify(void) { chkctx ctx; int i; void *p; ctx.treedepth = -1; /* depth unknown yet */ ctx.elemcount = 0; /* no elements seen yet */ /* * Verify validity of tree properties. */ if (tree->root) { if (tree->root->parent != NULL) error("root->parent is %p should be null", tree->root->parent); chknode(&ctx, 0, tree->root, NULL, NULL); } printf("tree depth: %d\n", ctx.treedepth); /* * Enumerate the tree and ensure it matches up to the array. */ for (i = 0; NULL != (p = index234(tree, i)); i++) { if (i >= arraylen) error("tree contains more than %d elements", arraylen); if (array[i] != p) error("enum at position %d: array says %s, tree says %s", i, array[i], p); } if (ctx.elemcount != i) { error("tree really contains %d elements, enum gave %d", ctx.elemcount, i); } if (i < arraylen) { error("enum gave only %d elements, array has %d", i, arraylen); } i = count234(tree); if (ctx.elemcount != i) { error("tree really contains %d elements, count234 gave %d", ctx.elemcount, i); } } void internal_addtest(void *elem, int index, void *realret) { int i, j; void *retval; if (arraysize < arraylen + 1) { arraysize = arraylen + 1 + 256; array = sresize(array, arraysize, void *); } i = index; /* now i points to the first element >= elem */ retval = elem; /* expect elem returned (success) */ for (j = arraylen; j > i; j--) array[j] = array[j - 1]; array[i] = elem; /* add elem to array */ arraylen++; if (realret != retval) { error("add: retval was %p expected %p", realret, retval); } verify(); } void addtest(void *elem) { int i; void *realret; realret = add234(tree, elem); i = 0; while (i < arraylen && cmp(elem, array[i]) > 0) i++; if (i < arraylen && !cmp(elem, array[i])) { void *retval = array[i]; /* expect that returned not elem */ if (realret != retval) { error("add: retval was %p expected %p", realret, retval); } } else internal_addtest(elem, i, realret); } void addpostest(void *elem, int i) { void *realret; realret = addpos234(tree, elem, i); internal_addtest(elem, i, realret); } void delpostest(int i) { int index = i; void *elem = array[i], *ret; /* i points to the right element */ while (i < arraylen - 1) { array[i] = array[i + 1]; i++; } arraylen--; /* delete elem from array */ if (tree->cmp) ret = del234(tree, elem); else ret = delpos234(tree, index); if (ret != elem) { error("del returned %p, expected %p", ret, elem); } verify(); } void deltest(void *elem) { int i; i = 0; while (i < arraylen && cmp(elem, array[i]) > 0) i++; if (i >= arraylen || cmp(elem, array[i]) != 0) return; /* don't do it! */ delpostest(i); } /* A sample data set and test utility. Designed for pseudo-randomness, * and yet repeatability. */ /* * This random number generator uses the `portable implementation' * given in ANSI C99 draft N869. It assumes `unsigned' is 32 bits; * change it if not. */ int randomnumber(unsigned *seed) { *seed *= 1103515245; *seed += 12345; return ((*seed) / 65536) % 32768; } int mycmp(void *av, void *bv) { char const *a = (char const *) av; char const *b = (char const *) bv; return strcmp(a, b); } #define lenof(x) ( sizeof((x)) / sizeof(*(x)) ) char *strings[] = { "a", "ab", "absque", "coram", "de", "palam", "clam", "cum", "ex", "e", "sine", "tenus", "pro", "prae", "banana", "carrot", "cabbage", "broccoli", "onion", "zebra", "penguin", "blancmange", "pangolin", "whale", "hedgehog", "giraffe", "peanut", "bungee", "foo", "bar", "baz", "quux", "murfl", "spoo", "breen", "flarn", "octothorpe", "snail", "tiger", "elephant", "octopus", "warthog", "armadillo", "aardvark", "wyvern", "dragon", "elf", "dwarf", "orc", "goblin", "pixie", "basilisk", "warg", "ape", "lizard", "newt", "shopkeeper", "wand", "ring", "amulet" }; #define NSTR lenof(strings) int findtest(void) { const static int rels[] = { REL234_EQ, REL234_GE, REL234_LE, REL234_LT, REL234_GT }; const static char *const relnames[] = { "EQ", "GE", "LE", "LT", "GT" }; int i, j, rel, index; char *p, *ret, *realret, *realret2; int lo, hi, mid, c; for (i = 0; i < NSTR; i++) { p = strings[i]; for (j = 0; j < sizeof(rels) / sizeof(*rels); j++) { rel = rels[j]; lo = 0; hi = arraylen - 1; while (lo <= hi) { mid = (lo + hi) / 2; c = strcmp(p, array[mid]); if (c < 0) hi = mid - 1; else if (c > 0) lo = mid + 1; else break; } if (c == 0) { if (rel == REL234_LT) ret = (mid > 0 ? array[--mid] : NULL); else if (rel == REL234_GT) ret = (mid < arraylen - 1 ? array[++mid] : NULL); else ret = array[mid]; } else { assert(lo == hi + 1); if (rel == REL234_LT || rel == REL234_LE) { mid = hi; ret = (hi >= 0 ? array[hi] : NULL); } else if (rel == REL234_GT || rel == REL234_GE) { mid = lo; ret = (lo < arraylen ? array[lo] : NULL); } else ret = NULL; } realret = findrelpos234(tree, p, NULL, rel, &index); if (realret != ret) { error("find(\"%s\",%s) gave %s should be %s", p, relnames[j], realret, ret); } if (realret && index != mid) { error("find(\"%s\",%s) gave %d should be %d", p, relnames[j], index, mid); } if (realret && rel == REL234_EQ) { realret2 = index234(tree, index); if (realret2 != realret) { error("find(\"%s\",%s) gave %s(%d) but %d -> %s", p, relnames[j], realret, index, index, realret2); } } #if 0 printf("find(\"%s\",%s) gave %s(%d)\n", p, relnames[j], realret, index); #endif } } realret = findrelpos234(tree, NULL, NULL, REL234_GT, &index); if (arraylen && (realret != array[0] || index != 0)) { error("find(NULL,GT) gave %s(%d) should be %s(0)", realret, index, array[0]); } else if (!arraylen && (realret != NULL)) { error("find(NULL,GT) gave %s(%d) should be NULL", realret, index); } realret = findrelpos234(tree, NULL, NULL, REL234_LT, &index); if (arraylen && (realret != array[arraylen - 1] || index != arraylen - 1)) { error("find(NULL,LT) gave %s(%d) should be %s(0)", realret, index, array[arraylen - 1]); } else if (!arraylen && (realret != NULL)) { error("find(NULL,LT) gave %s(%d) should be NULL", realret, index); } } int main(void) { int in[NSTR]; int i, j, k; unsigned seed = 0; for (i = 0; i < NSTR; i++) in[i] = 0; array = NULL; arraylen = arraysize = 0; tree = newtree234(mycmp); cmp = mycmp; verify(); for (i = 0; i < 10000; i++) { j = randomnumber(&seed); j %= NSTR; printf("trial: %d\n", i); if (in[j]) { printf("deleting %s (%d)\n", strings[j], j); deltest(strings[j]); in[j] = 0; } else { printf("adding %s (%d)\n", strings[j], j); addtest(strings[j]); in[j] = 1; } findtest(); } while (arraylen > 0) { j = randomnumber(&seed); j %= arraylen; deltest(array[j]); } freetree234(tree); /* * Now try an unsorted tree. We don't really need to test * delpos234 because we know del234 is based on it, so it's * already been tested in the above sorted-tree code; but for * completeness we'll use it to tear down our unsorted tree * once we've built it. */ tree = newtree234(NULL); cmp = NULL; verify(); for (i = 0; i < 1000; i++) { printf("trial: %d\n", i); j = randomnumber(&seed); j %= NSTR; k = randomnumber(&seed); k %= count234(tree) + 1; printf("adding string %s at index %d\n", strings[j], k); addpostest(strings[j], k); } while (count234(tree) > 0) { printf("cleanup: tree size %d\n", count234(tree)); j = randomnumber(&seed); j %= count234(tree); printf("deleting string %s from index %d\n", (const char *)array[j], j); delpostest(j); } return 0; } #endif