/* * XFree86 int10 module * execute BIOS int 10h calls in x86 real mode environment * Copyright 1999 Egbert Eich */ #ifdef HAVE_XORG_CONFIG_H #include <xorg-config.h> #endif #include <string.h> #include <unistd.h> #include "xf86.h" #include "xf86_OSproc.h" #include "compiler.h" #define _INT10_PRIVATE #include "xf86int10.h" #include "int10Defines.h" #include "Pci.h" #define ALLOC_ENTRIES(x) ((V_RAM / x) - 1) static CARD8 read_b(xf86Int10InfoPtr pInt,int addr); static CARD16 read_w(xf86Int10InfoPtr pInt,int addr); static CARD32 read_l(xf86Int10InfoPtr pInt,int addr); static void write_b(xf86Int10InfoPtr pInt,int addr, CARD8 val); static void write_w(xf86Int10InfoPtr pInt,int addr, CARD16 val); static void write_l(xf86Int10InfoPtr pInt,int addr, CARD32 val); /* * the emulator cannot pass a pointer to the current xf86Int10InfoRec * to the memory access functions therefore store it here. */ typedef struct { int shift; int entries; void* base; void* vRam; int highMemory; void* sysMem; char* alloc; } genericInt10Priv; #define INTPriv(x) ((genericInt10Priv*)x->private) int10MemRec genericMem = { read_b, read_w, read_l, write_b, write_w, write_l }; static void MapVRam(xf86Int10InfoPtr pInt); static void UnmapVRam(xf86Int10InfoPtr pInt); #ifdef _PC #define GET_HIGH_BASE(x) (((V_BIOS + (x) + getpagesize() - 1)/getpagesize()) \ * getpagesize()) #endif static void *sysMem = NULL; /** * Read legacy VGA video BIOS associated with specified domain. * * Attempts to read up to 128KiB of legacy VGA video BIOS. * * \return * The number of bytes read on success or -1 on failure. * * \bug * PCI ROMs can contain multiple BIOS images (e.g., OpenFirmware, x86 VGA, * etc.). How do we know that \c pci_device_read_rom will return the * legacy VGA BIOS image? */ static int read_legacy_video_BIOS(struct pci_device *dev, unsigned char *Buf) { const ADDRESS Base = 0xC0000; const int Len = 0x10000 * 2; const int pagemask = getpagesize() - 1; const ADDRESS offset = Base & ~pagemask; const unsigned long size = ((Base + Len + pagemask) & ~pagemask) - offset; unsigned char *ptr, *src; int len; /* Try to use the civilized PCI interface first. */ if (pci_device_read_rom(dev, Buf) == 0) { return dev->rom_size; } ptr = xf86MapDomainMemory(-1, VIDMEM_READONLY, dev, offset, size); if (!ptr) return -1; /* Using memcpy() here can hang the system */ src = ptr + (Base - offset); for (len = 0; len < (Len / 2); len++) { Buf[len] = src[len]; } if ((Buf[0] == 0x55) && (Buf[1] == 0xAA) && (Buf[2] > 0x80)) { for ( /* empty */ ; len < Len; len++) { Buf[len] = src[len]; } } xf86UnMapVidMem(-1, ptr, size); return Len; } xf86Int10InfoPtr xf86ExtendedInitInt10(int entityIndex, int Flags) { xf86Int10InfoPtr pInt; void* base = 0; void* vbiosMem = 0; void* options = NULL; int screen; legacyVGARec vga; #ifdef _PC int size; CARD32 cs; #endif screen = (xf86FindScreenForEntity(entityIndex))->scrnIndex; options = xf86HandleInt10Options(xf86Screens[screen],entityIndex); if (int10skip(options)) { xfree(options); return NULL; } pInt = (xf86Int10InfoPtr)xnfcalloc(1, sizeof(xf86Int10InfoRec)); pInt->entityIndex = entityIndex; if (!xf86Int10ExecSetup(pInt)) goto error0; pInt->mem = &genericMem; pInt->private = (pointer)xnfcalloc(1, sizeof(genericInt10Priv)); INTPriv(pInt)->alloc = (pointer)xnfcalloc(1, ALLOC_ENTRIES(getpagesize())); pInt->scrnIndex = screen; base = INTPriv(pInt)->base = xnfalloc(SYS_BIOS); /* FIXME: Shouldn't this be a failure case? Leaving dev as NULL seems like * FIXME: an error */ pInt->dev = xf86GetPciInfoForEntity(entityIndex); /* * we need to map video RAM MMIO as some chipsets map mmio * registers into this range. */ MapVRam(pInt); #ifdef _PC if (!sysMem) sysMem = xf86MapVidMem(screen, VIDMEM_MMIO, V_BIOS, BIOS_SIZE + SYS_BIOS - V_BIOS); INTPriv(pInt)->sysMem = sysMem; if (xf86ReadBIOS(0, 0, base, LOW_PAGE_SIZE) < 0) { xf86DrvMsg(screen, X_ERROR, "Cannot read int vect\n"); goto error1; } /* * Retrieve everything between V_BIOS and SYS_BIOS as some system BIOSes * have executable code there. Note that xf86ReadBIOS() can only read in * 64kB at a time. */ (void)memset((char *)base + V_BIOS, 0, SYS_BIOS - V_BIOS); #if 0 for (cs = V_BIOS; cs < SYS_BIOS; cs += V_BIOS_SIZE) if (xf86ReadBIOS(cs, 0, (unsigned char *)base + cs, V_BIOS_SIZE) < V_BIOS_SIZE) xf86DrvMsg(screen, X_WARNING, "Unable to retrieve all of segment 0x%06X.\n", cs); #endif INTPriv(pInt)->highMemory = V_BIOS; if (xf86IsEntityPrimary(entityIndex) && !(initPrimary(options))) { if (!xf86int10GetBiosSegment(pInt, (unsigned char *)sysMem - V_BIOS)) goto error1; set_return_trap(pInt); pInt->Flags = Flags & (SET_BIOS_SCRATCH | RESTORE_BIOS_SCRATCH); if (! (pInt->Flags & SET_BIOS_SCRATCH)) pInt->Flags &= ~RESTORE_BIOS_SCRATCH; xf86Int10SaveRestoreBIOSVars(pInt, TRUE); } else { const BusType location_type = xf86int10GetBiosLocationType(pInt); int bios_location = V_BIOS; reset_int_vect(pInt); set_return_trap(pInt); switch (location_type) { case BUS_PCI: { int err; struct pci_device *rom_device = xf86GetPciInfoForEntity(pInt->entityIndex); vbiosMem = (unsigned char *)base + bios_location; err = pci_device_read_rom(rom_device, vbiosMem); if (err) { xf86DrvMsg(screen,X_ERROR,"Cannot read V_BIOS (3) %s\n", strerror(err)); goto error1; } INTPriv(pInt)->highMemory = GET_HIGH_BASE(rom_device->rom_size); break; } case BUS_ISA: vbiosMem = (unsigned char *)sysMem + bios_location; #if 0 (void)memset(vbiosMem, 0, V_BIOS_SIZE); if (xf86ReadBIOS(bios_location, 0, vbiosMem, V_BIOS_SIZE) < V_BIOS_SIZE) xf86DrvMsg(screen, X_WARNING, "Unable to retrieve all of segment 0x%x.\n",bios_location); #endif if (!int10_check_bios(screen, bios_location >> 4, vbiosMem)) { xf86DrvMsg(screen,X_ERROR,"Cannot read V_BIOS (4)\n"); goto error1; } default: goto error1; } pInt->BIOSseg = V_BIOS >> 4; pInt->num = 0xe6; LockLegacyVGA(pInt, &vga); xf86ExecX86int10(pInt); UnlockLegacyVGA(pInt, &vga); } #else if (!sysMem) { sysMem = xnfalloc(BIOS_SIZE); setup_system_bios(sysMem); } INTPriv(pInt)->sysMem = sysMem; setup_int_vect(pInt); set_return_trap(pInt); /* Retrieve the entire legacy video BIOS segment. This can be upto * 128KiB. */ vbiosMem = (char *)base + V_BIOS; (void)memset(vbiosMem, 0, 2 * V_BIOS_SIZE); if (read_legacy_video_BIOS(pInt->dev, vbiosMem) < V_BIOS_SIZE) { xf86DrvMsg(screen, X_WARNING, "Unable to retrieve all of segment 0x0C0000.\n"); } /* * If this adapter is the primary, use its post-init BIOS (if we can find * it). */ { int bios_location = V_BIOS; Bool done = FALSE; vbiosMem = (unsigned char *)base + bios_location; if (xf86IsEntityPrimary(entityIndex)) { if (int10_check_bios(screen, bios_location >> 4, vbiosMem)) done = TRUE; else xf86DrvMsg(screen,X_INFO, "No legacy BIOS found -- trying PCI\n"); } if (!done) { int err; struct pci_device *rom_device = xf86GetPciInfoForEntity(pInt->entityIndex); err = pci_device_read_rom(rom_device, vbiosMem); if (err) { xf86DrvMsg(screen,X_ERROR,"Cannot read V_BIOS (5) %s\n", strerror(err)); goto error1; } } } pInt->BIOSseg = V_BIOS >> 4; pInt->num = 0xe6; LockLegacyVGA(pInt, &vga); xf86ExecX86int10(pInt); UnlockLegacyVGA(pInt, &vga); #endif xfree(options); return pInt; error1: xfree(base); UnmapVRam(pInt); xfree(INTPriv(pInt)->alloc); xfree(pInt->private); error0: xfree(pInt); xfree(options); return NULL; } static void MapVRam(xf86Int10InfoPtr pInt) { int pagesize = getpagesize(); int size = ((VRAM_SIZE + pagesize - 1) / pagesize) * pagesize; INTPriv(pInt)->vRam = xf86MapDomainMemory(pInt->scrnIndex, VIDMEM_MMIO, pInt->dev, V_RAM, size); pInt->ioBase = xf86Screens[pInt->scrnIndex]->domainIOBase; } static void UnmapVRam(xf86Int10InfoPtr pInt) { int screen = pInt->scrnIndex; int pagesize = getpagesize(); int size = ((VRAM_SIZE + pagesize - 1)/pagesize) * pagesize; xf86UnMapVidMem(screen, INTPriv(pInt)->vRam, size); } Bool MapCurrentInt10(xf86Int10InfoPtr pInt) { /* nothing to do here */ return TRUE; } void xf86FreeInt10(xf86Int10InfoPtr pInt) { if (!pInt) return; #if defined (_PC) xf86Int10SaveRestoreBIOSVars(pInt, FALSE); #endif if (Int10Current == pInt) Int10Current = NULL; xfree(INTPriv(pInt)->base); UnmapVRam(pInt); xfree(INTPriv(pInt)->alloc); xfree(pInt->private); xfree(pInt); } void * xf86Int10AllocPages(xf86Int10InfoPtr pInt, int num, int *off) { int pagesize = getpagesize(); int num_pages = ALLOC_ENTRIES(pagesize); int i,j; for (i = 0; i < (num_pages - num); i++) { if (INTPriv(pInt)->alloc[i] == 0) { for (j = i; j < (num + i); j++) if (INTPriv(pInt)->alloc[j] != 0) break; if (j == (num + i)) break; i += num; } } if (i == (num_pages - num)) return NULL; for (j = i; j < (i + num); j++) INTPriv(pInt)->alloc[j] = 1; *off = (i + 1) * pagesize; return (char *)INTPriv(pInt)->base + *off; } void xf86Int10FreePages(xf86Int10InfoPtr pInt, void *pbase, int num) { int pagesize = getpagesize(); int first = (((char *)pbase - (char *)INTPriv(pInt)->base) / pagesize) - 1; int i; for (i = first; i < (first + num); i++) INTPriv(pInt)->alloc[i] = 0; } #define OFF(addr) ((addr) & 0xffff) #if defined _PC # define HIGH_OFFSET (INTPriv(pInt)->highMemory) # define HIGH_BASE V_BIOS #else # define HIGH_OFFSET SYS_BIOS # define HIGH_BASE SYS_BIOS #endif # define SYS(addr) ((addr) >= HIGH_OFFSET) #define V_ADDR(addr) \ (SYS(addr) ? ((char*)INTPriv(pInt)->sysMem) + (addr - HIGH_BASE) \ : (((char*)(INTPriv(pInt)->base) + addr))) #define VRAM_ADDR(addr) (addr - V_RAM) #define VRAM_BASE (INTPriv(pInt)->vRam) #define VRAM(addr) ((addr >= V_RAM) && (addr < (V_RAM + VRAM_SIZE))) #define V_ADDR_RB(addr) \ (VRAM(addr)) ? MMIO_IN8((CARD8*)VRAM_BASE,VRAM_ADDR(addr)) \ : *(CARD8*) V_ADDR(addr) #define V_ADDR_RW(addr) \ (VRAM(addr)) ? MMIO_IN16((CARD16*)VRAM_BASE,VRAM_ADDR(addr)) \ : ldw_u((pointer)V_ADDR(addr)) #define V_ADDR_RL(addr) \ (VRAM(addr)) ? MMIO_IN32((CARD32*)VRAM_BASE,VRAM_ADDR(addr)) \ : ldl_u((pointer)V_ADDR(addr)) #define V_ADDR_WB(addr,val) \ if(VRAM(addr)) \ MMIO_OUT8((CARD8*)VRAM_BASE,VRAM_ADDR(addr),val); \ else \ *(CARD8*) V_ADDR(addr) = val; #define V_ADDR_WW(addr,val) \ if(VRAM(addr)) \ MMIO_OUT16((CARD16*)VRAM_BASE,VRAM_ADDR(addr),val); \ else \ stw_u((val),(pointer)(V_ADDR(addr))); #define V_ADDR_WL(addr,val) \ if (VRAM(addr)) \ MMIO_OUT32((CARD32*)VRAM_BASE,VRAM_ADDR(addr),val); \ else \ stl_u(val,(pointer)(V_ADDR(addr))); static CARD8 read_b(xf86Int10InfoPtr pInt, int addr) { return V_ADDR_RB(addr); } static CARD16 read_w(xf86Int10InfoPtr pInt, int addr) { #if X_BYTE_ORDER == X_LITTLE_ENDIAN if (OFF(addr + 1) > 0) return V_ADDR_RW(addr); #endif return V_ADDR_RB(addr) | (V_ADDR_RB(addr + 1) << 8); } static CARD32 read_l(xf86Int10InfoPtr pInt, int addr) { #if X_BYTE_ORDER == X_LITTLE_ENDIAN if (OFF(addr + 3) > 2) return V_ADDR_RL(addr); #endif return V_ADDR_RB(addr) | (V_ADDR_RB(addr + 1) << 8) | (V_ADDR_RB(addr + 2) << 16) | (V_ADDR_RB(addr + 3) << 24); } static void write_b(xf86Int10InfoPtr pInt, int addr, CARD8 val) { V_ADDR_WB(addr,val); } static void write_w(xf86Int10InfoPtr pInt, int addr, CARD16 val) { #if X_BYTE_ORDER == X_LITTLE_ENDIAN if (OFF(addr + 1) > 0) { V_ADDR_WW(addr, val); } #endif V_ADDR_WB(addr, val); V_ADDR_WB(addr + 1, val >> 8); } static void write_l(xf86Int10InfoPtr pInt, int addr, CARD32 val) { #if X_BYTE_ORDER == X_LITTLE_ENDIAN if (OFF(addr + 3) > 2) { V_ADDR_WL(addr, val); } #endif V_ADDR_WB(addr, val); V_ADDR_WB(addr + 1, val >> 8); V_ADDR_WB(addr + 2, val >> 16); V_ADDR_WB(addr + 3, val >> 24); } pointer xf86int10Addr(xf86Int10InfoPtr pInt, CARD32 addr) { return V_ADDR(addr); }