/*********************************************************** Copyright 1987, 1998 The Open Group Permission to use, copy, modify, distribute, and sell this software and its documentation for any purpose is hereby granted without fee, provided that the above copyright notice appear in all copies and that both that copyright notice and this permission notice appear in supporting documentation. The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE OPEN GROUP BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. Except as contained in this notice, the name of The Open Group shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Software without prior written authorization from The Open Group. Copyright 1987 by Digital Equipment Corporation, Maynard, Massachusetts. All Rights Reserved Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice and this permission notice appear in supporting documentation, and that the name of Digital not be used in advertising or publicity pertaining to distribution of the software without specific, written prior permission. DIGITAL DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL DIGITAL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. ******************************************************************/ /* Author: Keith Packard and Bob Scheifler */ /* Warning: this code is toxic, do not dally very long here. */ #ifdef HAVE_DIX_CONFIG_H #include <dix-config.h> #endif #include <math.h> #include <X11/X.h> #include <X11/Xprotostr.h> #include "misc.h" #include "gcstruct.h" #include "scrnintstr.h" #include "pixmapstr.h" #include "windowstr.h" #include "mifpoly.h" #include "mi.h" #include "mifillarc.h" #include <X11/Xfuncproto.h> #ifdef _MSC_VER #define hypot _hypot #endif static double miDsin(double a); static double miDcos(double a); static double miDasin(double v); static double miDatan2(double dy, double dx); #ifndef HAVE_CBRT static double cbrt(double x) { if (x > 0.0) return pow(x, 1.0/3.0); else return -pow(-x, 1.0/3.0); } #endif /* * some interesting sematic interpretation of the protocol: * * Self intersecting arcs (i.e. those spanning 360 degrees) * never join with other arcs, and are drawn without caps * (unless on/off dashed, in which case each dash segment * is capped, except when the last segment meets the * first segment, when no caps are drawn) * * double dash arcs are drawn in two parts, first the * odd dashes (drawn in background) then the even dashes * (drawn in foreground). This means that overlapping * sections of foreground/background are drawn twice, * first in background then in foreground. The double-draw * occurs even when the function uses the destination values * (e.g. xor mode). This is the same way the wide-line * code works and should be "fixed". * */ #undef max #undef min _X_INLINE static int max (const int x, const int y) { return x>y? x:y; } _X_INLINE static int min (const int x, const int y) { return x<y? x:y; } struct bound { double min, max; }; struct ibound { int min, max; }; #define boundedLe(value, bounds)\ ((bounds).min <= (value) && (value) <= (bounds).max) struct line { double m, b; int valid; }; #define intersectLine(y,line) (line.m * (y) + line.b) /* * these are all y value bounds */ struct arc_bound { struct bound ellipse; struct bound inner; struct bound outer; struct bound right; struct bound left; struct ibound inneri; struct ibound outeri; }; struct accelerators { double tail_y; double h2; double w2; double h4; double w4; double h2mw2; double h2l; double w2l; double fromIntX; double fromIntY; struct line left, right; int yorgu; int yorgl; int xorg; }; struct arc_def { double w, h, l; double a0, a1; }; # define todeg(xAngle) (((double) (xAngle)) / 64.0) # define RIGHT_END 0 # define LEFT_END 1 typedef struct _miArcJoin { int arcIndex0, arcIndex1; int phase0, phase1; int end0, end1; } miArcJoinRec, *miArcJoinPtr; typedef struct _miArcCap { int arcIndex; int end; } miArcCapRec, *miArcCapPtr; typedef struct _miArcFace { SppPointRec clock; SppPointRec center; SppPointRec counterClock; } miArcFaceRec, *miArcFacePtr; typedef struct _miArcData { xArc arc; int render; /* non-zero means render after drawing */ int join; /* related join */ int cap; /* related cap */ int selfJoin; /* final dash meets first dash */ miArcFaceRec bounds[2]; double x0, y0, x1, y1; } miArcDataRec, *miArcDataPtr; /* * This is an entire sequence of arcs, computed and categorized according * to operation. miDashArcs generates either one or two of these. */ typedef struct _miPolyArc { int narcs; miArcDataPtr arcs; int ncaps; miArcCapPtr caps; int njoins; miArcJoinPtr joins; } miPolyArcRec, *miPolyArcPtr; static void fillSpans(DrawablePtr pDrawable, GCPtr pGC); static void newFinalSpan(int y, int xmin, int xmax); static void drawArc(xArc *tarc, int l, int a0, int a1, miArcFacePtr right, miArcFacePtr left); static void drawZeroArc(DrawablePtr pDraw, GCPtr pGC, xArc *tarc, int lw, miArcFacePtr left, miArcFacePtr right); static void miArcJoin(DrawablePtr pDraw, GCPtr pGC, miArcFacePtr pLeft, miArcFacePtr pRight, int xOrgLeft, int yOrgLeft, double xFtransLeft, double yFtransLeft, int xOrgRight, int yOrgRight, double xFtransRight, double yFtransRight); static void miArcCap(DrawablePtr pDraw, GCPtr pGC, miArcFacePtr pFace, int end, int xOrg, int yOrg, double xFtrans, double yFtrans); static void miRoundCap(DrawablePtr pDraw, GCPtr pGC, SppPointRec pCenter, SppPointRec pEnd, SppPointRec pCorner, SppPointRec pOtherCorner, int fLineEnd, int xOrg, int yOrg, double xFtrans, double yFtrans); static void miFreeArcs(miPolyArcPtr arcs, GCPtr pGC); static miPolyArcPtr miComputeArcs(xArc *parcs, int narcs, GCPtr pGC); static int miGetArcPts(SppArcPtr parc, int cpt, SppPointPtr *ppPts); # define CUBED_ROOT_2 1.2599210498948732038115849718451499938964 # define CUBED_ROOT_4 1.5874010519681993173435330390930175781250 /* * draw one segment of the arc using the arc spans generation routines */ static void miArcSegment( DrawablePtr pDraw, GCPtr pGC, xArc tarc, miArcFacePtr right, miArcFacePtr left) { int l = pGC->lineWidth; int a0, a1, startAngle, endAngle; miArcFacePtr temp; if (!l) l = 1; if (tarc.width == 0 || tarc.height == 0) { drawZeroArc (pDraw, pGC, &tarc, l, left, right); return; } if (pGC->miTranslate) { tarc.x += pDraw->x; tarc.y += pDraw->y; } a0 = tarc.angle1; a1 = tarc.angle2; if (a1 > FULLCIRCLE) a1 = FULLCIRCLE; else if (a1 < -FULLCIRCLE) a1 = -FULLCIRCLE; if (a1 < 0) { startAngle = a0 + a1; endAngle = a0; temp = right; right = left; left = temp; } else { startAngle = a0; endAngle = a0 + a1; } /* * bounds check the two angles */ if (startAngle < 0) startAngle = FULLCIRCLE - (-startAngle) % FULLCIRCLE; if (startAngle >= FULLCIRCLE) startAngle = startAngle % FULLCIRCLE; if (endAngle < 0) endAngle = FULLCIRCLE - (-endAngle) % FULLCIRCLE; if (endAngle > FULLCIRCLE) endAngle = (endAngle-1) % FULLCIRCLE + 1; if ((startAngle == endAngle) && a1) { startAngle = 0; endAngle = FULLCIRCLE; } drawArc (&tarc, l, startAngle, endAngle, right, left); } /* Three equations combine to describe the boundaries of the arc x^2/w^2 + y^2/h^2 = 1 ellipse itself (X-x)^2 + (Y-y)^2 = r^2 circle at (x, y) on the ellipse (Y-y) = (X-x)*w^2*y/(h^2*x) normal at (x, y) on the ellipse These lead to a quartic relating Y and y y^4 - (2Y)y^3 + (Y^2 + (h^4 - w^2*r^2)/(w^2 - h^2))y^2 - (2Y*h^4/(w^2 - h^2))y + (Y^2*h^4)/(w^2 - h^2) = 0 The reducible cubic obtained from this quartic is z^3 - (3N)z^2 - 2V = 0 where N = (Y^2 + (h^4 - w^2*r^2/(w^2 - h^2)))/6 V = w^2*r^2*Y^2*h^4/(4 *(w^2 - h^2)^2) Let t = z - N p = -N^2 q = -N^3 - V Then we get t^3 + 3pt + 2q = 0 The discriminant of this cubic is D = q^2 + p^3 When D > 0, a real root is obtained as z = N + cbrt(-q+sqrt(D)) + cbrt(-q-sqrt(D)) When D < 0, a real root is obtained as z = N - 2m*cos(acos(-q/m^3)/3) where m = sqrt(|p|) * sign(q) Given a real root Z of the cubic, the roots of the quartic are the roots of the two quadratics y^2 + ((b+A)/2)y + (Z + (bZ - d)/A) = 0 where A = +/- sqrt(8Z + b^2 - 4c) b, c, d are the cubic, quadratic, and linear coefficients of the quartic Some experimentation is then required to determine which solutions correspond to the inner and outer boundaries. */ typedef struct { short lx, lw, rx, rw; } miArcSpan; typedef struct { miArcSpan *spans; int count1, count2, k; char top, bot, hole; } miArcSpanData; static void drawQuadrant(struct arc_def *def, struct accelerators *acc, int a0, int a1, int mask, miArcFacePtr right, miArcFacePtr left, miArcSpanData *spdata); static void miComputeCircleSpans( int lw, xArc *parc, miArcSpanData *spdata) { miArcSpan *span; int doinner; int x, y, e; int xk, yk, xm, ym, dx, dy; int slw, inslw; int inx = 0, iny, ine = 0; int inxk = 0, inyk = 0, inxm = 0, inym = 0; doinner = -lw; slw = parc->width - doinner; y = parc->height >> 1; dy = parc->height & 1; dx = 1 - dy; MIWIDEARCSETUP(x, y, dy, slw, e, xk, xm, yk, ym); inslw = parc->width + doinner; if (inslw > 0) { spdata->hole = spdata->top; MIWIDEARCSETUP(inx, iny, dy, inslw, ine, inxk, inxm, inyk, inym); } else { spdata->hole = FALSE; doinner = -y; } spdata->count1 = -doinner - spdata->top; spdata->count2 = y + doinner; span = spdata->spans; while (y) { MIFILLARCSTEP(slw); span->lx = dy - x; if (++doinner <= 0) { span->lw = slw; span->rx = 0; span->rw = span->lx + slw; } else { MIFILLINARCSTEP(inslw); span->lw = x - inx; span->rx = dy - inx + inslw; span->rw = inx - x + slw - inslw; } span++; } if (spdata->bot) { if (spdata->count2) spdata->count2--; else { if (lw > (int)parc->height) span[-1].rx = span[-1].rw = -((lw - (int)parc->height) >> 1); else span[-1].rw = 0; spdata->count1--; } } } static void miComputeEllipseSpans( int lw, xArc *parc, miArcSpanData *spdata) { miArcSpan *span; double w, h, r, xorg; double Hs, Hf, WH, K, Vk, Nk, Fk, Vr, N, Nc, Z, rs; double A, T, b, d, x, y, t, inx, outx = 0.0, hepp, hepm; int flip, solution; w = (double)parc->width / 2.0; h = (double)parc->height / 2.0; r = lw / 2.0; rs = r * r; Hs = h * h; WH = w * w - Hs; Nk = w * r; Vk = (Nk * Hs) / (WH + WH); Hf = Hs * Hs; Nk = (Hf - Nk * Nk) / WH; Fk = Hf / WH; hepp = h + EPSILON; hepm = h - EPSILON; K = h + ((lw - 1) >> 1); span = spdata->spans; if (parc->width & 1) xorg = .5; else xorg = 0.0; if (spdata->top) { span->lx = 0; span->lw = 1; span++; } spdata->count1 = 0; spdata->count2 = 0; spdata->hole = (spdata->top && (int)parc->height * lw <= (int)(parc->width * parc->width) && lw < (int)parc->height); for (; K > 0.0; K -= 1.0) { N = (K * K + Nk) / 6.0; Nc = N * N * N; Vr = Vk * K; t = Nc + Vr * Vr; d = Nc + t; if (d < 0.0) { d = Nc; b = N; if ( (b < 0.0) == (t < 0.0) ) { b = -b; d = -d; } Z = N - 2.0 * b * cos(acos(-t / d) / 3.0); if ( (Z < 0.0) == (Vr < 0.0) ) flip = 2; else flip = 1; } else { d = Vr * sqrt(d); Z = N + cbrt(t + d) + cbrt(t - d); flip = 0; } A = sqrt((Z + Z) - Nk); T = (Fk - Z) * K / A; inx = 0.0; solution = FALSE; b = -A + K; d = b * b - 4 * (Z + T); if (d >= 0) { d = sqrt(d); y = (b + d) / 2; if ((y >= 0.0) && (y < hepp)) { solution = TRUE; if (y > hepm) y = h; t = y / h; x = w * sqrt(1 - (t * t)); t = K - y; if (rs - (t * t) >= 0) t = sqrt(rs - (t * t)); else t = 0; if (flip == 2) inx = x - t; else outx = x + t; } } b = A + K; d = b * b - 4 * (Z - T); /* Because of the large magnitudes involved, we lose enough precision * that sometimes we end up with a negative value near the axis, when * it should be positive. This is a workaround. */ if (d < 0 && !solution) d = 0.0; if (d >= 0) { d = sqrt(d); y = (b + d) / 2; if (y < hepp) { if (y > hepm) y = h; t = y / h; x = w * sqrt(1 - (t * t)); t = K - y; if (rs - (t * t) >= 0) inx = x - sqrt(rs - (t * t)); else inx = x; } y = (b - d) / 2; if (y >= 0.0) { if (y > hepm) y = h; t = y / h; x = w * sqrt(1 - (t * t)); t = K - y; if (rs - (t * t) >= 0) t = sqrt(rs - (t * t)); else t = 0; if (flip == 1) inx = x - t; else outx = x + t; } } span->lx = ICEIL(xorg - outx); if (inx <= 0.0) { spdata->count1++; span->lw = ICEIL(xorg + outx) - span->lx; span->rx = ICEIL(xorg + inx); span->rw = -ICEIL(xorg - inx); } else { spdata->count2++; span->lw = ICEIL(xorg - inx) - span->lx; span->rx = ICEIL(xorg + inx); span->rw = ICEIL(xorg + outx) - span->rx; } span++; } if (spdata->bot) { outx = w + r; if (r >= h && r <= w) inx = 0.0; else if (Nk < 0.0 && -Nk < Hs) { inx = w * sqrt(1 + Nk / Hs) - sqrt(rs + Nk); if (inx > w - r) inx = w - r; } else inx = w - r; span->lx = ICEIL(xorg - outx); if (inx <= 0.0) { span->lw = ICEIL(xorg + outx) - span->lx; span->rx = ICEIL(xorg + inx); span->rw = -ICEIL(xorg - inx); } else { span->lw = ICEIL(xorg - inx) - span->lx; span->rx = ICEIL(xorg + inx); span->rw = ICEIL(xorg + outx) - span->rx; } } if (spdata->hole) { span = &spdata->spans[spdata->count1]; span->lw = -span->lx; span->rx = 1; span->rw = span->lw; spdata->count1--; spdata->count2++; } } static double tailX( double K, struct arc_def *def, struct arc_bound *bounds, struct accelerators *acc) { double w, h, r; double Hs, Hf, WH, Vk, Nk, Fk, Vr, N, Nc, Z, rs; double A, T, b, d, x, y, t, hepp, hepm; int flip, solution; double xs[2]; double *xp; w = def->w; h = def->h; r = def->l; rs = r * r; Hs = acc->h2; WH = -acc->h2mw2; Nk = def->w * r; Vk = (Nk * Hs) / (WH + WH); Hf = acc->h4; Nk = (Hf - Nk * Nk) / WH; if (K == 0.0) { if (Nk < 0.0 && -Nk < Hs) { xs[0] = w * sqrt(1 + Nk / Hs) - sqrt(rs + Nk); xs[1] = w - r; if (acc->left.valid && boundedLe(K, bounds->left) && !boundedLe(K, bounds->outer) && xs[0] >= 0.0 && xs[1] >= 0.0) return xs[1]; if (acc->right.valid && boundedLe(K, bounds->right) && !boundedLe(K, bounds->inner) && xs[0] <= 0.0 && xs[1] <= 0.0) return xs[1]; return xs[0]; } return w - r; } Fk = Hf / WH; hepp = h + EPSILON; hepm = h - EPSILON; N = (K * K + Nk) / 6.0; Nc = N * N * N; Vr = Vk * K; xp = xs; xs[0] = 0.0; t = Nc + Vr * Vr; d = Nc + t; if (d < 0.0) { d = Nc; b = N; if ( (b < 0.0) == (t < 0.0) ) { b = -b; d = -d; } Z = N - 2.0 * b * cos(acos(-t / d) / 3.0); if ( (Z < 0.0) == (Vr < 0.0) ) flip = 2; else flip = 1; } else { d = Vr * sqrt(d); Z = N + cbrt(t + d) + cbrt(t - d); flip = 0; } A = sqrt((Z + Z) - Nk); T = (Fk - Z) * K / A; solution = FALSE; b = -A + K; d = b * b - 4 * (Z + T); if (d >= 0 && flip == 2) { d = sqrt(d); y = (b + d) / 2; if ((y >= 0.0) && (y < hepp)) { solution = TRUE; if (y > hepm) y = h; t = y / h; x = w * sqrt(1 - (t * t)); t = K - y; if (rs - (t * t) >= 0) t = sqrt(rs - (t * t)); else t = 0; *xp++ = x - t; } } b = A + K; d = b * b - 4 * (Z - T); /* Because of the large magnitudes involved, we lose enough precision * that sometimes we end up with a negative value near the axis, when * it should be positive. This is a workaround. */ if (d < 0 && !solution) d = 0.0; if (d >= 0) { d = sqrt(d); y = (b + d) / 2; if (y < hepp) { if (y > hepm) y = h; t = y / h; x = w * sqrt(1 - (t * t)); t = K - y; if (rs - (t * t) >= 0) *xp++ = x - sqrt(rs - (t * t)); else *xp++ = x; } y = (b - d) / 2; if (y >= 0.0 && flip == 1) { if (y > hepm) y = h; t = y / h; x = w * sqrt(1 - (t * t)); t = K - y; if (rs - (t * t) >= 0) t = sqrt(rs - (t * t)); else t = 0; *xp++ = x - t; } } if (xp > &xs[1]) { if (acc->left.valid && boundedLe(K, bounds->left) && !boundedLe(K, bounds->outer) && xs[0] >= 0.0 && xs[1] >= 0.0) return xs[1]; if (acc->right.valid && boundedLe(K, bounds->right) && !boundedLe(K, bounds->inner) && xs[0] <= 0.0 && xs[1] <= 0.0) return xs[1]; } return xs[0]; } static miArcSpanData * miComputeWideEllipse(int lw, xArc *parc) { miArcSpanData *spdata = NULL; int k; if (!lw) lw = 1; k = (parc->height >> 1) + ((lw - 1) >> 1); spdata = malloc(sizeof(miArcSpanData) + sizeof(miArcSpan) * (k + 2)); if (!spdata) return NULL; spdata->spans = (miArcSpan *)(spdata + 1); spdata->k = k; spdata->top = !(lw & 1) && !(parc->width & 1); spdata->bot = !(parc->height & 1); if (parc->width == parc->height) miComputeCircleSpans(lw, parc, spdata); else miComputeEllipseSpans(lw, parc, spdata); return spdata; } static void miFillWideEllipse( DrawablePtr pDraw, GCPtr pGC, xArc *parc) { DDXPointPtr points; DDXPointPtr pts; int *widths; int *wids; miArcSpanData *spdata; miArcSpan *span; int xorg, yorgu, yorgl; int n; yorgu = parc->height + pGC->lineWidth; n = (sizeof(int) * 2) * yorgu; widths = malloc(n + (sizeof(DDXPointRec) * 2) * yorgu); if (!widths) return; points = (DDXPointPtr)((char *)widths + n); spdata = miComputeWideEllipse((int)pGC->lineWidth, parc); if (!spdata) { free(widths); return; } pts = points; wids = widths; span = spdata->spans; xorg = parc->x + (parc->width >> 1); yorgu = parc->y + (parc->height >> 1); yorgl = yorgu + (parc->height & 1); if (pGC->miTranslate) { xorg += pDraw->x; yorgu += pDraw->y; yorgl += pDraw->y; } yorgu -= spdata->k; yorgl += spdata->k; if (spdata->top) { pts->x = xorg; pts->y = yorgu - 1; pts++; *wids++ = 1; span++; } for (n = spdata->count1; --n >= 0; ) { pts[0].x = xorg + span->lx; pts[0].y = yorgu; wids[0] = span->lw; pts[1].x = pts[0].x; pts[1].y = yorgl; wids[1] = wids[0]; yorgu++; yorgl--; pts += 2; wids += 2; span++; } if (spdata->hole) { pts[0].x = xorg; pts[0].y = yorgl; wids[0] = 1; pts++; wids++; } for (n = spdata->count2; --n >= 0; ) { pts[0].x = xorg + span->lx; pts[0].y = yorgu; wids[0] = span->lw; pts[1].x = xorg + span->rx; pts[1].y = pts[0].y; wids[1] = span->rw; pts[2].x = pts[0].x; pts[2].y = yorgl; wids[2] = wids[0]; pts[3].x = pts[1].x; pts[3].y = pts[2].y; wids[3] = wids[1]; yorgu++; yorgl--; pts += 4; wids += 4; span++; } if (spdata->bot) { if (span->rw <= 0) { pts[0].x = xorg + span->lx; pts[0].y = yorgu; wids[0] = span->lw; pts++; wids++; } else { pts[0].x = xorg + span->lx; pts[0].y = yorgu; wids[0] = span->lw; pts[1].x = xorg + span->rx; pts[1].y = pts[0].y; wids[1] = span->rw; pts += 2; wids += 2; } } free(spdata); (*pGC->ops->FillSpans)(pDraw, pGC, pts - points, points, widths, FALSE); free(widths); } /* * miPolyArc strategy: * * If arc is zero width and solid, we don't have to worry about the rasterop * or join styles. For wide solid circles, we use a fast integer algorithm. * For wide solid ellipses, we use special case floating point code. * Otherwise, we set up pDrawTo and pGCTo according to the rasterop, then * draw using pGCTo and pDrawTo. If the raster-op was "tricky," that is, * if it involves the destination, then we use PushPixels to move the bits * from the scratch drawable to pDraw. (See the wide line code for a * fuller explanation of this.) */ void miPolyArc(DrawablePtr pDraw, GCPtr pGC, int narcs, xArc *parcs) { int i; xArc *parc; int xMin, xMax, yMin, yMax; int pixmapWidth = 0, pixmapHeight = 0; int xOrg = 0, yOrg = 0; int width; Bool fTricky; DrawablePtr pDrawTo; CARD32 fg, bg; GCPtr pGCTo; miPolyArcPtr polyArcs; int cap[2], join[2]; int iphase; int halfWidth; width = pGC->lineWidth; if(width == 0 && pGC->lineStyle == LineSolid) { for(i = narcs, parc = parcs; --i >= 0; parc++) miArcSegment( pDraw, pGC, *parc, (miArcFacePtr) 0, (miArcFacePtr) 0 ); fillSpans (pDraw, pGC); } else { if ((pGC->lineStyle == LineSolid) && narcs) { while (parcs->width && parcs->height && (parcs->angle2 >= FULLCIRCLE || parcs->angle2 <= -FULLCIRCLE)) { miFillWideEllipse(pDraw, pGC, parcs); if (!--narcs) return; parcs++; } } /* Set up pDrawTo and pGCTo based on the rasterop */ switch(pGC->alu) { case GXclear: /* 0 */ case GXcopy: /* src */ case GXcopyInverted: /* NOT src */ case GXset: /* 1 */ fTricky = FALSE; pDrawTo = pDraw; pGCTo = pGC; break; default: fTricky = TRUE; /* find bounding box around arcs */ xMin = yMin = MAXSHORT; xMax = yMax = MINSHORT; for(i = narcs, parc = parcs; --i >= 0; parc++) { xMin = min (xMin, parc->x); yMin = min (yMin, parc->y); xMax = max (xMax, (parc->x + (int) parc->width)); yMax = max (yMax, (parc->y + (int) parc->height)); } /* expand box to deal with line widths */ halfWidth = (width + 1)/2; xMin -= halfWidth; yMin -= halfWidth; xMax += halfWidth; yMax += halfWidth; /* compute pixmap size; limit it to size of drawable */ xOrg = max(xMin, 0); yOrg = max(yMin, 0); pixmapWidth = min(xMax, pDraw->width) - xOrg; pixmapHeight = min(yMax, pDraw->height) - yOrg; /* if nothing left, return */ if ( (pixmapWidth <= 0) || (pixmapHeight <= 0) ) return; for(i = narcs, parc = parcs; --i >= 0; parc++) { parc->x -= xOrg; parc->y -= yOrg; } if (pGC->miTranslate) { xOrg += pDraw->x; yOrg += pDraw->y; } /* set up scratch GC */ pGCTo = GetScratchGC(1, pDraw->pScreen); if (!pGCTo) return; { ChangeGCVal gcvals[6]; gcvals[0].val = GXcopy; gcvals[1].val = 1; gcvals[2].val = 0; gcvals[3].val = pGC->lineWidth; gcvals[4].val = pGC->capStyle; gcvals[5].val = pGC->joinStyle; ChangeGC(NullClient, pGCTo, GCFunction | GCForeground | GCBackground | GCLineWidth | GCCapStyle | GCJoinStyle, gcvals); } /* allocate a 1 bit deep pixmap of the appropriate size, and * validate it */ pDrawTo = (DrawablePtr)(*pDraw->pScreen->CreatePixmap) (pDraw->pScreen, pixmapWidth, pixmapHeight, 1, CREATE_PIXMAP_USAGE_SCRATCH); if (!pDrawTo) { FreeScratchGC(pGCTo); return; } ValidateGC(pDrawTo, pGCTo); miClearDrawable(pDrawTo, pGCTo); } fg = pGC->fgPixel; bg = pGC->bgPixel; if ((pGC->fillStyle == FillTiled) || (pGC->fillStyle == FillOpaqueStippled)) bg = fg; /* the protocol sez these don't cause color changes */ polyArcs = miComputeArcs (parcs, narcs, pGC); if (!polyArcs) { if (fTricky) { (*pDraw->pScreen->DestroyPixmap) ((PixmapPtr)pDrawTo); FreeScratchGC (pGCTo); } return; } cap[0] = cap[1] = 0; join[0] = join[1] = 0; for (iphase = ((pGC->lineStyle == LineDoubleDash) ? 1 : 0); iphase >= 0; iphase--) { ChangeGCVal gcval; if (iphase == 1) { gcval.val = bg; ChangeGC (NullClient, pGC, GCForeground, &gcval); ValidateGC (pDraw, pGC); } else if (pGC->lineStyle == LineDoubleDash) { gcval.val = fg; ChangeGC (NullClient, pGC, GCForeground, &gcval); ValidateGC (pDraw, pGC); } for (i = 0; i < polyArcs[iphase].narcs; i++) { miArcDataPtr arcData; arcData = &polyArcs[iphase].arcs[i]; miArcSegment(pDrawTo, pGCTo, arcData->arc, &arcData->bounds[RIGHT_END], &arcData->bounds[LEFT_END]); if (polyArcs[iphase].arcs[i].render) { fillSpans (pDrawTo, pGCTo); /* * don't cap self-joining arcs */ if (polyArcs[iphase].arcs[i].selfJoin && cap[iphase] < polyArcs[iphase].arcs[i].cap) cap[iphase]++; while (cap[iphase] < polyArcs[iphase].arcs[i].cap) { int arcIndex, end; miArcDataPtr arcData0; arcIndex = polyArcs[iphase].caps[cap[iphase]].arcIndex; end = polyArcs[iphase].caps[cap[iphase]].end; arcData0 = &polyArcs[iphase].arcs[arcIndex]; miArcCap (pDrawTo, pGCTo, &arcData0->bounds[end], end, arcData0->arc.x, arcData0->arc.y, (double) arcData0->arc.width / 2.0, (double) arcData0->arc.height / 2.0); ++cap[iphase]; } while (join[iphase] < polyArcs[iphase].arcs[i].join) { int arcIndex0, arcIndex1, end0, end1; int phase0, phase1; miArcDataPtr arcData0, arcData1; miArcJoinPtr joinp; joinp = &polyArcs[iphase].joins[join[iphase]]; arcIndex0 = joinp->arcIndex0; end0 = joinp->end0; arcIndex1 = joinp->arcIndex1; end1 = joinp->end1; phase0 = joinp->phase0; phase1 = joinp->phase1; arcData0 = &polyArcs[phase0].arcs[arcIndex0]; arcData1 = &polyArcs[phase1].arcs[arcIndex1]; miArcJoin (pDrawTo, pGCTo, &arcData0->bounds[end0], &arcData1->bounds[end1], arcData0->arc.x, arcData0->arc.y, (double) arcData0->arc.width / 2.0, (double) arcData0->arc.height / 2.0, arcData1->arc.x, arcData1->arc.y, (double) arcData1->arc.width / 2.0, (double) arcData1->arc.height / 2.0); ++join[iphase]; } if (fTricky) { if (pGC->serialNumber != pDraw->serialNumber) ValidateGC (pDraw, pGC); (*pGC->ops->PushPixels) (pGC, (PixmapPtr)pDrawTo, pDraw, pixmapWidth, pixmapHeight, xOrg, yOrg); miClearDrawable ((DrawablePtr) pDrawTo, pGCTo); } } } } miFreeArcs(polyArcs, pGC); if(fTricky) { (*pGCTo->pScreen->DestroyPixmap)((PixmapPtr)pDrawTo); FreeScratchGC(pGCTo); } } } static double angleBetween (SppPointRec center, SppPointRec point1, SppPointRec point2) { double a1, a2, a; /* * reflect from X coordinates back to ellipse * coordinates -- y increasing upwards */ a1 = miDatan2 (- (point1.y - center.y), point1.x - center.x); a2 = miDatan2 (- (point2.y - center.y), point2.x - center.x); a = a2 - a1; if (a <= -180.0) a += 360.0; else if (a > 180.0) a -= 360.0; return a; } static void translateBounds ( miArcFacePtr b, int x, int y, double fx, double fy) { fx += x; fy += y; b->clock.x -= fx; b->clock.y -= fy; b->center.x -= fx; b->center.y -= fy; b->counterClock.x -= fx; b->counterClock.y -= fy; } static void miArcJoin(DrawablePtr pDraw, GCPtr pGC, miArcFacePtr pLeft, miArcFacePtr pRight, int xOrgLeft, int yOrgLeft, double xFtransLeft, double yFtransLeft, int xOrgRight, int yOrgRight, double xFtransRight, double yFtransRight) { SppPointRec center, corner, otherCorner; SppPointRec poly[5], e; SppPointPtr pArcPts; int cpt; SppArcRec arc; miArcFaceRec Right, Left; int polyLen = 0; int xOrg, yOrg; double xFtrans, yFtrans; double a; double ae, ac2, ec2, bc2, de; double width; xOrg = (xOrgRight + xOrgLeft) / 2; yOrg = (yOrgRight + yOrgLeft) / 2; xFtrans = (xFtransLeft + xFtransRight) / 2; yFtrans = (yFtransLeft + yFtransRight) / 2; Right = *pRight; translateBounds (&Right, xOrg - xOrgRight, yOrg - yOrgRight, xFtrans - xFtransRight, yFtrans - yFtransRight); Left = *pLeft; translateBounds (&Left, xOrg - xOrgLeft, yOrg - yOrgLeft, xFtrans - xFtransLeft, yFtrans - yFtransLeft); pRight = &Right; pLeft = &Left; if (pRight->clock.x == pLeft->counterClock.x && pRight->clock.y == pLeft->counterClock.y) return; center = pRight->center; if (0 <= (a = angleBetween (center, pRight->clock, pLeft->counterClock)) && a <= 180.0) { corner = pRight->clock; otherCorner = pLeft->counterClock; } else { a = angleBetween (center, pLeft->clock, pRight->counterClock); corner = pLeft->clock; otherCorner = pRight->counterClock; } switch (pGC->joinStyle) { case JoinRound: width = (pGC->lineWidth ? (double)pGC->lineWidth : (double)1); arc.x = center.x - width/2; arc.y = center.y - width/2; arc.width = width; arc.height = width; arc.angle1 = -miDatan2 (corner.y - center.y, corner.x - center.x); arc.angle2 = a; pArcPts = malloc(3 * sizeof (SppPointRec)); if (!pArcPts) return; pArcPts[0].x = otherCorner.x; pArcPts[0].y = otherCorner.y; pArcPts[1].x = center.x; pArcPts[1].y = center.y; pArcPts[2].x = corner.x; pArcPts[2].y = corner.y; if( (cpt = miGetArcPts(&arc, 3, &pArcPts)) ) { /* by drawing with miFillSppPoly and setting the endpoints of the arc * to be the corners, we assure that the cap will meet up with the * rest of the line */ miFillSppPoly(pDraw, pGC, cpt, pArcPts, xOrg, yOrg, xFtrans, yFtrans); } free(pArcPts); return; case JoinMiter: /* * don't miter arcs with less than 11 degrees between them */ if (a < 169.0) { poly[0] = corner; poly[1] = center; poly[2] = otherCorner; bc2 = (corner.x - otherCorner.x) * (corner.x - otherCorner.x) + (corner.y - otherCorner.y) * (corner.y - otherCorner.y); ec2 = bc2 / 4; ac2 = (corner.x - center.x) * (corner.x - center.x) + (corner.y - center.y) * (corner.y - center.y); ae = sqrt (ac2 - ec2); de = ec2 / ae; e.x = (corner.x + otherCorner.x) / 2; e.y = (corner.y + otherCorner.y) / 2; poly[3].x = e.x + de * (e.x - center.x) / ae; poly[3].y = e.y + de * (e.y - center.y) / ae; poly[4] = corner; polyLen = 5; break; } case JoinBevel: poly[0] = corner; poly[1] = center; poly[2] = otherCorner; poly[3] = corner; polyLen = 4; break; } miFillSppPoly (pDraw, pGC, polyLen, poly, xOrg, yOrg, xFtrans, yFtrans); } /*ARGSUSED*/ static void miArcCap ( DrawablePtr pDraw, GCPtr pGC, miArcFacePtr pFace, int end, int xOrg, int yOrg, double xFtrans, double yFtrans) { SppPointRec corner, otherCorner, center, endPoint, poly[5]; corner = pFace->clock; otherCorner = pFace->counterClock; center = pFace->center; switch (pGC->capStyle) { case CapProjecting: poly[0].x = otherCorner.x; poly[0].y = otherCorner.y; poly[1].x = corner.x; poly[1].y = corner.y; poly[2].x = corner.x - (center.y - corner.y); poly[2].y = corner.y + (center.x - corner.x); poly[3].x = otherCorner.x - (otherCorner.y - center.y); poly[3].y = otherCorner.y + (otherCorner.x - center.x); poly[4].x = otherCorner.x; poly[4].y = otherCorner.y; miFillSppPoly (pDraw, pGC, 5, poly, xOrg, yOrg, xFtrans, yFtrans); break; case CapRound: /* * miRoundCap just needs these to be unequal. */ endPoint = center; endPoint.x = endPoint.x + 100; miRoundCap (pDraw, pGC, center, endPoint, corner, otherCorner, 0, -xOrg, -yOrg, xFtrans, yFtrans); break; } } /* MIROUNDCAP -- a private helper function * Put Rounded cap on end. pCenter is the center of this end of the line * pEnd is the center of the other end of the line. pCorner is one of the * two corners at this end of the line. * NOTE: pOtherCorner must be counter-clockwise from pCorner. */ /*ARGSUSED*/ static void miRoundCap( DrawablePtr pDraw, GCPtr pGC, SppPointRec pCenter, SppPointRec pEnd, SppPointRec pCorner, SppPointRec pOtherCorner, int fLineEnd, int xOrg, int yOrg, double xFtrans, double yFtrans) { int cpt; double width; SppArcRec arc; SppPointPtr pArcPts; width = (pGC->lineWidth ? (double)pGC->lineWidth : (double)1); arc.x = pCenter.x - width/2; arc.y = pCenter.y - width/2; arc.width = width; arc.height = width; arc.angle1 = -miDatan2 (pCorner.y - pCenter.y, pCorner.x - pCenter.x); if(PTISEQUAL(pCenter, pEnd)) arc.angle2 = - 180.0; else { arc.angle2 = -miDatan2 (pOtherCorner.y - pCenter.y, pOtherCorner.x - pCenter.x) - arc.angle1; if (arc.angle2 < 0) arc.angle2 += 360.0; } pArcPts = (SppPointPtr) NULL; if( (cpt = miGetArcPts(&arc, 0, &pArcPts)) ) { /* by drawing with miFillSppPoly and setting the endpoints of the arc * to be the corners, we assure that the cap will meet up with the * rest of the line */ miFillSppPoly(pDraw, pGC, cpt, pArcPts, -xOrg, -yOrg, xFtrans, yFtrans); } free(pArcPts); } /* * To avoid inaccuracy at the cardinal points, use trig functions * which are exact for those angles */ #ifndef M_PI #define M_PI 3.14159265358979323846 #endif #ifndef M_PI_2 #define M_PI_2 1.57079632679489661923 #endif # define Dsin(d) ((d) == 0.0 ? 0.0 : ((d) == 90.0 ? 1.0 : sin(d*M_PI/180.0))) # define Dcos(d) ((d) == 0.0 ? 1.0 : ((d) == 90.0 ? 0.0 : cos(d*M_PI/180.0))) # define mod(a,b) ((a) >= 0 ? (a) % (b) : (b) - (-(a)) % (b)) static double miDcos (double a) { int i; if (floor (a/90) == a/90) { i = (int) (a/90.0); switch (mod (i, 4)) { case 0: return 1; case 1: return 0; case 2: return -1; case 3: return 0; } } return cos (a * M_PI / 180.0); } static double miDsin (double a) { int i; if (floor (a/90) == a/90) { i = (int) (a/90.0); switch (mod (i, 4)) { case 0: return 0; case 1: return 1; case 2: return 0; case 3: return -1; } } return sin (a * M_PI / 180.0); } static double miDasin (double v) { if (v == 0) return 0.0; if (v == 1.0) return 90.0; if (v == -1.0) return -90.0; return asin(v) * (180.0 / M_PI); } static double miDatan2 (double dy, double dx) { if (dy == 0) { if (dx >= 0) return 0.0; return 180.0; } else if (dx == 0) { if (dy > 0) return 90.0; return -90.0; } else if (fabs (dy) == fabs (dx)) { if (dy > 0) { if (dx > 0) return 45.0; return 135.0; } else { if (dx > 0) return 315.0; return 225.0; } } else { return atan2 (dy, dx) * (180.0 / M_PI); } } /* MIGETARCPTS -- Converts an arc into a set of line segments -- a helper * routine for filled arc and line (round cap) code. * Returns the number of points in the arc. Note that it takes a pointer * to a pointer to where it should put the points and an index (cpt). * This procedure allocates the space necessary to fit the arc points. * Sometimes it's convenient for those points to be at the end of an existing * array. (For example, if we want to leave a spare point to make sectors * instead of segments.) So we pass in the malloc()ed chunk that contains the * array and an index saying where we should start stashing the points. * If there isn't an array already, we just pass in a null pointer and * count on realloc() to handle the null pointer correctly. */ static int miGetArcPts( SppArcPtr parc, /* points to an arc */ int cpt, /* number of points already in arc list */ SppPointPtr *ppPts) /* pointer to pointer to arc-list -- modified */ { double st, /* Start Theta, start angle */ et, /* End Theta, offset from start theta */ dt, /* Delta Theta, angle to sweep ellipse */ cdt, /* Cos Delta Theta, actually 2 cos(dt) */ x0, y0, /* the recurrence formula needs two points to start */ x1, y1, x2, y2, /* this will be the new point generated */ xc, yc; /* the center point */ int count, i; SppPointPtr poly; /* The spec says that positive angles indicate counterclockwise motion. * Given our coordinate system (with 0,0 in the upper left corner), * the screen appears flipped in Y. The easiest fix is to negate the * angles given */ st = - parc->angle1; et = - parc->angle2; /* Try to get a delta theta that is within 1/2 pixel. Then adjust it * so that it divides evenly into the total. * I'm just using cdt 'cause I'm lazy. */ cdt = parc->width; if (parc->height > cdt) cdt = parc->height; cdt /= 2.0; if(cdt <= 0) return 0; if (cdt < 1.0) cdt = 1.0; dt = miDasin ( 1.0 / cdt ); /* minimum step necessary */ count = et/dt; count = abs(count) + 1; dt = et/count; count++; cdt = 2 * miDcos(dt); if (!(poly = (SppPointPtr) realloc((pointer)*ppPts, (cpt + count) * sizeof(SppPointRec)))) return 0; *ppPts = poly; xc = parc->width/2.0; /* store half width and half height */ yc = parc->height/2.0; x0 = xc * miDcos(st); y0 = yc * miDsin(st); x1 = xc * miDcos(st + dt); y1 = yc * miDsin(st + dt); xc += parc->x; /* by adding initial point, these become */ yc += parc->y; /* the center point */ poly[cpt].x = (xc + x0); poly[cpt].y = (yc + y0); poly[cpt + 1].x = (xc + x1); poly[cpt + 1].y = (yc + y1); for(i = 2; i < count; i++) { x2 = cdt * x1 - x0; y2 = cdt * y1 - y0; poly[cpt + i].x = (xc + x2); poly[cpt + i].y = (yc + y2); x0 = x1; y0 = y1; x1 = x2; y1 = y2; } /* adjust the last point */ if (abs(parc->angle2) >= 360.0) poly[cpt +i -1] = poly[0]; else { poly[cpt +i -1].x = (miDcos(st + et) * parc->width/2.0 + xc); poly[cpt +i -1].y = (miDsin(st + et) * parc->height/2.0 + yc); } return count; } struct arcData { double x0, y0, x1, y1; int selfJoin; }; # define ADD_REALLOC_STEP 20 static void addCap ( miArcCapPtr *capsp, int *ncapsp, int *sizep, int end, int arcIndex) { int newsize; miArcCapPtr cap; if (*ncapsp == *sizep) { newsize = *sizep + ADD_REALLOC_STEP; cap = (miArcCapPtr) realloc(*capsp, newsize * sizeof (**capsp)); if (!cap) return; *sizep = newsize; *capsp = cap; } cap = &(*capsp)[*ncapsp]; cap->end = end; cap->arcIndex = arcIndex; ++*ncapsp; } static void addJoin ( miArcJoinPtr *joinsp, int *njoinsp, int *sizep, int end0, int index0, int phase0, int end1, int index1, int phase1) { int newsize; miArcJoinPtr join; if (*njoinsp == *sizep) { newsize = *sizep + ADD_REALLOC_STEP; join = (miArcJoinPtr) realloc(*joinsp, newsize * sizeof (**joinsp)); if (!join) return; *sizep = newsize; *joinsp = join; } join = &(*joinsp)[*njoinsp]; join->end0 = end0; join->arcIndex0 = index0; join->phase0 = phase0; join->end1 = end1; join->arcIndex1 = index1; join->phase1 = phase1; ++*njoinsp; } static miArcDataPtr addArc ( miArcDataPtr *arcsp, int *narcsp, int *sizep, xArc *xarc) { int newsize; miArcDataPtr arc; if (*narcsp == *sizep) { newsize = *sizep + ADD_REALLOC_STEP; arc = (miArcDataPtr) realloc(*arcsp, newsize * sizeof (**arcsp)); if (!arc) return NULL; *sizep = newsize; *arcsp = arc; } arc = &(*arcsp)[*narcsp]; arc->arc = *xarc; ++*narcsp; return arc; } static void miFreeArcs( miPolyArcPtr arcs, GCPtr pGC) { int iphase; for (iphase = ((pGC->lineStyle == LineDoubleDash) ? 1 : 0); iphase >= 0; iphase--) { if (arcs[iphase].narcs > 0) free(arcs[iphase].arcs); if (arcs[iphase].njoins > 0) free(arcs[iphase].joins); if (arcs[iphase].ncaps > 0) free(arcs[iphase].caps); } free(arcs); } /* * map angles to radial distance. This only deals with the first quadrant */ /* * a polygonal approximation to the arc for computing arc lengths */ # define DASH_MAP_SIZE 91 # define dashIndexToAngle(di) ((((double) (di)) * 90.0) / ((double) DASH_MAP_SIZE - 1)) # define xAngleToDashIndex(xa) ((((long) (xa)) * (DASH_MAP_SIZE - 1)) / (90 * 64)) # define dashIndexToXAngle(di) ((((long) (di)) * (90 * 64)) / (DASH_MAP_SIZE - 1)) # define dashXAngleStep (((double) (90 * 64)) / ((double) (DASH_MAP_SIZE - 1))) typedef struct { double map[DASH_MAP_SIZE]; } dashMap; static int computeAngleFromPath(int startAngle, int endAngle, dashMap *map, int *lenp, int backwards); static void computeDashMap ( xArc *arcp, dashMap *map) { int di; double a, x, y, prevx = 0.0, prevy = 0.0, dist; for (di = 0; di < DASH_MAP_SIZE; di++) { a = dashIndexToAngle (di); x = ((double) arcp->width / 2.0) * miDcos (a); y = ((double) arcp->height / 2.0) * miDsin (a); if (di == 0) { map->map[di] = 0.0; } else { dist = hypot (x - prevx, y - prevy); map->map[di] = map->map[di - 1] + dist; } prevx = x; prevy = y; } } typedef enum {HORIZONTAL, VERTICAL, OTHER} arcTypes; /* this routine is a bit gory */ static miPolyArcPtr miComputeArcs ( xArc *parcs, int narcs, GCPtr pGC) { int isDashed, isDoubleDash; int dashOffset; miPolyArcPtr arcs; int start, i, j, k = 0, nexti, nextk = 0; int joinSize[2]; int capSize[2]; int arcSize[2]; int angle2; double a0, a1; struct arcData *data; miArcDataPtr arc; xArc xarc; int iphase, prevphase = 0, joinphase; int arcsJoin; int selfJoin; int iDash = 0, dashRemaining = 0; int iDashStart = 0, dashRemainingStart = 0, iphaseStart; int startAngle, spanAngle, endAngle, backwards = 0; int prevDashAngle, dashAngle; dashMap map; isDashed = !(pGC->lineStyle == LineSolid); isDoubleDash = (pGC->lineStyle == LineDoubleDash); dashOffset = pGC->dashOffset; data = malloc(narcs * sizeof (struct arcData)); if (!data) return NULL; arcs = malloc(sizeof (*arcs) * (isDoubleDash ? 2 : 1)); if (!arcs) { free(data); return NULL; } for (i = 0; i < narcs; i++) { a0 = todeg (parcs[i].angle1); angle2 = parcs[i].angle2; if (angle2 > FULLCIRCLE) angle2 = FULLCIRCLE; else if (angle2 < -FULLCIRCLE) angle2 = -FULLCIRCLE; data[i].selfJoin = angle2 == FULLCIRCLE || angle2 == -FULLCIRCLE; a1 = todeg (parcs[i].angle1 + angle2); data[i].x0 = parcs[i].x + (double) parcs[i].width / 2 * (1 + miDcos (a0)); data[i].y0 = parcs[i].y + (double) parcs[i].height / 2 * (1 - miDsin (a0)); data[i].x1 = parcs[i].x + (double) parcs[i].width / 2 * (1 + miDcos (a1)); data[i].y1 = parcs[i].y + (double) parcs[i].height / 2 * (1 - miDsin (a1)); } for (iphase = 0; iphase < (isDoubleDash ? 2 : 1); iphase++) { arcs[iphase].njoins = 0; arcs[iphase].joins = 0; joinSize[iphase] = 0; arcs[iphase].ncaps = 0; arcs[iphase].caps = 0; capSize[iphase] = 0; arcs[iphase].narcs = 0; arcs[iphase].arcs = 0; arcSize[iphase] = 0; } iphase = 0; if (isDashed) { iDash = 0; dashRemaining = pGC->dash[0]; while (dashOffset > 0) { if (dashOffset >= dashRemaining) { dashOffset -= dashRemaining; iphase = iphase ? 0 : 1; iDash++; if (iDash == pGC->numInDashList) iDash = 0; dashRemaining = pGC->dash[iDash]; } else { dashRemaining -= dashOffset; dashOffset = 0; } } iDashStart = iDash; dashRemainingStart = dashRemaining; } iphaseStart = iphase; for (i = narcs - 1; i >= 0; i--) { j = i + 1; if (j == narcs) j = 0; if (data[i].selfJoin || i == j || (UNEQUAL (data[i].x1, data[j].x0) || UNEQUAL (data[i].y1, data[j].y0))) { if (iphase == 0 || isDoubleDash) addCap (&arcs[iphase].caps, &arcs[iphase].ncaps, &capSize[iphase], RIGHT_END, 0); break; } } start = i + 1; if (start == narcs) start = 0; i = start; for (;;) { j = i + 1; if (j == narcs) j = 0; nexti = i+1; if (nexti == narcs) nexti = 0; if (isDashed) { /* ** deal with dashed arcs. Use special rules for certain 0 area arcs. ** Presumably, the other 0 area arcs still aren't done right. */ arcTypes arcType = OTHER; CARD16 thisLength; if (parcs[i].height == 0 && (parcs[i].angle1 % FULLCIRCLE) == 0x2d00 && parcs[i].angle2 == 0x2d00) arcType = HORIZONTAL; else if (parcs[i].width == 0 && (parcs[i].angle1 % FULLCIRCLE) == 0x1680 && parcs[i].angle2 == 0x2d00) arcType = VERTICAL; if (arcType == OTHER) { /* * precompute an approximation map */ computeDashMap (&parcs[i], &map); /* * compute each individual dash segment using the path * length function */ startAngle = parcs[i].angle1; spanAngle = parcs[i].angle2; if (spanAngle > FULLCIRCLE) spanAngle = FULLCIRCLE; else if (spanAngle < -FULLCIRCLE) spanAngle = -FULLCIRCLE; if (startAngle < 0) startAngle = FULLCIRCLE - (-startAngle) % FULLCIRCLE; if (startAngle >= FULLCIRCLE) startAngle = startAngle % FULLCIRCLE; endAngle = startAngle + spanAngle; backwards = spanAngle < 0; } else { xarc = parcs[i]; if (arcType == VERTICAL) { xarc.angle1 = 0x1680; startAngle = parcs[i].y; endAngle = startAngle + parcs[i].height; } else { xarc.angle1 = 0x2d00; startAngle = parcs[i].x; endAngle = startAngle + parcs[i].width; } } dashAngle = startAngle; selfJoin = data[i].selfJoin && (iphase == 0 || isDoubleDash); /* * add dashed arcs to each bucket */ arc = 0; while (dashAngle != endAngle) { prevDashAngle = dashAngle; if (arcType == OTHER) { dashAngle = computeAngleFromPath (prevDashAngle, endAngle, &map, &dashRemaining, backwards); /* avoid troubles with huge arcs and small dashes */ if (dashAngle == prevDashAngle) { if (backwards) dashAngle--; else dashAngle++; } } else { thisLength = (dashAngle + dashRemaining <= endAngle) ? dashRemaining : endAngle - dashAngle; if (arcType == VERTICAL) { xarc.y = dashAngle; xarc.height = thisLength; } else { xarc.x = dashAngle; xarc.width = thisLength; } dashAngle += thisLength; dashRemaining -= thisLength; } if (iphase == 0 || isDoubleDash) { if (arcType == OTHER) { xarc = parcs[i]; spanAngle = prevDashAngle; if (spanAngle < 0) spanAngle = FULLCIRCLE - (-spanAngle) % FULLCIRCLE; if (spanAngle >= FULLCIRCLE) spanAngle = spanAngle % FULLCIRCLE; xarc.angle1 = spanAngle; spanAngle = dashAngle - prevDashAngle; if (backwards) { if (dashAngle > prevDashAngle) spanAngle = - FULLCIRCLE + spanAngle; } else { if (dashAngle < prevDashAngle) spanAngle = FULLCIRCLE + spanAngle; } if (spanAngle > FULLCIRCLE) spanAngle = FULLCIRCLE; if (spanAngle < -FULLCIRCLE) spanAngle = -FULLCIRCLE; xarc.angle2 = spanAngle; } arc = addArc (&arcs[iphase].arcs, &arcs[iphase].narcs, &arcSize[iphase], &xarc); if (!arc) goto arcfail; /* * cap each end of an on/off dash */ if (!isDoubleDash) { if (prevDashAngle != startAngle) { addCap (&arcs[iphase].caps, &arcs[iphase].ncaps, &capSize[iphase], RIGHT_END, arc - arcs[iphase].arcs); } if (dashAngle != endAngle) { addCap (&arcs[iphase].caps, &arcs[iphase].ncaps, &capSize[iphase], LEFT_END, arc - arcs[iphase].arcs); } } arc->cap = arcs[iphase].ncaps; arc->join = arcs[iphase].njoins; arc->render = 0; arc->selfJoin = 0; if (dashAngle == endAngle) arc->selfJoin = selfJoin; } prevphase = iphase; if (dashRemaining <= 0) { ++iDash; if (iDash == pGC->numInDashList) iDash = 0; iphase = iphase ? 0:1; dashRemaining = pGC->dash[iDash]; } } /* * make sure a place exists for the position data when * drawing a zero-length arc */ if (startAngle == endAngle) { prevphase = iphase; if (!isDoubleDash && iphase == 1) prevphase = 0; arc = addArc (&arcs[prevphase].arcs, &arcs[prevphase].narcs, &arcSize[prevphase], &parcs[i]); if (!arc) goto arcfail; arc->join = arcs[prevphase].njoins; arc->cap = arcs[prevphase].ncaps; arc->selfJoin = data[i].selfJoin; } } else { arc = addArc (&arcs[iphase].arcs, &arcs[iphase].narcs, &arcSize[iphase], &parcs[i]); if (!arc) goto arcfail; arc->join = arcs[iphase].njoins; arc->cap = arcs[iphase].ncaps; arc->selfJoin = data[i].selfJoin; prevphase = iphase; } if (prevphase == 0 || isDoubleDash) k = arcs[prevphase].narcs - 1; if (iphase == 0 || isDoubleDash) nextk = arcs[iphase].narcs; if (nexti == start) { nextk = 0; if (isDashed) { iDash = iDashStart; iphase = iphaseStart; dashRemaining = dashRemainingStart; } } arcsJoin = narcs > 1 && i != j && ISEQUAL (data[i].x1, data[j].x0) && ISEQUAL (data[i].y1, data[j].y0) && !data[i].selfJoin && !data[j].selfJoin; if (arc) { if (arcsJoin) arc->render = 0; else arc->render = 1; } if (arcsJoin && (prevphase == 0 || isDoubleDash) && (iphase == 0 || isDoubleDash)) { joinphase = iphase; if (isDoubleDash) { if (nexti == start) joinphase = iphaseStart; /* * if the join is right at the dash, * draw the join in foreground * This is because the foreground * arcs are computed second, the results * of which are needed to draw the join */ if (joinphase != prevphase) joinphase = 0; } if (joinphase == 0 || isDoubleDash) { addJoin (&arcs[joinphase].joins, &arcs[joinphase].njoins, &joinSize[joinphase], LEFT_END, k, prevphase, RIGHT_END, nextk, iphase); arc->join = arcs[prevphase].njoins; } } else { /* * cap the left end of this arc * unless it joins itself */ if ((prevphase == 0 || isDoubleDash) && !arc->selfJoin) { addCap (&arcs[prevphase].caps, &arcs[prevphase].ncaps, &capSize[prevphase], LEFT_END, k); arc->cap = arcs[prevphase].ncaps; } if (isDashed && !arcsJoin) { iDash = iDashStart; iphase = iphaseStart; dashRemaining = dashRemainingStart; } nextk = arcs[iphase].narcs; if (nexti == start) { nextk = 0; iDash = iDashStart; iphase = iphaseStart; dashRemaining = dashRemainingStart; } /* * cap the right end of the next arc. If the * next arc is actually the first arc, only * cap it if it joins with this arc. This * case will occur when the final dash segment * of an on/off dash is off. Of course, this * cap will be drawn at a strange time, but that * hardly matters... */ if ((iphase == 0 || isDoubleDash) && (nexti != start || (arcsJoin && isDashed))) addCap (&arcs[iphase].caps, &arcs[iphase].ncaps, &capSize[iphase], RIGHT_END, nextk); } i = nexti; if (i == start) break; } /* * make sure the last section is rendered */ for (iphase = 0; iphase < (isDoubleDash ? 2 : 1); iphase++) if (arcs[iphase].narcs > 0) { arcs[iphase].arcs[arcs[iphase].narcs-1].render = 1; arcs[iphase].arcs[arcs[iphase].narcs-1].join = arcs[iphase].njoins; arcs[iphase].arcs[arcs[iphase].narcs-1].cap = arcs[iphase].ncaps; } free(data); return arcs; arcfail: miFreeArcs(arcs, pGC); free(data); return NULL; } static double angleToLength ( int angle, dashMap *map) { double len, excesslen, sidelen = map->map[DASH_MAP_SIZE - 1], totallen; int di; int excess; Bool oddSide = FALSE; totallen = 0; if (angle >= 0) { while (angle >= 90 * 64) { angle -= 90 * 64; totallen += sidelen; oddSide = !oddSide; } } else { while (angle < 0) { angle += 90 * 64; totallen -= sidelen; oddSide = !oddSide; } } if (oddSide) angle = 90 * 64 - angle; di = xAngleToDashIndex (angle); excess = angle - dashIndexToXAngle (di); len = map->map[di]; /* * linearly interpolate between this point and the next */ if (excess > 0) { excesslen = (map->map[di + 1] - map->map[di]) * ((double) excess) / dashXAngleStep; len += excesslen; } if (oddSide) totallen += (sidelen - len); else totallen += len; return totallen; } /* * len is along the arc, but may be more than one rotation */ static int lengthToAngle ( double len, dashMap *map) { double sidelen = map->map[DASH_MAP_SIZE - 1]; int angle, angleexcess; Bool oddSide = FALSE; int a0, a1, a; angle = 0; /* * step around the ellipse, subtracting sidelens and * adding 90 degrees. oddSide will tell if the * map should be interpolated in reverse */ if (len >= 0) { if (sidelen == 0) return 2 * FULLCIRCLE; /* infinity */ while (len >= sidelen) { angle += 90 * 64; len -= sidelen; oddSide = !oddSide; } } else { if (sidelen == 0) return -2 * FULLCIRCLE; /* infinity */ while (len < 0) { angle -= 90 * 64; len += sidelen; oddSide = !oddSide; } } if (oddSide) len = sidelen - len; a0 = 0; a1 = DASH_MAP_SIZE - 1; /* * binary search for the closest pre-computed length */ while (a1 - a0 > 1) { a = (a0 + a1) / 2; if (len > map->map[a]) a0 = a; else a1 = a; } angleexcess = dashIndexToXAngle (a0); /* * linearly interpolate to the next point */ angleexcess += (len - map->map[a0]) / (map->map[a0+1] - map->map[a0]) * dashXAngleStep; if (oddSide) angle += (90 * 64) - angleexcess; else angle += angleexcess; return angle; } /* * compute the angle of an ellipse which cooresponds to * the given path length. Note that the correct solution * to this problem is an eliptic integral, we'll punt and * approximate (it's only for dashes anyway). This * approximation uses a polygon. * * The remaining portion of len is stored in *lenp - * this will be negative if the arc extends beyond * len and positive if len extends beyond the arc. */ static int computeAngleFromPath ( int startAngle, int endAngle, /* normalized absolute angles in *64 degrees */ dashMap *map, int *lenp, int backwards) { int a0, a1, a; double len0; int len; a0 = startAngle; a1 = endAngle; len = *lenp; if (backwards) { /* * flip the problem around to always be * forwards */ a0 = FULLCIRCLE - a0; a1 = FULLCIRCLE - a1; } if (a1 < a0) a1 += FULLCIRCLE; len0 = angleToLength (a0, map); a = lengthToAngle (len0 + len, map); if (a > a1) { a = a1; len -= angleToLength (a1, map) - len0; } else len = 0; if (backwards) a = FULLCIRCLE - a; *lenp = len; return a; } /* * scan convert wide arcs. */ /* * draw zero width/height arcs */ static void drawZeroArc ( DrawablePtr pDraw, GCPtr pGC, xArc *tarc, int lw, miArcFacePtr left, miArcFacePtr right) { double x0 = 0.0, y0 = 0.0, x1 = 0.0, y1 = 0.0, w, h, x, y; double xmax, ymax, xmin, ymin; int a0, a1; double a, startAngle, endAngle; double l, lx, ly; l = lw / 2.0; a0 = tarc->angle1; a1 = tarc->angle2; if (a1 > FULLCIRCLE) a1 = FULLCIRCLE; else if (a1 < -FULLCIRCLE) a1 = -FULLCIRCLE; w = (double)tarc->width / 2.0; h = (double)tarc->height / 2.0; /* * play in X coordinates right away */ startAngle = - ((double) a0 / 64.0); endAngle = - ((double) (a0 + a1) / 64.0); xmax = -w; xmin = w; ymax = -h; ymin = h; a = startAngle; for (;;) { x = w * miDcos(a); y = h * miDsin(a); if (a == startAngle) { x0 = x; y0 = y; } if (a == endAngle) { x1 = x; y1 = y; } if (x > xmax) xmax = x; if (x < xmin) xmin = x; if (y > ymax) ymax = y; if (y < ymin) ymin = y; if (a == endAngle) break; if (a1 < 0) /* clockwise */ { if (floor (a / 90.0) == floor (endAngle / 90.0)) a = endAngle; else a = 90 * (floor (a/90.0) + 1); } else { if (ceil (a / 90.0) == ceil (endAngle / 90.0)) a = endAngle; else a = 90 * (ceil (a/90.0) - 1); } } lx = ly = l; if ((x1 - x0) + (y1 - y0) < 0) lx = ly = -l; if (h) { ly = 0.0; lx = -lx; } else lx = 0.0; if (right) { right->center.x = x0; right->center.y = y0; right->clock.x = x0 - lx; right->clock.y = y0 - ly; right->counterClock.x = x0 + lx; right->counterClock.y = y0 + ly; } if (left) { left->center.x = x1; left->center.y = y1; left->clock.x = x1 + lx; left->clock.y = y1 + ly; left->counterClock.x = x1 - lx; left->counterClock.y = y1 - ly; } x0 = xmin; x1 = xmax; y0 = ymin; y1 = ymax; if (ymin != y1) { xmin = -l; xmax = l; } else { ymin = -l; ymax = l; } if (xmax != xmin && ymax != ymin) { int minx, maxx, miny, maxy; xRectangle rect; minx = ICEIL (xmin + w) + tarc->x; maxx = ICEIL (xmax + w) + tarc->x; miny = ICEIL (ymin + h) + tarc->y; maxy = ICEIL (ymax + h) + tarc->y; rect.x = minx; rect.y = miny; rect.width = maxx - minx; rect.height = maxy - miny; (*pGC->ops->PolyFillRect) (pDraw, pGC, 1, &rect); } } /* * this computes the ellipse y value associated with the * bottom of the tail. */ static void tailEllipseY ( struct arc_def *def, struct accelerators *acc) { double t; acc->tail_y = 0.0; if (def->w == def->h) return; t = def->l * def->w; if (def->w > def->h) { if (t < acc->h2) return; } else { if (t > acc->h2) return; } t = 2.0 * def->h * t; t = (CUBED_ROOT_4 * acc->h2 - cbrt(t * t)) / acc->h2mw2; if (t > 0.0) acc->tail_y = def->h / CUBED_ROOT_2 * sqrt(t); } /* * inverse functions -- compute edge coordinates * from the ellipse */ static double outerXfromXY ( double x, double y, struct arc_def *def, struct accelerators *acc) { return x + (x * acc->h2l) / sqrt (x*x * acc->h4 + y*y * acc->w4); } static double outerYfromXY ( double x, double y, struct arc_def *def, struct accelerators *acc) { return y + (y * acc->w2l) / sqrt (x*x * acc->h4 + y*y * acc->w4); } static double innerXfromXY ( double x, double y, struct arc_def *def, struct accelerators *acc) { return x - (x * acc->h2l) / sqrt (x*x * acc->h4 + y*y * acc->w4); } static double innerYfromXY ( double x, double y, struct arc_def *def, struct accelerators *acc) { return y - (y * acc->w2l) / sqrt (x*x * acc->h4 + y*y * acc->w4); } static double innerYfromY ( double y, struct arc_def *def, struct accelerators *acc) { double x; x = (def->w / def->h) * sqrt (acc->h2 - y*y); return y - (y * acc->w2l) / sqrt (x*x * acc->h4 + y*y * acc->w4); } static void computeLine ( double x1, double y1, double x2, double y2, struct line *line) { if (y1 == y2) line->valid = 0; else { line->m = (x1 - x2) / (y1 - y2); line->b = x1 - y1 * line->m; line->valid = 1; } } /* * compute various accelerators for an ellipse. These * are simply values that are used repeatedly in * the computations */ static void computeAcc ( xArc *tarc, int lw, struct arc_def *def, struct accelerators *acc) { def->w = ((double) tarc->width) / 2.0; def->h = ((double) tarc->height) / 2.0; def->l = ((double) lw) / 2.0; acc->h2 = def->h * def->h; acc->w2 = def->w * def->w; acc->h4 = acc->h2 * acc->h2; acc->w4 = acc->w2 * acc->w2; acc->h2l = acc->h2 * def->l; acc->w2l = acc->w2 * def->l; acc->h2mw2 = acc->h2 - acc->w2; acc->fromIntX = (tarc->width & 1) ? 0.5 : 0.0; acc->fromIntY = (tarc->height & 1) ? 0.5 : 0.0; acc->xorg = tarc->x + (tarc->width >> 1); acc->yorgu = tarc->y + (tarc->height >> 1); acc->yorgl = acc->yorgu + (tarc->height & 1); tailEllipseY (def, acc); } /* * compute y value bounds of various portions of the arc, * the outer edge, the ellipse and the inner edge. */ static void computeBound ( struct arc_def *def, struct arc_bound *bound, struct accelerators *acc, miArcFacePtr right, miArcFacePtr left) { double t; double innerTaily; double tail_y; struct bound innerx, outerx; struct bound ellipsex; bound->ellipse.min = Dsin (def->a0) * def->h; bound->ellipse.max = Dsin (def->a1) * def->h; if (def->a0 == 45 && def->w == def->h) ellipsex.min = bound->ellipse.min; else ellipsex.min = Dcos (def->a0) * def->w; if (def->a1 == 45 && def->w == def->h) ellipsex.max = bound->ellipse.max; else ellipsex.max = Dcos (def->a1) * def->w; bound->outer.min = outerYfromXY (ellipsex.min, bound->ellipse.min, def, acc); bound->outer.max = outerYfromXY (ellipsex.max, bound->ellipse.max, def, acc); bound->inner.min = innerYfromXY (ellipsex.min, bound->ellipse.min, def, acc); bound->inner.max = innerYfromXY (ellipsex.max, bound->ellipse.max, def, acc); outerx.min = outerXfromXY (ellipsex.min, bound->ellipse.min, def, acc); outerx.max = outerXfromXY (ellipsex.max, bound->ellipse.max, def, acc); innerx.min = innerXfromXY (ellipsex.min, bound->ellipse.min, def, acc); innerx.max = innerXfromXY (ellipsex.max, bound->ellipse.max, def, acc); /* * save the line end points for the * cap code to use. Careful here, these are * in cartesean coordinates (y increasing upwards) * while the cap code uses inverted coordinates * (y increasing downwards) */ if (right) { right->counterClock.y = bound->outer.min; right->counterClock.x = outerx.min; right->center.y = bound->ellipse.min; right->center.x = ellipsex.min; right->clock.y = bound->inner.min; right->clock.x = innerx.min; } if (left) { left->clock.y = bound->outer.max; left->clock.x = outerx.max; left->center.y = bound->ellipse.max; left->center.x = ellipsex.max; left->counterClock.y = bound->inner.max; left->counterClock.x = innerx.max; } bound->left.min = bound->inner.max; bound->left.max = bound->outer.max; bound->right.min = bound->inner.min; bound->right.max = bound->outer.min; computeLine (innerx.min, bound->inner.min, outerx.min, bound->outer.min, &acc->right); computeLine (innerx.max, bound->inner.max, outerx.max, bound->outer.max, &acc->left); if (bound->inner.min > bound->inner.max) { t = bound->inner.min; bound->inner.min = bound->inner.max; bound->inner.max = t; } tail_y = acc->tail_y; if (tail_y > bound->ellipse.max) tail_y = bound->ellipse.max; else if (tail_y < bound->ellipse.min) tail_y = bound->ellipse.min; innerTaily = innerYfromY (tail_y, def, acc); if (bound->inner.min > innerTaily) bound->inner.min = innerTaily; if (bound->inner.max < innerTaily) bound->inner.max = innerTaily; bound->inneri.min = ICEIL(bound->inner.min - acc->fromIntY); bound->inneri.max = floor(bound->inner.max - acc->fromIntY); bound->outeri.min = ICEIL(bound->outer.min - acc->fromIntY); bound->outeri.max = floor(bound->outer.max - acc->fromIntY); } /* * this section computes the x value of the span at y * intersected with the specified face of the ellipse. * * this is the min/max X value over the set of normal * lines to the entire ellipse, the equation of the * normal lines is: * * ellipse_x h^2 h^2 * x = ------------ y + ellipse_x (1 - --- ) * ellipse_y w^2 w^2 * * compute the derivative with-respect-to ellipse_y and solve * for zero: * * (w^2 - h^2) ellipse_y^3 + h^4 y * 0 = - ---------------------------------- * h w ellipse_y^2 sqrt (h^2 - ellipse_y^2) * * ( h^4 y ) * ellipse_y = ( ---------- ) ^ (1/3) * ( (h^2 - w^2) ) * * The other two solutions to the equation are imaginary. * * This gives the position on the ellipse which generates * the normal with the largest/smallest x intersection point. * * Now compute the second derivative to check whether * the intersection is a minimum or maximum: * * h (y0^3 (w^2 - h^2) + h^2 y (3y0^2 - 2h^2)) * - ------------------------------------------- * w y0^3 (sqrt (h^2 - y^2)) ^ 3 * * as we only care about the sign, * * - (y0^3 (w^2 - h^2) + h^2 y (3y0^2 - 2h^2)) * * or (to use accelerators), * * y0^3 (h^2 - w^2) - h^2 y (3y0^2 - 2h^2) * */ /* * computes the position on the ellipse whose normal line * intersects the given scan line maximally */ static double hookEllipseY ( double scan_y, struct arc_bound *bound, struct accelerators *acc, int left) { double ret; if (acc->h2mw2 == 0) { if ( (scan_y > 0 && !left) || (scan_y < 0 && left) ) return bound->ellipse.min; return bound->ellipse.max; } ret = (acc->h4 * scan_y) / (acc->h2mw2); if (ret >= 0) return cbrt (ret); else return -cbrt (-ret); } /* * computes the X value of the intersection of the * given scan line with the right side of the lower hook */ static double hookX ( double scan_y, struct arc_def *def, struct arc_bound *bound, struct accelerators *acc, int left) { double ellipse_y, x; double maxMin; if (def->w != def->h) { ellipse_y = hookEllipseY (scan_y, bound, acc, left); if (boundedLe (ellipse_y, bound->ellipse)) { /* * compute the value of the second * derivative */ maxMin = ellipse_y*ellipse_y*ellipse_y * acc->h2mw2 - acc->h2 * scan_y * (3 * ellipse_y*ellipse_y - 2*acc->h2); if ((left && maxMin > 0) || (!left && maxMin < 0)) { if (ellipse_y == 0) return def->w + left ? -def->l : def->l; x = (acc->h2 * scan_y - ellipse_y * acc->h2mw2) * sqrt (acc->h2 - ellipse_y * ellipse_y) / (def->h * def->w * ellipse_y); return x; } } } if (left) { if (acc->left.valid && boundedLe (scan_y, bound->left)) { x = intersectLine (scan_y, acc->left); } else { if (acc->right.valid) x = intersectLine (scan_y, acc->right); else x = def->w - def->l; } } else { if (acc->right.valid && boundedLe (scan_y, bound->right)) { x = intersectLine (scan_y, acc->right); } else { if (acc->left.valid) x = intersectLine (scan_y, acc->left); else x = def->w - def->l; } } return x; } /* * generate the set of spans with * the given y coordinate */ static void arcSpan ( int y, int lx, int lw, int rx, int rw, struct arc_def *def, struct arc_bound *bounds, struct accelerators *acc, int mask) { int linx, loutx, rinx, routx; double x, altx; if (boundedLe (y, bounds->inneri)) { linx = -(lx + lw); rinx = rx; } else { /* * intersection with left face */ x = hookX (y + acc->fromIntY, def, bounds, acc, 1); if (acc->right.valid && boundedLe (y + acc->fromIntY, bounds->right)) { altx = intersectLine (y + acc->fromIntY, acc->right); if (altx < x) x = altx; } linx = -ICEIL(acc->fromIntX - x); rinx = ICEIL(acc->fromIntX + x); } if (boundedLe (y, bounds->outeri)) { loutx = -lx; routx = rx + rw; } else { /* * intersection with right face */ x = hookX (y + acc->fromIntY, def, bounds, acc, 0); if (acc->left.valid && boundedLe (y + acc->fromIntY, bounds->left)) { altx = x; x = intersectLine (y + acc->fromIntY, acc->left); if (x < altx) x = altx; } loutx = -ICEIL(acc->fromIntX - x); routx = ICEIL(acc->fromIntX + x); } if (routx > rinx) { if (mask & 1) newFinalSpan (acc->yorgu - y, acc->xorg + rinx, acc->xorg + routx); if (mask & 8) newFinalSpan (acc->yorgl + y, acc->xorg + rinx, acc->xorg + routx); } if (loutx > linx) { if (mask & 2) newFinalSpan (acc->yorgu - y, acc->xorg - loutx, acc->xorg - linx); if (mask & 4) newFinalSpan (acc->yorgl + y, acc->xorg - loutx, acc->xorg - linx); } } static void arcSpan0 ( int lx, int lw, int rx, int rw, struct arc_def *def, struct arc_bound *bounds, struct accelerators *acc, int mask) { double x; if (boundedLe (0, bounds->inneri) && acc->left.valid && boundedLe (0, bounds->left) && acc->left.b > 0) { x = def->w - def->l; if (acc->left.b < x) x = acc->left.b; lw = ICEIL(acc->fromIntX - x) - lx; rw += rx; rx = ICEIL(acc->fromIntX + x); rw -= rx; } arcSpan (0, lx, lw, rx, rw, def, bounds, acc, mask); } static void tailSpan ( int y, int lw, int rw, struct arc_def *def, struct arc_bound *bounds, struct accelerators *acc, int mask) { double yy, xalt, x, lx, rx; int n; if (boundedLe(y, bounds->outeri)) arcSpan (y, 0, lw, -rw, rw, def, bounds, acc, mask); else if (def->w != def->h) { yy = y + acc->fromIntY; x = tailX(yy, def, bounds, acc); if (yy == 0.0 && x == -rw - acc->fromIntX) return; if (acc->right.valid && boundedLe (yy, bounds->right)) { rx = x; lx = -x; xalt = intersectLine (yy, acc->right); if (xalt >= -rw - acc->fromIntX && xalt <= rx) rx = xalt; n = ICEIL(acc->fromIntX + lx); if (lw > n) { if (mask & 2) newFinalSpan (acc->yorgu - y, acc->xorg + n, acc->xorg + lw); if (mask & 4) newFinalSpan (acc->yorgl + y, acc->xorg + n, acc->xorg + lw); } n = ICEIL(acc->fromIntX + rx); if (n > -rw) { if (mask & 1) newFinalSpan (acc->yorgu - y, acc->xorg - rw, acc->xorg + n); if (mask & 8) newFinalSpan (acc->yorgl + y, acc->xorg - rw, acc->xorg + n); } } arcSpan (y, ICEIL(acc->fromIntX - x), 0, ICEIL(acc->fromIntX + x), 0, def, bounds, acc, mask); } } /* * create whole arcs out of pieces. This code is * very bad. */ static struct finalSpan **finalSpans = NULL; static int finalMiny = 0, finalMaxy = -1; static int finalSize = 0; static int nspans = 0; /* total spans, not just y coords */ struct finalSpan { struct finalSpan *next; int min, max; /* x values */ }; static struct finalSpan *freeFinalSpans, *tmpFinalSpan; # define allocFinalSpan() (freeFinalSpans ?\ ((tmpFinalSpan = freeFinalSpans), \ (freeFinalSpans = freeFinalSpans->next), \ (tmpFinalSpan->next = 0), \ tmpFinalSpan) : \ realAllocSpan ()) # define SPAN_CHUNK_SIZE 128 struct finalSpanChunk { struct finalSpan data[SPAN_CHUNK_SIZE]; struct finalSpanChunk *next; }; static struct finalSpanChunk *chunks; static struct finalSpan * realAllocSpan (void) { struct finalSpanChunk *newChunk; struct finalSpan *span; int i; newChunk = malloc(sizeof (struct finalSpanChunk)); if (!newChunk) return (struct finalSpan *) NULL; newChunk->next = chunks; chunks = newChunk; freeFinalSpans = span = newChunk->data + 1; for (i = 1; i < SPAN_CHUNK_SIZE-1; i++) { span->next = span+1; span++; } span->next = 0; span = newChunk->data; span->next = 0; return span; } static void disposeFinalSpans (void) { struct finalSpanChunk *chunk, *next; for (chunk = chunks; chunk; chunk = next) { next = chunk->next; free(chunk); } chunks = 0; freeFinalSpans = 0; free(finalSpans); finalSpans = 0; } static void fillSpans ( DrawablePtr pDrawable, GCPtr pGC) { struct finalSpan *span; DDXPointPtr xSpan; int *xWidth; int i; struct finalSpan **f; int spany; DDXPointPtr xSpans; int *xWidths; if (nspans == 0) return; xSpan = xSpans = malloc(nspans * sizeof (DDXPointRec)); xWidth = xWidths = malloc(nspans * sizeof (int)); if (xSpans && xWidths) { i = 0; f = finalSpans; for (spany = finalMiny; spany <= finalMaxy; spany++, f++) { for (span = *f; span; span=span->next) { if (span->max <= span->min) continue; xSpan->x = span->min; xSpan->y = spany; ++xSpan; *xWidth++ = span->max - span->min; ++i; } } (*pGC->ops->FillSpans) (pDrawable, pGC, i, xSpans, xWidths, TRUE); } disposeFinalSpans (); free(xSpans); free(xWidths); finalMiny = 0; finalMaxy = -1; finalSize = 0; nspans = 0; } # define SPAN_REALLOC 100 # define findSpan(y) ((finalMiny <= (y) && (y) <= finalMaxy) ? \ &finalSpans[(y) - finalMiny] : \ realFindSpan (y)) static struct finalSpan ** realFindSpan (int y) { struct finalSpan **newSpans; int newSize, newMiny, newMaxy; int change; int i; if (y < finalMiny || y > finalMaxy) { if (!finalSize) { finalMiny = y; finalMaxy = y - 1; } if (y < finalMiny) change = finalMiny - y; else change = y - finalMaxy; if (change >= SPAN_REALLOC) change += SPAN_REALLOC; else change = SPAN_REALLOC; newSize = finalSize + change; newSpans = malloc(newSize * sizeof (struct finalSpan *)); if (!newSpans) return NULL; newMiny = finalMiny; newMaxy = finalMaxy; if (y < finalMiny) newMiny = finalMiny - change; else newMaxy = finalMaxy + change; if (finalSpans) { memmove(((char *) newSpans) + (finalMiny-newMiny) * sizeof (struct finalSpan *), (char *) finalSpans, finalSize * sizeof (struct finalSpan *)); free(finalSpans); } if ((i = finalMiny - newMiny) > 0) memset((char *)newSpans, 0, i * sizeof (struct finalSpan *)); if ((i = newMaxy - finalMaxy) > 0) memset((char *)(newSpans + newSize - i), 0, i * sizeof (struct finalSpan *)); finalSpans = newSpans; finalMaxy = newMaxy; finalMiny = newMiny; finalSize = newSize; } return &finalSpans[y - finalMiny]; } static void newFinalSpan ( int y, int xmin, int xmax) { struct finalSpan *x; struct finalSpan **f; struct finalSpan *oldx; struct finalSpan *prev; f = findSpan (y); if (!f) return; oldx = 0; for (;;) { prev = 0; for (x = *f; x; x=x->next) { if (x == oldx) { prev = x; continue; } if (x->min <= xmax && xmin <= x->max) { if (oldx) { oldx->min = min (x->min, xmin); oldx->max = max (x->max, xmax); if (prev) prev->next = x->next; else *f = x->next; --nspans; } else { x->min = min (x->min, xmin); x->max = max (x->max, xmax); oldx = x; } xmin = oldx->min; xmax = oldx->max; break; } prev = x; } if (!x) break; } if (!oldx) { x = allocFinalSpan (); if (x) { x->min = xmin; x->max = xmax; x->next = *f; *f = x; ++nspans; } } } static void mirrorSppPoint ( int quadrant, SppPointPtr sppPoint) { switch (quadrant) { case 0: break; case 1: sppPoint->x = -sppPoint->x; break; case 2: sppPoint->x = -sppPoint->x; sppPoint->y = -sppPoint->y; break; case 3: sppPoint->y = -sppPoint->y; break; } /* * and translate to X coordinate system */ sppPoint->y = -sppPoint->y; } /* * split an arc into pieces which are scan-converted * in the first-quadrant and mirrored into position. * This is necessary as the scan-conversion code can * only deal with arcs completely contained in the * first quadrant. */ static void drawArc ( xArc *tarc, int l, int a0, int a1, miArcFacePtr right, miArcFacePtr left) /* save end line points */ { struct arc_def def; struct accelerators acc; int startq, endq, curq; int rightq, leftq = 0, righta = 0, lefta = 0; miArcFacePtr passRight, passLeft; int q0 = 0, q1 = 0, mask; struct band { int a0, a1; int mask; } band[5], sweep[20]; int bandno, sweepno; int i, j; int flipRight = 0, flipLeft = 0; int copyEnd = 0; miArcSpanData *spdata; spdata = miComputeWideEllipse(l, tarc); if (!spdata) return; if (a1 < a0) a1 += 360 * 64; startq = a0 / (90 * 64); if (a0 == a1) endq = startq; else endq = (a1-1) / (90 * 64); bandno = 0; curq = startq; rightq = -1; for (;;) { switch (curq) { case 0: if (a0 > 90 * 64) q0 = 0; else q0 = a0; if (a1 < 360 * 64) q1 = min (a1, 90 * 64); else q1 = 90 * 64; if (curq == startq && a0 == q0 && rightq < 0) { righta = q0; rightq = curq; } if (curq == endq && a1 == q1) { lefta = q1; leftq = curq; } break; case 1: if (a1 < 90 * 64) q0 = 0; else q0 = 180 * 64 - min (a1, 180 * 64); if (a0 > 180 * 64) q1 = 90 * 64; else q1 = 180 * 64 - max (a0, 90 * 64); if (curq == startq && 180 * 64 - a0 == q1) { righta = q1; rightq = curq; } if (curq == endq && 180 * 64 - a1 == q0) { lefta = q0; leftq = curq; } break; case 2: if (a0 > 270 * 64) q0 = 0; else q0 = max (a0, 180 * 64) - 180 * 64; if (a1 < 180 * 64) q1 = 90 * 64; else q1 = min (a1, 270 * 64) - 180 * 64; if (curq == startq && a0 - 180*64 == q0) { righta = q0; rightq = curq; } if (curq == endq && a1 - 180 * 64 == q1) { lefta = q1; leftq = curq; } break; case 3: if (a1 < 270 * 64) q0 = 0; else q0 = 360 * 64 - min (a1, 360 * 64); q1 = 360 * 64 - max (a0, 270 * 64); if (curq == startq && 360 * 64 - a0 == q1) { righta = q1; rightq = curq; } if (curq == endq && 360 * 64 - a1 == q0) { lefta = q0; leftq = curq; } break; } band[bandno].a0 = q0; band[bandno].a1 = q1; band[bandno].mask = 1 << curq; bandno++; if (curq == endq) break; curq++; if (curq == 4) { a0 = 0; a1 -= 360 * 64; curq = 0; endq -= 4; } } sweepno = 0; for (;;) { q0 = 90 * 64; mask = 0; /* * find left-most point */ for (i = 0; i < bandno; i++) if (band[i].a0 <= q0) { q0 = band[i].a0; q1 = band[i].a1; mask = band[i].mask; } if (!mask) break; /* * locate next point of change */ for (i = 0; i < bandno; i++) if (!(mask & band[i].mask)) { if (band[i].a0 == q0) { if (band[i].a1 < q1) q1 = band[i].a1; mask |= band[i].mask; } else if (band[i].a0 < q1) q1 = band[i].a0; } /* * create a new sweep */ sweep[sweepno].a0 = q0; sweep[sweepno].a1 = q1; sweep[sweepno].mask = mask; sweepno++; /* * subtract the sweep from the affected bands */ for (i = 0; i < bandno; i++) if (band[i].a0 == q0) { band[i].a0 = q1; /* * check if this band is empty */ if (band[i].a0 == band[i].a1) band[i].a1 = band[i].a0 = 90 * 64 + 1; } } computeAcc (tarc, l, &def, &acc); for (j = 0; j < sweepno; j++) { mask = sweep[j].mask; passRight = passLeft = 0; if (mask & (1 << rightq)) { if (sweep[j].a0 == righta) passRight = right; else if (sweep[j].a1 == righta) { passLeft = right; flipRight = 1; } } if (mask & (1 << leftq)) { if (sweep[j].a1 == lefta) { if (passLeft) copyEnd = 1; passLeft = left; } else if (sweep[j].a0 == lefta) { if (passRight) copyEnd = 1; passRight = left; flipLeft = 1; } } drawQuadrant (&def, &acc, sweep[j].a0, sweep[j].a1, mask, passRight, passLeft, spdata); } /* * when copyEnd is set, both ends of the arc were computed * at the same time; drawQuadrant only takes one end though, * so the left end will be the only one holding the data. Copy * it from there. */ if (copyEnd) *right = *left; /* * mirror the coordinates generated for the * faces of the arc */ if (right) { mirrorSppPoint (rightq, &right->clock); mirrorSppPoint (rightq, &right->center); mirrorSppPoint (rightq, &right->counterClock); if (flipRight) { SppPointRec temp; temp = right->clock; right->clock = right->counterClock; right->counterClock = temp; } } if (left) { mirrorSppPoint (leftq, &left->counterClock); mirrorSppPoint (leftq, &left->center); mirrorSppPoint (leftq, &left->clock); if (flipLeft) { SppPointRec temp; temp = left->clock; left->clock = left->counterClock; left->counterClock = temp; } } free(spdata); } static void drawQuadrant ( struct arc_def *def, struct accelerators *acc, int a0, int a1, int mask, miArcFacePtr right, miArcFacePtr left, miArcSpanData *spdata) { struct arc_bound bound; double yy, x, xalt; int y, miny, maxy; int n; miArcSpan *span; def->a0 = ((double) a0) / 64.0; def->a1 = ((double) a1) / 64.0; computeBound (def, &bound, acc, right, left); yy = bound.inner.min; if (bound.outer.min < yy) yy = bound.outer.min; miny = ICEIL(yy - acc->fromIntY); yy = bound.inner.max; if (bound.outer.max > yy) yy = bound.outer.max; maxy = floor(yy - acc->fromIntY); y = spdata->k; span = spdata->spans; if (spdata->top) { if (a1 == 90 * 64 && (mask & 1)) newFinalSpan (acc->yorgu - y - 1, acc->xorg, acc->xorg + 1); span++; } for (n = spdata->count1; --n >= 0; ) { if (y < miny) return; if (y <= maxy) { arcSpan (y, span->lx, -span->lx, 0, span->lx + span->lw, def, &bound, acc, mask); if (span->rw + span->rx) tailSpan (y, -span->rw, -span->rx, def, &bound, acc, mask); } y--; span++; } if (y < miny) return; if (spdata->hole) { if (y <= maxy) arcSpan (y, 0, 0, 0, 1, def, &bound, acc, mask & 0xc); } for (n = spdata->count2; --n >= 0; ) { if (y < miny) return; if (y <= maxy) arcSpan (y, span->lx, span->lw, span->rx, span->rw, def, &bound, acc, mask); y--; span++; } if (spdata->bot && miny <= y && y <= maxy) { n = mask; if (y == miny) n &= 0xc; if (span->rw <= 0) { arcSpan0 (span->lx, -span->lx, 0, span->lx + span->lw, def, &bound, acc, n); if (span->rw + span->rx) tailSpan (y, -span->rw, -span->rx, def, &bound, acc, n); } else arcSpan0 (span->lx, span->lw, span->rx, span->rw, def, &bound, acc, n); y--; } while (y >= miny) { yy = y + acc->fromIntY; if (def->w == def->h) { xalt = def->w - def->l; x = -sqrt(xalt * xalt - yy * yy); } else { x = tailX(yy, def, &bound, acc); if (acc->left.valid && boundedLe (yy, bound.left)) { xalt = intersectLine (yy, acc->left); if (xalt < x) x = xalt; } if (acc->right.valid && boundedLe (yy, bound.right)) { xalt = intersectLine (yy, acc->right); if (xalt < x) x = xalt; } } arcSpan (y, ICEIL(acc->fromIntX - x), 0, ICEIL(acc->fromIntX + x), 0, def, &bound, acc, mask); y--; } }