aboutsummaryrefslogtreecommitdiff
path: root/mesalib/src/gallium/auxiliary/util/u_vbuf.c
blob: c475ee1b3b09b1f580f8cf927d97997a49798fd5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
/**************************************************************************
 *
 * Copyright 2011 Marek Olšák <maraeo@gmail.com>
 * All Rights Reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the
 * "Software"), to deal in the Software without restriction, including
 * without limitation the rights to use, copy, modify, merge, publish,
 * distribute, sub license, and/or sell copies of the Software, and to
 * permit persons to whom the Software is furnished to do so, subject to
 * the following conditions:
 *
 * The above copyright notice and this permission notice (including the
 * next paragraph) shall be included in all copies or substantial portions
 * of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
 * IN NO EVENT SHALL AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR
 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 *
 **************************************************************************/

/**
 * This module uploads user buffers and translates the vertex buffers which
 * contain incompatible vertices (i.e. not supported by the driver/hardware)
 * into compatible ones, based on the Gallium CAPs.
 *
 * It does not upload index buffers.
 *
 * The module heavily uses bitmasks to represent per-buffer and
 * per-vertex-element flags to avoid looping over the list of buffers just
 * to see if there's a non-zero stride, or user buffer, or unsupported format,
 * etc.
 *
 * There are 3 categories of vertex elements, which are processed separately:
 * - per-vertex attribs (stride != 0, instance_divisor == 0)
 * - instanced attribs (stride != 0, instance_divisor > 0)
 * - constant attribs (stride == 0)
 *
 * All needed uploads and translations are performed every draw command, but
 * only the subset of vertices needed for that draw command is uploaded or
 * translated. (the module never translates whole buffers)
 *
 *
 * The module consists of two main parts:
 *
 *
 * 1) Translate (u_vbuf_translate_begin/end)
 *
 * This is pretty much a vertex fetch fallback. It translates vertices from
 * one vertex buffer to another in an unused vertex buffer slot. It does
 * whatever is needed to make the vertices readable by the hardware (changes
 * vertex formats and aligns offsets and strides). The translate module is
 * used here.
 *
 * Each of the 3 categories is translated to a separate buffer.
 * Only the [min_index, max_index] range is translated. For instanced attribs,
 * the range is [start_instance, start_instance+instance_count]. For constant
 * attribs, the range is [0, 1].
 *
 *
 * 2) User buffer uploading (u_vbuf_upload_buffers)
 *
 * Only the [min_index, max_index] range is uploaded (just like Translate)
 * with a single memcpy.
 *
 * This method works best for non-indexed draw operations or indexed draw
 * operations where the [min_index, max_index] range is not being way bigger
 * than the vertex count.
 *
 * If the range is too big (e.g. one triangle with indices {0, 1, 10000}),
 * the per-vertex attribs are uploaded via the translate module, all packed
 * into one vertex buffer, and the indexed draw call is turned into
 * a non-indexed one in the process. This adds additional complexity
 * to the translate part, but it prevents bad apps from bringing your frame
 * rate down.
 *
 *
 * If there is nothing to do, it forwards every command to the driver.
 * The module also has its own CSO cache of vertex element states.
 */

#include "util/u_vbuf.h"

#include "util/u_dump.h"
#include "util/u_format.h"
#include "util/u_inlines.h"
#include "util/u_memory.h"
#include "util/u_upload_mgr.h"
#include "translate/translate.h"
#include "translate/translate_cache.h"
#include "cso_cache/cso_cache.h"
#include "cso_cache/cso_hash.h"

struct u_vbuf_elements {
   unsigned count;
   struct pipe_vertex_element ve[PIPE_MAX_ATTRIBS];

   unsigned src_format_size[PIPE_MAX_ATTRIBS];

   /* If (velem[i].src_format != native_format[i]), the vertex buffer
    * referenced by the vertex element cannot be used for rendering and
    * its vertex data must be translated to native_format[i]. */
   enum pipe_format native_format[PIPE_MAX_ATTRIBS];
   unsigned native_format_size[PIPE_MAX_ATTRIBS];

   /* Which buffers are used by the vertex element state. */
   uint32_t used_vb_mask;
   /* This might mean two things:
    * - src_format != native_format, as discussed above.
    * - src_offset % 4 != 0 (if the caps don't allow such an offset). */
   uint32_t incompatible_elem_mask; /* each bit describes a corresp. attrib  */
   /* Which buffer has at least one vertex element referencing it
    * incompatible. */
   uint32_t incompatible_vb_mask_any;
   /* Which buffer has all vertex elements referencing it incompatible. */
   uint32_t incompatible_vb_mask_all;
   /* Which buffer has at least one vertex element referencing it
    * compatible. */
   uint32_t compatible_vb_mask_any;
   /* Which buffer has all vertex elements referencing it compatible. */
   uint32_t compatible_vb_mask_all;

   /* Which buffer has at least one vertex element referencing it
    * non-instanced. */
   uint32_t noninstance_vb_mask_any;

   void *driver_cso;
};

enum {
   VB_VERTEX = 0,
   VB_INSTANCE = 1,
   VB_CONST = 2,
   VB_NUM = 3
};

struct u_vbuf {
   struct u_vbuf_caps caps;

   struct pipe_context *pipe;
   struct translate_cache *translate_cache;
   struct cso_cache *cso_cache;
   struct u_upload_mgr *uploader;

   /* This is what was set in set_vertex_buffers.
    * May contain user buffers. */
   struct pipe_vertex_buffer vertex_buffer[PIPE_MAX_ATTRIBS];
   uint32_t enabled_vb_mask;

   /* Saved vertex buffer. */
   unsigned aux_vertex_buffer_slot;
   struct pipe_vertex_buffer aux_vertex_buffer_saved;

   /* Vertex buffers for the driver.
    * There are usually no user buffers. */
   struct pipe_vertex_buffer real_vertex_buffer[PIPE_MAX_ATTRIBS];
   uint32_t dirty_real_vb_mask; /* which buffers are dirty since the last
                                   call of set_vertex_buffers */

   /* The index buffer. */
   struct pipe_index_buffer index_buffer;

   /* Vertex elements. */
   struct u_vbuf_elements *ve, *ve_saved;

   /* Vertex elements used for the translate fallback. */
   struct pipe_vertex_element fallback_velems[PIPE_MAX_ATTRIBS];
   /* If non-NULL, this is a vertex element state used for the translate
    * fallback and therefore used for rendering too. */
   boolean using_translate;
   /* The vertex buffer slot index where translated vertices have been
    * stored in. */
   unsigned fallback_vbs[VB_NUM];

   /* Which buffer is a user buffer. */
   uint32_t user_vb_mask; /* each bit describes a corresp. buffer */
   /* Which buffer is incompatible (unaligned). */
   uint32_t incompatible_vb_mask; /* each bit describes a corresp. buffer */
   /* Which buffer has a non-zero stride. */
   uint32_t nonzero_stride_vb_mask; /* each bit describes a corresp. buffer */
};

static void *
u_vbuf_create_vertex_elements(struct u_vbuf *mgr, unsigned count,
                              const struct pipe_vertex_element *attribs);
static void u_vbuf_delete_vertex_elements(struct u_vbuf *mgr, void *cso);


void u_vbuf_get_caps(struct pipe_screen *screen, struct u_vbuf_caps *caps)
{
   caps->format_fixed32 =
      screen->is_format_supported(screen, PIPE_FORMAT_R32_FIXED, PIPE_BUFFER,
                                  0, PIPE_BIND_VERTEX_BUFFER);

   caps->format_float16 =
      screen->is_format_supported(screen, PIPE_FORMAT_R16_FLOAT, PIPE_BUFFER,
                                  0, PIPE_BIND_VERTEX_BUFFER);

   caps->format_float64 =
      screen->is_format_supported(screen, PIPE_FORMAT_R64_FLOAT, PIPE_BUFFER,
                                  0, PIPE_BIND_VERTEX_BUFFER);

   caps->format_norm32 =
      screen->is_format_supported(screen, PIPE_FORMAT_R32_UNORM, PIPE_BUFFER,
                                  0, PIPE_BIND_VERTEX_BUFFER) &&
      screen->is_format_supported(screen, PIPE_FORMAT_R32_SNORM, PIPE_BUFFER,
                                  0, PIPE_BIND_VERTEX_BUFFER);

   caps->format_scaled32 =
      screen->is_format_supported(screen, PIPE_FORMAT_R32_USCALED, PIPE_BUFFER,
                                  0, PIPE_BIND_VERTEX_BUFFER) &&
      screen->is_format_supported(screen, PIPE_FORMAT_R32_SSCALED, PIPE_BUFFER,
                                  0, PIPE_BIND_VERTEX_BUFFER);

   caps->buffer_offset_unaligned =
      !screen->get_param(screen,
                        PIPE_CAP_VERTEX_BUFFER_OFFSET_4BYTE_ALIGNED_ONLY);

   caps->buffer_stride_unaligned =
      !screen->get_param(screen,
                        PIPE_CAP_VERTEX_BUFFER_STRIDE_4BYTE_ALIGNED_ONLY);

   caps->velem_src_offset_unaligned =
      !screen->get_param(screen,
                        PIPE_CAP_VERTEX_ELEMENT_SRC_OFFSET_4BYTE_ALIGNED_ONLY);

   caps->user_vertex_buffers =
      screen->get_param(screen, PIPE_CAP_USER_VERTEX_BUFFERS);
}

struct u_vbuf *
u_vbuf_create(struct pipe_context *pipe,
              struct u_vbuf_caps *caps, unsigned aux_vertex_buffer_index)
{
   struct u_vbuf *mgr = CALLOC_STRUCT(u_vbuf);

   mgr->caps = *caps;
   mgr->aux_vertex_buffer_slot = aux_vertex_buffer_index;
   mgr->pipe = pipe;
   mgr->cso_cache = cso_cache_create();
   mgr->translate_cache = translate_cache_create();
   memset(mgr->fallback_vbs, ~0, sizeof(mgr->fallback_vbs));

   mgr->uploader = u_upload_create(pipe, 1024 * 1024, 4,
                                   PIPE_BIND_VERTEX_BUFFER);

   return mgr;
}

/* u_vbuf uses its own caching for vertex elements, because it needs to keep
 * its own preprocessed state per vertex element CSO. */
static struct u_vbuf_elements *
u_vbuf_set_vertex_elements_internal(struct u_vbuf *mgr, unsigned count,
                                    const struct pipe_vertex_element *states)
{
   struct pipe_context *pipe = mgr->pipe;
   unsigned key_size, hash_key;
   struct cso_hash_iter iter;
   struct u_vbuf_elements *ve;
   struct cso_velems_state velems_state;

   /* need to include the count into the stored state data too. */
   key_size = sizeof(struct pipe_vertex_element) * count + sizeof(unsigned);
   velems_state.count = count;
   memcpy(velems_state.velems, states,
          sizeof(struct pipe_vertex_element) * count);
   hash_key = cso_construct_key((void*)&velems_state, key_size);
   iter = cso_find_state_template(mgr->cso_cache, hash_key, CSO_VELEMENTS,
                                  (void*)&velems_state, key_size);

   if (cso_hash_iter_is_null(iter)) {
      struct cso_velements *cso = MALLOC_STRUCT(cso_velements);
      memcpy(&cso->state, &velems_state, key_size);
      cso->data = u_vbuf_create_vertex_elements(mgr, count, states);
      cso->delete_state = (cso_state_callback)u_vbuf_delete_vertex_elements;
      cso->context = (void*)mgr;

      iter = cso_insert_state(mgr->cso_cache, hash_key, CSO_VELEMENTS, cso);
      ve = cso->data;
   } else {
      ve = ((struct cso_velements *)cso_hash_iter_data(iter))->data;
   }

   assert(ve);

   if (ve != mgr->ve)
	   pipe->bind_vertex_elements_state(pipe, ve->driver_cso);
   return ve;
}

void u_vbuf_set_vertex_elements(struct u_vbuf *mgr, unsigned count,
                               const struct pipe_vertex_element *states)
{
   mgr->ve = u_vbuf_set_vertex_elements_internal(mgr, count, states);
}

void u_vbuf_destroy(struct u_vbuf *mgr)
{
   struct pipe_screen *screen = mgr->pipe->screen;
   unsigned i;
   unsigned num_vb = screen->get_shader_param(screen, PIPE_SHADER_VERTEX,
                                              PIPE_SHADER_CAP_MAX_INPUTS);

   mgr->pipe->set_index_buffer(mgr->pipe, NULL);
   pipe_resource_reference(&mgr->index_buffer.buffer, NULL);

   mgr->pipe->set_vertex_buffers(mgr->pipe, 0, num_vb, NULL);

   for (i = 0; i < PIPE_MAX_ATTRIBS; i++) {
      pipe_resource_reference(&mgr->vertex_buffer[i].buffer, NULL);
   }
   for (i = 0; i < PIPE_MAX_ATTRIBS; i++) {
      pipe_resource_reference(&mgr->real_vertex_buffer[i].buffer, NULL);
   }
   pipe_resource_reference(&mgr->aux_vertex_buffer_saved.buffer, NULL);

   translate_cache_destroy(mgr->translate_cache);
   u_upload_destroy(mgr->uploader);
   cso_cache_delete(mgr->cso_cache);
   FREE(mgr);
}

static enum pipe_error
u_vbuf_translate_buffers(struct u_vbuf *mgr, struct translate_key *key,
                         unsigned vb_mask, unsigned out_vb,
                         int start_vertex, unsigned num_vertices,
                         int start_index, unsigned num_indices, int min_index,
                         boolean unroll_indices)
{
   struct translate *tr;
   struct pipe_transfer *vb_transfer[PIPE_MAX_ATTRIBS] = {0};
   struct pipe_resource *out_buffer = NULL;
   uint8_t *out_map;
   unsigned out_offset, mask;
   enum pipe_error err;

   /* Get a translate object. */
   tr = translate_cache_find(mgr->translate_cache, key);

   /* Map buffers we want to translate. */
   mask = vb_mask;
   while (mask) {
      struct pipe_vertex_buffer *vb;
      unsigned offset;
      uint8_t *map;
      unsigned i = u_bit_scan(&mask);

      vb = &mgr->vertex_buffer[i];
      offset = vb->buffer_offset + vb->stride * start_vertex;

      if (vb->user_buffer) {
         map = (uint8_t*)vb->user_buffer + offset;
      } else {
         unsigned size = vb->stride ? num_vertices * vb->stride
                                    : sizeof(double)*4;

         if (offset+size > vb->buffer->width0) {
            size = vb->buffer->width0 - offset;
         }

         map = pipe_buffer_map_range(mgr->pipe, vb->buffer, offset, size,
                                     PIPE_TRANSFER_READ, &vb_transfer[i]);
      }

      /* Subtract min_index so that indexing with the index buffer works. */
      if (unroll_indices) {
         map -= (ptrdiff_t)vb->stride * min_index;
      }

      tr->set_buffer(tr, i, map, vb->stride, ~0);
   }

   /* Translate. */
   if (unroll_indices) {
      struct pipe_index_buffer *ib = &mgr->index_buffer;
      struct pipe_transfer *transfer = NULL;
      unsigned offset = ib->offset + start_index * ib->index_size;
      uint8_t *map;

      assert((ib->buffer || ib->user_buffer) && ib->index_size);

      /* Create and map the output buffer. */
      err = u_upload_alloc(mgr->uploader, 0,
                           key->output_stride * num_indices,
                           &out_offset, &out_buffer,
                           (void**)&out_map);
      if (err != PIPE_OK)
         return err;

      if (ib->user_buffer) {
         map = (uint8_t*)ib->user_buffer + offset;
      } else {
         map = pipe_buffer_map_range(mgr->pipe, ib->buffer, offset,
                                     num_indices * ib->index_size,
                                     PIPE_TRANSFER_READ, &transfer);
      }

      switch (ib->index_size) {
      case 4:
         tr->run_elts(tr, (unsigned*)map, num_indices, 0, 0, out_map);
         break;
      case 2:
         tr->run_elts16(tr, (uint16_t*)map, num_indices, 0, 0, out_map);
         break;
      case 1:
         tr->run_elts8(tr, map, num_indices, 0, 0, out_map);
         break;
      }

      if (transfer) {
         pipe_buffer_unmap(mgr->pipe, transfer);
      }
   } else {
      /* Create and map the output buffer. */
      err = u_upload_alloc(mgr->uploader,
                           key->output_stride * start_vertex,
                           key->output_stride * num_vertices,
                           &out_offset, &out_buffer,
                           (void**)&out_map);
      if (err != PIPE_OK)
         return err;

      out_offset -= key->output_stride * start_vertex;

      tr->run(tr, 0, num_vertices, 0, 0, out_map);
   }

   /* Unmap all buffers. */
   mask = vb_mask;
   while (mask) {
      unsigned i = u_bit_scan(&mask);

      if (vb_transfer[i]) {
         pipe_buffer_unmap(mgr->pipe, vb_transfer[i]);
      }
   }

   /* Setup the new vertex buffer. */
   mgr->real_vertex_buffer[out_vb].buffer_offset = out_offset;
   mgr->real_vertex_buffer[out_vb].stride = key->output_stride;

   /* Move the buffer reference. */
   pipe_resource_reference(
      &mgr->real_vertex_buffer[out_vb].buffer, NULL);
   mgr->real_vertex_buffer[out_vb].buffer = out_buffer;

   return PIPE_OK;
}

static boolean
u_vbuf_translate_find_free_vb_slots(struct u_vbuf *mgr,
                                    unsigned mask[VB_NUM])
{
   unsigned type;
   unsigned fallback_vbs[VB_NUM];
   /* Set the bit for each buffer which is incompatible, or isn't set. */
   uint32_t unused_vb_mask =
      mgr->ve->incompatible_vb_mask_all | mgr->incompatible_vb_mask |
      ~mgr->enabled_vb_mask;

   memset(fallback_vbs, ~0, sizeof(fallback_vbs));

   /* Find free slots for each type if needed. */
   for (type = 0; type < VB_NUM; type++) {
      if (mask[type]) {
         uint32_t index;

         if (!unused_vb_mask) {
            return FALSE;
         }

         index = ffs(unused_vb_mask) - 1;
         fallback_vbs[type] = index;
         /*printf("found slot=%i for type=%i\n", index, type);*/
      }
   }

   for (type = 0; type < VB_NUM; type++) {
      if (mask[type]) {
         mgr->dirty_real_vb_mask |= 1 << fallback_vbs[type];
      }
   }

   memcpy(mgr->fallback_vbs, fallback_vbs, sizeof(fallback_vbs));
   return TRUE;
}

static boolean
u_vbuf_translate_begin(struct u_vbuf *mgr,
                       int start_vertex, unsigned num_vertices,
                       int start_instance, unsigned num_instances,
                       int start_index, unsigned num_indices, int min_index,
                       boolean unroll_indices)
{
   unsigned mask[VB_NUM] = {0};
   struct translate_key key[VB_NUM];
   unsigned elem_index[VB_NUM][PIPE_MAX_ATTRIBS]; /* ... into key.elements */
   unsigned i, type;
   unsigned incompatible_vb_mask = mgr->incompatible_vb_mask &
                                   mgr->ve->used_vb_mask;

   int start[VB_NUM] = {
      start_vertex,     /* VERTEX */
      start_instance,   /* INSTANCE */
      0                 /* CONST */
   };

   unsigned num[VB_NUM] = {
      num_vertices,     /* VERTEX */
      num_instances,    /* INSTANCE */
      1                 /* CONST */
   };

   memset(key, 0, sizeof(key));
   memset(elem_index, ~0, sizeof(elem_index));

   /* See if there are vertex attribs of each type to translate and
    * which ones. */
   for (i = 0; i < mgr->ve->count; i++) {
      unsigned vb_index = mgr->ve->ve[i].vertex_buffer_index;

      if (!mgr->vertex_buffer[vb_index].stride) {
         if (!(mgr->ve->incompatible_elem_mask & (1 << i)) &&
             !(incompatible_vb_mask & (1 << vb_index))) {
            continue;
         }
         mask[VB_CONST] |= 1 << vb_index;
      } else if (mgr->ve->ve[i].instance_divisor) {
         if (!(mgr->ve->incompatible_elem_mask & (1 << i)) &&
             !(incompatible_vb_mask & (1 << vb_index))) {
            continue;
         }
         mask[VB_INSTANCE] |= 1 << vb_index;
      } else {
         if (!unroll_indices &&
             !(mgr->ve->incompatible_elem_mask & (1 << i)) &&
             !(incompatible_vb_mask & (1 << vb_index))) {
            continue;
         }
         mask[VB_VERTEX] |= 1 << vb_index;
      }
   }

   assert(mask[VB_VERTEX] || mask[VB_INSTANCE] || mask[VB_CONST]);

   /* Find free vertex buffer slots. */
   if (!u_vbuf_translate_find_free_vb_slots(mgr, mask)) {
      return FALSE;
   }

   /* Initialize the translate keys. */
   for (i = 0; i < mgr->ve->count; i++) {
      struct translate_key *k;
      struct translate_element *te;
      unsigned bit, vb_index = mgr->ve->ve[i].vertex_buffer_index;
      bit = 1 << vb_index;

      if (!(mgr->ve->incompatible_elem_mask & (1 << i)) &&
          !(incompatible_vb_mask & (1 << vb_index)) &&
          (!unroll_indices || !(mask[VB_VERTEX] & bit))) {
         continue;
      }

      /* Set type to what we will translate.
       * Whether vertex, instance, or constant attribs. */
      for (type = 0; type < VB_NUM; type++) {
         if (mask[type] & bit) {
            break;
         }
      }
      assert(type < VB_NUM);
      assert(translate_is_output_format_supported(mgr->ve->native_format[i]));
      /*printf("velem=%i type=%i\n", i, type);*/

      /* Add the vertex element. */
      k = &key[type];
      elem_index[type][i] = k->nr_elements;

      te = &k->element[k->nr_elements];
      te->type = TRANSLATE_ELEMENT_NORMAL;
      te->instance_divisor = 0;
      te->input_buffer = vb_index;
      te->input_format = mgr->ve->ve[i].src_format;
      te->input_offset = mgr->ve->ve[i].src_offset;
      te->output_format = mgr->ve->native_format[i];
      te->output_offset = k->output_stride;

      k->output_stride += mgr->ve->native_format_size[i];
      k->nr_elements++;
   }

   /* Translate buffers. */
   for (type = 0; type < VB_NUM; type++) {
      if (key[type].nr_elements) {
         enum pipe_error err;
         err = u_vbuf_translate_buffers(mgr, &key[type], mask[type],
                                        mgr->fallback_vbs[type],
                                        start[type], num[type],
                                        start_index, num_indices, min_index,
                                        unroll_indices && type == VB_VERTEX);
         if (err != PIPE_OK)
            return FALSE;

         /* Fixup the stride for constant attribs. */
         if (type == VB_CONST) {
            mgr->real_vertex_buffer[mgr->fallback_vbs[VB_CONST]].stride = 0;
         }
      }
   }

   /* Setup new vertex elements. */
   for (i = 0; i < mgr->ve->count; i++) {
      for (type = 0; type < VB_NUM; type++) {
         if (elem_index[type][i] < key[type].nr_elements) {
            struct translate_element *te = &key[type].element[elem_index[type][i]];
            mgr->fallback_velems[i].instance_divisor = mgr->ve->ve[i].instance_divisor;
            mgr->fallback_velems[i].src_format = te->output_format;
            mgr->fallback_velems[i].src_offset = te->output_offset;
            mgr->fallback_velems[i].vertex_buffer_index = mgr->fallback_vbs[type];

            /* elem_index[type][i] can only be set for one type. */
            assert(type > VB_INSTANCE || elem_index[type+1][i] == ~0);
            assert(type > VB_VERTEX   || elem_index[type+2][i] == ~0);
            break;
         }
      }
      /* No translating, just copy the original vertex element over. */
      if (type == VB_NUM) {
         memcpy(&mgr->fallback_velems[i], &mgr->ve->ve[i],
                sizeof(struct pipe_vertex_element));
      }
   }

   u_vbuf_set_vertex_elements_internal(mgr, mgr->ve->count,
                                       mgr->fallback_velems);
   mgr->using_translate = TRUE;
   return TRUE;
}

static void u_vbuf_translate_end(struct u_vbuf *mgr)
{
   unsigned i;

   /* Restore vertex elements. */
   mgr->pipe->bind_vertex_elements_state(mgr->pipe, mgr->ve->driver_cso);
   mgr->using_translate = FALSE;

   /* Unreference the now-unused VBOs. */
   for (i = 0; i < VB_NUM; i++) {
      unsigned vb = mgr->fallback_vbs[i];
      if (vb != ~0) {
         pipe_resource_reference(&mgr->real_vertex_buffer[vb].buffer, NULL);
         mgr->fallback_vbs[i] = ~0;

         /* This will cause the buffer to be unbound in the driver later. */
         mgr->dirty_real_vb_mask |= 1 << vb;
      }
   }
}

#define FORMAT_REPLACE(what, withwhat) \
    case PIPE_FORMAT_##what: format = PIPE_FORMAT_##withwhat; break

static void *
u_vbuf_create_vertex_elements(struct u_vbuf *mgr, unsigned count,
                              const struct pipe_vertex_element *attribs)
{
   struct pipe_context *pipe = mgr->pipe;
   unsigned i;
   struct pipe_vertex_element driver_attribs[PIPE_MAX_ATTRIBS];
   struct u_vbuf_elements *ve = CALLOC_STRUCT(u_vbuf_elements);
   uint32_t used_buffers = 0;

   ve->count = count;

   memcpy(ve->ve, attribs, sizeof(struct pipe_vertex_element) * count);
   memcpy(driver_attribs, attribs, sizeof(struct pipe_vertex_element) * count);

   /* Set the best native format in case the original format is not
    * supported. */
   for (i = 0; i < count; i++) {
      enum pipe_format format = ve->ve[i].src_format;

      ve->src_format_size[i] = util_format_get_blocksize(format);

      used_buffers |= 1 << ve->ve[i].vertex_buffer_index;

      if (!ve->ve[i].instance_divisor) {
         ve->noninstance_vb_mask_any |= 1 << ve->ve[i].vertex_buffer_index;
      }

      /* Choose a native format.
       * For now we don't care about the alignment, that's going to
       * be sorted out later. */
      if (!mgr->caps.format_fixed32) {
         switch (format) {
            FORMAT_REPLACE(R32_FIXED,           R32_FLOAT);
            FORMAT_REPLACE(R32G32_FIXED,        R32G32_FLOAT);
            FORMAT_REPLACE(R32G32B32_FIXED,     R32G32B32_FLOAT);
            FORMAT_REPLACE(R32G32B32A32_FIXED,  R32G32B32A32_FLOAT);
            default:;
         }
      }
      if (!mgr->caps.format_float16) {
         switch (format) {
            FORMAT_REPLACE(R16_FLOAT,           R32_FLOAT);
            FORMAT_REPLACE(R16G16_FLOAT,        R32G32_FLOAT);
            FORMAT_REPLACE(R16G16B16_FLOAT,     R32G32B32_FLOAT);
            FORMAT_REPLACE(R16G16B16A16_FLOAT,  R32G32B32A32_FLOAT);
            default:;
         }
      }
      if (!mgr->caps.format_float64) {
         switch (format) {
            FORMAT_REPLACE(R64_FLOAT,           R32_FLOAT);
            FORMAT_REPLACE(R64G64_FLOAT,        R32G32_FLOAT);
            FORMAT_REPLACE(R64G64B64_FLOAT,     R32G32B32_FLOAT);
            FORMAT_REPLACE(R64G64B64A64_FLOAT,  R32G32B32A32_FLOAT);
            default:;
         }
      }
      if (!mgr->caps.format_norm32) {
         switch (format) {
            FORMAT_REPLACE(R32_UNORM,           R32_FLOAT);
            FORMAT_REPLACE(R32G32_UNORM,        R32G32_FLOAT);
            FORMAT_REPLACE(R32G32B32_UNORM,     R32G32B32_FLOAT);
            FORMAT_REPLACE(R32G32B32A32_UNORM,  R32G32B32A32_FLOAT);
            FORMAT_REPLACE(R32_SNORM,           R32_FLOAT);
            FORMAT_REPLACE(R32G32_SNORM,        R32G32_FLOAT);
            FORMAT_REPLACE(R32G32B32_SNORM,     R32G32B32_FLOAT);
            FORMAT_REPLACE(R32G32B32A32_SNORM,  R32G32B32A32_FLOAT);
            default:;
         }
      }
      if (!mgr->caps.format_scaled32) {
         switch (format) {
            FORMAT_REPLACE(R32_USCALED,         R32_FLOAT);
            FORMAT_REPLACE(R32G32_USCALED,      R32G32_FLOAT);
            FORMAT_REPLACE(R32G32B32_USCALED,   R32G32B32_FLOAT);
            FORMAT_REPLACE(R32G32B32A32_USCALED,R32G32B32A32_FLOAT);
            FORMAT_REPLACE(R32_SSCALED,         R32_FLOAT);
            FORMAT_REPLACE(R32G32_SSCALED,      R32G32_FLOAT);
            FORMAT_REPLACE(R32G32B32_SSCALED,   R32G32B32_FLOAT);
            FORMAT_REPLACE(R32G32B32A32_SSCALED,R32G32B32A32_FLOAT);
            default:;
         }
      }

      driver_attribs[i].src_format = format;
      ve->native_format[i] = format;
      ve->native_format_size[i] =
            util_format_get_blocksize(ve->native_format[i]);

      if (ve->ve[i].src_format != format ||
          (!mgr->caps.velem_src_offset_unaligned &&
           ve->ve[i].src_offset % 4 != 0)) {
         ve->incompatible_elem_mask |= 1 << i;
         ve->incompatible_vb_mask_any |= 1 << ve->ve[i].vertex_buffer_index;
      } else {
         ve->compatible_vb_mask_any |= 1 << ve->ve[i].vertex_buffer_index;
      }
   }

   ve->used_vb_mask = used_buffers;
   ve->compatible_vb_mask_all = ~ve->incompatible_vb_mask_any & used_buffers;
   ve->incompatible_vb_mask_all = ~ve->compatible_vb_mask_any & used_buffers;

   /* Align the formats to the size of DWORD if needed. */
   if (!mgr->caps.velem_src_offset_unaligned) {
      for (i = 0; i < count; i++) {
         ve->native_format_size[i] = align(ve->native_format_size[i], 4);
      }
   }

   ve->driver_cso =
      pipe->create_vertex_elements_state(pipe, count, driver_attribs);
   return ve;
}

static void u_vbuf_delete_vertex_elements(struct u_vbuf *mgr, void *cso)
{
   struct pipe_context *pipe = mgr->pipe;
   struct u_vbuf_elements *ve = cso;

   pipe->delete_vertex_elements_state(pipe, ve->driver_cso);
   FREE(ve);
}

void u_vbuf_set_vertex_buffers(struct u_vbuf *mgr,
                               unsigned start_slot, unsigned count,
                               const struct pipe_vertex_buffer *bufs)
{
   unsigned i;
   /* which buffers are enabled */
   uint32_t enabled_vb_mask = 0;
   /* which buffers are in user memory */
   uint32_t user_vb_mask = 0;
   /* which buffers are incompatible with the driver */
   uint32_t incompatible_vb_mask = 0;
   /* which buffers have a non-zero stride */
   uint32_t nonzero_stride_vb_mask = 0;
   uint32_t mask = ~(((1ull << count) - 1) << start_slot);

   /* Zero out the bits we are going to rewrite completely. */
   mgr->user_vb_mask &= mask;
   mgr->incompatible_vb_mask &= mask;
   mgr->nonzero_stride_vb_mask &= mask;
   mgr->enabled_vb_mask &= mask;

   if (!bufs) {
      struct pipe_context *pipe = mgr->pipe;
      /* Unbind. */
      mgr->dirty_real_vb_mask &= mask;

      for (i = 0; i < count; i++) {
         unsigned dst_index = start_slot + i;

         pipe_resource_reference(&mgr->vertex_buffer[dst_index].buffer, NULL);
         pipe_resource_reference(&mgr->real_vertex_buffer[dst_index].buffer,
                                 NULL);
      }

      pipe->set_vertex_buffers(pipe, start_slot, count, NULL);
      return;
   }

   for (i = 0; i < count; i++) {
      unsigned dst_index = start_slot + i;
      const struct pipe_vertex_buffer *vb = &bufs[i];
      struct pipe_vertex_buffer *orig_vb = &mgr->vertex_buffer[dst_index];
      struct pipe_vertex_buffer *real_vb = &mgr->real_vertex_buffer[dst_index];

      if (!vb->buffer && !vb->user_buffer) {
         pipe_resource_reference(&orig_vb->buffer, NULL);
         pipe_resource_reference(&real_vb->buffer, NULL);
         real_vb->user_buffer = NULL;
         continue;
      }

      pipe_resource_reference(&orig_vb->buffer, vb->buffer);
      orig_vb->user_buffer = vb->user_buffer;

      real_vb->buffer_offset = orig_vb->buffer_offset = vb->buffer_offset;
      real_vb->stride = orig_vb->stride = vb->stride;

      if (vb->stride) {
         nonzero_stride_vb_mask |= 1 << dst_index;
      }
      enabled_vb_mask |= 1 << dst_index;

      if ((!mgr->caps.buffer_offset_unaligned && vb->buffer_offset % 4 != 0) ||
          (!mgr->caps.buffer_stride_unaligned && vb->stride % 4 != 0)) {
         incompatible_vb_mask |= 1 << dst_index;
         pipe_resource_reference(&real_vb->buffer, NULL);
         continue;
      }

      if (!mgr->caps.user_vertex_buffers && vb->user_buffer) {
         user_vb_mask |= 1 << dst_index;
         pipe_resource_reference(&real_vb->buffer, NULL);
         continue;
      }

      pipe_resource_reference(&real_vb->buffer, vb->buffer);
      real_vb->user_buffer = vb->user_buffer;
   }

   mgr->user_vb_mask |= user_vb_mask;
   mgr->incompatible_vb_mask |= incompatible_vb_mask;
   mgr->nonzero_stride_vb_mask |= nonzero_stride_vb_mask;
   mgr->enabled_vb_mask |= enabled_vb_mask;

   /* All changed buffers are marked as dirty, even the NULL ones,
    * which will cause the NULL buffers to be unbound in the driver later. */
   mgr->dirty_real_vb_mask |= ~mask;
}

void u_vbuf_set_index_buffer(struct u_vbuf *mgr,
                             const struct pipe_index_buffer *ib)
{
   struct pipe_context *pipe = mgr->pipe;

   if (ib) {
      assert(ib->offset % ib->index_size == 0);
      pipe_resource_reference(&mgr->index_buffer.buffer, ib->buffer);
      memcpy(&mgr->index_buffer, ib, sizeof(*ib));
   } else {
      pipe_resource_reference(&mgr->index_buffer.buffer, NULL);
   }

   pipe->set_index_buffer(pipe, ib);
}

static enum pipe_error
u_vbuf_upload_buffers(struct u_vbuf *mgr,
                      int start_vertex, unsigned num_vertices,
                      int start_instance, unsigned num_instances)
{
   unsigned i;
   unsigned nr_velems = mgr->ve->count;
   struct pipe_vertex_element *velems =
         mgr->using_translate ? mgr->fallback_velems : mgr->ve->ve;
   unsigned start_offset[PIPE_MAX_ATTRIBS];
   unsigned end_offset[PIPE_MAX_ATTRIBS];
   uint32_t buffer_mask = 0;

   /* Determine how much data needs to be uploaded. */
   for (i = 0; i < nr_velems; i++) {
      struct pipe_vertex_element *velem = &velems[i];
      unsigned index = velem->vertex_buffer_index;
      struct pipe_vertex_buffer *vb = &mgr->vertex_buffer[index];
      unsigned instance_div, first, size, index_bit;

      /* Skip the buffers generated by translate. */
      if (index == mgr->fallback_vbs[VB_VERTEX] ||
          index == mgr->fallback_vbs[VB_INSTANCE] ||
          index == mgr->fallback_vbs[VB_CONST]) {
         continue;
      }

      if (!vb->user_buffer) {
         continue;
      }

      instance_div = velem->instance_divisor;
      first = vb->buffer_offset + velem->src_offset;

      if (!vb->stride) {
         /* Constant attrib. */
         size = mgr->ve->src_format_size[i];
      } else if (instance_div) {
         /* Per-instance attrib. */
         unsigned count = (num_instances + instance_div - 1) / instance_div;
         first += vb->stride * start_instance;
         size = vb->stride * (count - 1) + mgr->ve->src_format_size[i];
      } else {
         /* Per-vertex attrib. */
         first += vb->stride * start_vertex;
         size = vb->stride * (num_vertices - 1) + mgr->ve->src_format_size[i];
      }

      index_bit = 1 << index;

      /* Update offsets. */
      if (!(buffer_mask & index_bit)) {
         start_offset[index] = first;
         end_offset[index] = first + size;
      } else {
         if (first < start_offset[index])
            start_offset[index] = first;
         if (first + size > end_offset[index])
            end_offset[index] = first + size;
      }

      buffer_mask |= index_bit;
   }

   /* Upload buffers. */
   while (buffer_mask) {
      unsigned start, end;
      struct pipe_vertex_buffer *real_vb;
      const uint8_t *ptr;
      enum pipe_error err;

      i = u_bit_scan(&buffer_mask);

      start = start_offset[i];
      end = end_offset[i];
      assert(start < end);

      real_vb = &mgr->real_vertex_buffer[i];
      ptr = mgr->vertex_buffer[i].user_buffer;

      err = u_upload_data(mgr->uploader, start, end - start, ptr + start,
                          &real_vb->buffer_offset, &real_vb->buffer);
      if (err != PIPE_OK)
         return err;

      real_vb->buffer_offset -= start;
   }

   return PIPE_OK;
}

static boolean u_vbuf_need_minmax_index(struct u_vbuf *mgr)
{
   /* See if there are any per-vertex attribs which will be uploaded or
    * translated. Use bitmasks to get the info instead of looping over vertex
    * elements. */
   return (mgr->ve->used_vb_mask &
           ((mgr->user_vb_mask | mgr->incompatible_vb_mask |
             mgr->ve->incompatible_vb_mask_any) &
            mgr->ve->noninstance_vb_mask_any & mgr->nonzero_stride_vb_mask)) != 0;
}

static boolean u_vbuf_mapping_vertex_buffer_blocks(struct u_vbuf *mgr)
{
   /* Return true if there are hw buffers which don't need to be translated.
    *
    * We could query whether each buffer is busy, but that would
    * be way more costly than this. */
   return (mgr->ve->used_vb_mask &
           (~mgr->user_vb_mask & ~mgr->incompatible_vb_mask &
            mgr->ve->compatible_vb_mask_all & mgr->ve->noninstance_vb_mask_any &
            mgr->nonzero_stride_vb_mask)) != 0;
}

static void u_vbuf_get_minmax_index(struct pipe_context *pipe,
                                    struct pipe_index_buffer *ib,
                                    boolean primitive_restart,
                                    unsigned restart_index,
                                    unsigned start, unsigned count,
                                    int *out_min_index,
                                    int *out_max_index)
{
   struct pipe_transfer *transfer = NULL;
   const void *indices;
   unsigned i;

   if (ib->user_buffer) {
      indices = (uint8_t*)ib->user_buffer +
                ib->offset + start * ib->index_size;
   } else {
      indices = pipe_buffer_map_range(pipe, ib->buffer,
                                      ib->offset + start * ib->index_size,
                                      count * ib->index_size,
                                      PIPE_TRANSFER_READ, &transfer);
   }

   switch (ib->index_size) {
   case 4: {
      const unsigned *ui_indices = (const unsigned*)indices;
      unsigned max_ui = 0;
      unsigned min_ui = ~0U;
      if (primitive_restart) {
         for (i = 0; i < count; i++) {
            if (ui_indices[i] != restart_index) {
               if (ui_indices[i] > max_ui) max_ui = ui_indices[i];
               if (ui_indices[i] < min_ui) min_ui = ui_indices[i];
            }
         }
      }
      else {
         for (i = 0; i < count; i++) {
            if (ui_indices[i] > max_ui) max_ui = ui_indices[i];
            if (ui_indices[i] < min_ui) min_ui = ui_indices[i];
         }
      }
      *out_min_index = min_ui;
      *out_max_index = max_ui;
      break;
   }
   case 2: {
      const unsigned short *us_indices = (const unsigned short*)indices;
      unsigned max_us = 0;
      unsigned min_us = ~0U;
      if (primitive_restart) {
         for (i = 0; i < count; i++) {
            if (us_indices[i] != restart_index) {
               if (us_indices[i] > max_us) max_us = us_indices[i];
               if (us_indices[i] < min_us) min_us = us_indices[i];
            }
         }
      }
      else {
         for (i = 0; i < count; i++) {
            if (us_indices[i] > max_us) max_us = us_indices[i];
            if (us_indices[i] < min_us) min_us = us_indices[i];
         }
      }
      *out_min_index = min_us;
      *out_max_index = max_us;
      break;
   }
   case 1: {
      const unsigned char *ub_indices = (const unsigned char*)indices;
      unsigned max_ub = 0;
      unsigned min_ub = ~0U;
      if (primitive_restart) {
         for (i = 0; i < count; i++) {
            if (ub_indices[i] != restart_index) {
               if (ub_indices[i] > max_ub) max_ub = ub_indices[i];
               if (ub_indices[i] < min_ub) min_ub = ub_indices[i];
            }
         }
      }
      else {
         for (i = 0; i < count; i++) {
            if (ub_indices[i] > max_ub) max_ub = ub_indices[i];
            if (ub_indices[i] < min_ub) min_ub = ub_indices[i];
         }
      }
      *out_min_index = min_ub;
      *out_max_index = max_ub;
      break;
   }
   default:
      assert(0);
      *out_min_index = 0;
      *out_max_index = 0;
   }

   if (transfer) {
      pipe_buffer_unmap(pipe, transfer);
   }
}

static void u_vbuf_set_driver_vertex_buffers(struct u_vbuf *mgr)
{
   struct pipe_context *pipe = mgr->pipe;
   unsigned start_slot, count;

   start_slot = ffs(mgr->dirty_real_vb_mask) - 1;
   count = util_last_bit(mgr->dirty_real_vb_mask >> start_slot);

   pipe->set_vertex_buffers(pipe, start_slot, count,
                            mgr->real_vertex_buffer + start_slot);
   mgr->dirty_real_vb_mask = 0;
}

void u_vbuf_draw_vbo(struct u_vbuf *mgr, const struct pipe_draw_info *info)
{
   struct pipe_context *pipe = mgr->pipe;
   int start_vertex, min_index;
   unsigned num_vertices;
   boolean unroll_indices = FALSE;
   uint32_t used_vb_mask = mgr->ve->used_vb_mask;
   uint32_t user_vb_mask = mgr->user_vb_mask & used_vb_mask;
   uint32_t incompatible_vb_mask = mgr->incompatible_vb_mask & used_vb_mask;
   struct pipe_draw_info new_info;

   /* Normal draw. No fallback and no user buffers. */
   if (!incompatible_vb_mask &&
       !mgr->ve->incompatible_elem_mask &&
       !user_vb_mask) {

      /* Set vertex buffers if needed. */
      if (mgr->dirty_real_vb_mask & used_vb_mask) {
         u_vbuf_set_driver_vertex_buffers(mgr);
      }

      pipe->draw_vbo(pipe, info);
      return;
   }

   new_info = *info;

   /* Fallback. We need to know all the parameters. */
   if (new_info.indirect) {
      struct pipe_transfer *transfer = NULL;
      int *data;

      if (new_info.indexed) {
         data = pipe_buffer_map_range(pipe, new_info.indirect,
                                      new_info.indirect_offset, 20,
                                      PIPE_TRANSFER_READ, &transfer);
         new_info.index_bias = data[3];
         new_info.start_instance = data[4];
      }
      else {
         data = pipe_buffer_map_range(pipe, new_info.indirect,
                                      new_info.indirect_offset, 16,
                                      PIPE_TRANSFER_READ, &transfer);
         new_info.start_instance = data[3];
      }

      new_info.count = data[0];
      new_info.instance_count = data[1];
      new_info.start = data[2];
      pipe_buffer_unmap(pipe, transfer);
      new_info.indirect = NULL;
   }

   if (new_info.indexed) {
      /* See if anything needs to be done for per-vertex attribs. */
      if (u_vbuf_need_minmax_index(mgr)) {
         int max_index;

         if (new_info.max_index != ~0) {
            min_index = new_info.min_index;
            max_index = new_info.max_index;
         } else {
            u_vbuf_get_minmax_index(mgr->pipe, &mgr->index_buffer,
                                    new_info.primitive_restart,
                                    new_info.restart_index, new_info.start,
                                    new_info.count, &min_index, &max_index);
         }

         assert(min_index <= max_index);

         start_vertex = min_index + new_info.index_bias;
         num_vertices = max_index + 1 - min_index;

         /* Primitive restart doesn't work when unrolling indices.
          * We would have to break this drawing operation into several ones. */
         /* Use some heuristic to see if unrolling indices improves
          * performance. */
         if (!new_info.primitive_restart &&
             num_vertices > new_info.count*2 &&
             num_vertices - new_info.count > 32 &&
             !u_vbuf_mapping_vertex_buffer_blocks(mgr)) {
            unroll_indices = TRUE;
            user_vb_mask &= ~(mgr->nonzero_stride_vb_mask &
                              mgr->ve->noninstance_vb_mask_any);
         }
      } else {
         /* Nothing to do for per-vertex attribs. */
         start_vertex = 0;
         num_vertices = 0;
         min_index = 0;
      }
   } else {
      start_vertex = new_info.start;
      num_vertices = new_info.count;
      min_index = 0;
   }

   /* Translate vertices with non-native layouts or formats. */
   if (unroll_indices ||
       incompatible_vb_mask ||
       mgr->ve->incompatible_elem_mask) {
      if (!u_vbuf_translate_begin(mgr, start_vertex, num_vertices,
                                  new_info.start_instance,
                                  new_info.instance_count, new_info.start,
                                  new_info.count, min_index, unroll_indices)) {
         debug_warn_once("u_vbuf_translate_begin() failed");
         return;
      }

      if (unroll_indices) {
         new_info.indexed = FALSE;
         new_info.index_bias = 0;
         new_info.min_index = 0;
         new_info.max_index = new_info.count - 1;
         new_info.start = 0;
      }

      user_vb_mask &= ~(incompatible_vb_mask |
                        mgr->ve->incompatible_vb_mask_all);
   }

   /* Upload user buffers. */
   if (user_vb_mask) {
      if (u_vbuf_upload_buffers(mgr, start_vertex, num_vertices,
                                new_info.start_instance,
                                new_info.instance_count) != PIPE_OK) {
         debug_warn_once("u_vbuf_upload_buffers() failed");
         return;
      }

      mgr->dirty_real_vb_mask |= user_vb_mask;
   }

   /*
   if (unroll_indices) {
      printf("unrolling indices: start_vertex = %i, num_vertices = %i\n",
             start_vertex, num_vertices);
      util_dump_draw_info(stdout, info);
      printf("\n");
   }

   unsigned i;
   for (i = 0; i < mgr->nr_vertex_buffers; i++) {
      printf("input %i: ", i);
      util_dump_vertex_buffer(stdout, mgr->vertex_buffer+i);
      printf("\n");
   }
   for (i = 0; i < mgr->nr_real_vertex_buffers; i++) {
      printf("real %i: ", i);
      util_dump_vertex_buffer(stdout, mgr->real_vertex_buffer+i);
      printf("\n");
   }
   */

   u_upload_unmap(mgr->uploader);
   u_vbuf_set_driver_vertex_buffers(mgr);

   pipe->draw_vbo(pipe, &new_info);

   if (mgr->using_translate) {
      u_vbuf_translate_end(mgr);
   }
}

void u_vbuf_save_vertex_elements(struct u_vbuf *mgr)
{
   assert(!mgr->ve_saved);
   mgr->ve_saved = mgr->ve;
}

void u_vbuf_restore_vertex_elements(struct u_vbuf *mgr)
{
   if (mgr->ve != mgr->ve_saved) {
      struct pipe_context *pipe = mgr->pipe;

      mgr->ve = mgr->ve_saved;
      pipe->bind_vertex_elements_state(pipe,
                                       mgr->ve ? mgr->ve->driver_cso : NULL);
   }
   mgr->ve_saved = NULL;
}

void u_vbuf_save_aux_vertex_buffer_slot(struct u_vbuf *mgr)
{
   struct pipe_vertex_buffer *vb =
         &mgr->vertex_buffer[mgr->aux_vertex_buffer_slot];

   pipe_resource_reference(&mgr->aux_vertex_buffer_saved.buffer, vb->buffer);
   memcpy(&mgr->aux_vertex_buffer_saved, vb, sizeof(*vb));
}

void u_vbuf_restore_aux_vertex_buffer_slot(struct u_vbuf *mgr)
{
   u_vbuf_set_vertex_buffers(mgr, mgr->aux_vertex_buffer_slot, 1,
                             &mgr->aux_vertex_buffer_saved);
   pipe_resource_reference(&mgr->aux_vertex_buffer_saved.buffer, NULL);
}