aboutsummaryrefslogtreecommitdiff
path: root/mesalib/src/glsl/ir.cpp
blob: b4ceb5bba14b62f12369b42351b60242f44a7ffe (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
/*
 * Copyright © 2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 * DEALINGS IN THE SOFTWARE.
 */
#include <string.h>
#include "main/core.h" /* for MAX2 */
#include "ir.h"
#include "ir_visitor.h"
#include "glsl_types.h"

ir_rvalue::ir_rvalue()
{
   this->type = glsl_type::error_type;
}

bool ir_rvalue::is_zero() const
{
   return false;
}

bool ir_rvalue::is_one() const
{
   return false;
}

bool ir_rvalue::is_negative_one() const
{
   return false;
}

/**
 * Modify the swizzle make to move one component to another
 *
 * \param m    IR swizzle to be modified
 * \param from Component in the RHS that is to be swizzled
 * \param to   Desired swizzle location of \c from
 */
static void
update_rhs_swizzle(ir_swizzle_mask &m, unsigned from, unsigned to)
{
   switch (to) {
   case 0: m.x = from; break;
   case 1: m.y = from; break;
   case 2: m.z = from; break;
   case 3: m.w = from; break;
   default: assert(!"Should not get here.");
   }

   m.num_components = MAX2(m.num_components, (to + 1));
}

void
ir_assignment::set_lhs(ir_rvalue *lhs)
{
   void *mem_ctx = this;
   bool swizzled = false;

   while (lhs != NULL) {
      ir_swizzle *swiz = lhs->as_swizzle();

      if (swiz == NULL)
	 break;

      unsigned write_mask = 0;
      ir_swizzle_mask rhs_swiz = { 0, 0, 0, 0, 0, 0 };

      for (unsigned i = 0; i < swiz->mask.num_components; i++) {
	 unsigned c = 0;

	 switch (i) {
	 case 0: c = swiz->mask.x; break;
	 case 1: c = swiz->mask.y; break;
	 case 2: c = swiz->mask.z; break;
	 case 3: c = swiz->mask.w; break;
	 default: assert(!"Should not get here.");
	 }

	 write_mask |= (((this->write_mask >> i) & 1) << c);
	 update_rhs_swizzle(rhs_swiz, i, c);
      }

      this->write_mask = write_mask;
      lhs = swiz->val;

      this->rhs = new(mem_ctx) ir_swizzle(this->rhs, rhs_swiz);
      swizzled = true;
   }

   if (swizzled) {
      /* Now, RHS channels line up with the LHS writemask.  Collapse it
       * to just the channels that will be written.
       */
      ir_swizzle_mask rhs_swiz = { 0, 0, 0, 0, 0, 0 };
      int rhs_chan = 0;
      for (int i = 0; i < 4; i++) {
	 if (write_mask & (1 << i))
	    update_rhs_swizzle(rhs_swiz, i, rhs_chan++);
      }
      this->rhs = new(mem_ctx) ir_swizzle(this->rhs, rhs_swiz);
   }

   assert((lhs == NULL) || lhs->as_dereference());

   this->lhs = (ir_dereference *) lhs;
}

ir_variable *
ir_assignment::whole_variable_written()
{
   ir_variable *v = this->lhs->whole_variable_referenced();

   if (v == NULL)
      return NULL;

   if (v->type->is_scalar())
      return v;

   if (v->type->is_vector()) {
      const unsigned mask = (1U << v->type->vector_elements) - 1;

      if (mask != this->write_mask)
	 return NULL;
   }

   /* Either all the vector components are assigned or the variable is some
    * composite type (and the whole thing is assigned.
    */
   return v;
}

ir_assignment::ir_assignment(ir_dereference *lhs, ir_rvalue *rhs,
			     ir_rvalue *condition, unsigned write_mask)
{
   this->ir_type = ir_type_assignment;
   this->condition = condition;
   this->rhs = rhs;
   this->lhs = lhs;
   this->write_mask = write_mask;

   if (lhs->type->is_scalar() || lhs->type->is_vector()) {
      int lhs_components = 0;
      for (int i = 0; i < 4; i++) {
	 if (write_mask & (1 << i))
	    lhs_components++;
      }

      assert(lhs_components == this->rhs->type->vector_elements);
   }
}

ir_assignment::ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs,
			     ir_rvalue *condition)
{
   this->ir_type = ir_type_assignment;
   this->condition = condition;
   this->rhs = rhs;

   /* If the RHS is a vector type, assume that all components of the vector
    * type are being written to the LHS.  The write mask comes from the RHS
    * because we can have a case where the LHS is a vec4 and the RHS is a
    * vec3.  In that case, the assignment is:
    *
    *     (assign (...) (xyz) (var_ref lhs) (var_ref rhs))
    */
   if (rhs->type->is_vector())
      this->write_mask = (1U << rhs->type->vector_elements) - 1;
   else if (rhs->type->is_scalar())
      this->write_mask = 1;
   else
      this->write_mask = 0;

   this->set_lhs(lhs);
}


ir_expression::ir_expression(int op, const struct glsl_type *type,
			     ir_rvalue *op0)
{
   assert(get_num_operands(ir_expression_operation(op)) == 1);
   this->ir_type = ir_type_expression;
   this->type = type;
   this->operation = ir_expression_operation(op);
   this->operands[0] = op0;
   this->operands[1] = NULL;
   this->operands[2] = NULL;
   this->operands[3] = NULL;
}

ir_expression::ir_expression(int op, const struct glsl_type *type,
			     ir_rvalue *op0, ir_rvalue *op1)
{
   assert(((op1 == NULL) && (get_num_operands(ir_expression_operation(op)) == 1))
	  || (get_num_operands(ir_expression_operation(op)) == 2));
   this->ir_type = ir_type_expression;
   this->type = type;
   this->operation = ir_expression_operation(op);
   this->operands[0] = op0;
   this->operands[1] = op1;
   this->operands[2] = NULL;
   this->operands[3] = NULL;
}

ir_expression::ir_expression(int op, const struct glsl_type *type,
			     ir_rvalue *op0, ir_rvalue *op1,
			     ir_rvalue *op2, ir_rvalue *op3)
{
   this->ir_type = ir_type_expression;
   this->type = type;
   this->operation = ir_expression_operation(op);
   this->operands[0] = op0;
   this->operands[1] = op1;
   this->operands[2] = op2;
   this->operands[3] = op3;
}

ir_expression::ir_expression(int op, ir_rvalue *op0)
{
   this->ir_type = ir_type_expression;

   this->operation = ir_expression_operation(op);
   this->operands[0] = op0;
   this->operands[1] = NULL;
   this->operands[2] = NULL;
   this->operands[3] = NULL;

   assert(op <= ir_last_unop);

   switch (this->operation) {
   case ir_unop_bit_not:
   case ir_unop_logic_not:
   case ir_unop_neg:
   case ir_unop_abs:
   case ir_unop_sign:
   case ir_unop_rcp:
   case ir_unop_rsq:
   case ir_unop_sqrt:
   case ir_unop_exp:
   case ir_unop_log:
   case ir_unop_exp2:
   case ir_unop_log2:
   case ir_unop_trunc:
   case ir_unop_ceil:
   case ir_unop_floor:
   case ir_unop_fract:
   case ir_unop_round_even:
   case ir_unop_sin:
   case ir_unop_cos:
   case ir_unop_sin_reduced:
   case ir_unop_cos_reduced:
   case ir_unop_dFdx:
   case ir_unop_dFdy:
      this->type = op0->type;
      break;

   case ir_unop_f2i:
   case ir_unop_b2i:
      this->type = glsl_type::get_instance(GLSL_TYPE_INT,
					   op0->type->vector_elements, 1);
      break;

   case ir_unop_b2f:
   case ir_unop_i2f:
   case ir_unop_u2f:
      this->type = glsl_type::get_instance(GLSL_TYPE_FLOAT,
					   op0->type->vector_elements, 1);
      break;

   case ir_unop_f2b:
   case ir_unop_i2b:
      this->type = glsl_type::get_instance(GLSL_TYPE_BOOL,
					   op0->type->vector_elements, 1);
      break;

   case ir_unop_noise:
      this->type = glsl_type::float_type;
      break;

   case ir_unop_any:
      this->type = glsl_type::bool_type;
      break;

   default:
      assert(!"not reached: missing automatic type setup for ir_expression");
      this->type = op0->type;
      break;
   }
}

ir_expression::ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1)
{
   this->ir_type = ir_type_expression;

   this->operation = ir_expression_operation(op);
   this->operands[0] = op0;
   this->operands[1] = op1;
   this->operands[2] = NULL;
   this->operands[3] = NULL;

   assert(op > ir_last_unop);

   switch (this->operation) {
   case ir_binop_all_equal:
   case ir_binop_any_nequal:
      this->type = glsl_type::bool_type;
      break;

   case ir_binop_add:
   case ir_binop_sub:
   case ir_binop_min:
   case ir_binop_max:
   case ir_binop_pow:
   case ir_binop_mul:
   case ir_binop_div:
   case ir_binop_mod:
      if (op0->type->is_scalar()) {
	 this->type = op1->type;
      } else if (op1->type->is_scalar()) {
	 this->type = op0->type;
      } else {
	 /* FINISHME: matrix types */
	 assert(!op0->type->is_matrix() && !op1->type->is_matrix());
	 assert(op0->type == op1->type);
	 this->type = op0->type;
      }
      break;

   case ir_binop_logic_and:
   case ir_binop_logic_xor:
   case ir_binop_logic_or:
   case ir_binop_bit_and:
   case ir_binop_bit_xor:
   case ir_binop_bit_or:
      if (op0->type->is_scalar()) {
	 this->type = op1->type;
      } else if (op1->type->is_scalar()) {
	 this->type = op0->type;
      }
      break;

   case ir_binop_equal:
   case ir_binop_nequal:
   case ir_binop_lequal:
   case ir_binop_gequal:
   case ir_binop_less:
   case ir_binop_greater:
      assert(op0->type == op1->type);
      this->type = glsl_type::get_instance(GLSL_TYPE_BOOL,
					   op0->type->vector_elements, 1);
      break;

   case ir_binop_dot:
      this->type = glsl_type::float_type;
      break;

   case ir_binop_lshift:
   case ir_binop_rshift:
      this->type = op0->type;
      break;

   default:
      assert(!"not reached: missing automatic type setup for ir_expression");
      this->type = glsl_type::float_type;
   }
}

unsigned int
ir_expression::get_num_operands(ir_expression_operation op)
{
   assert(op <= ir_last_opcode);

   if (op <= ir_last_unop)
      return 1;

   if (op <= ir_last_binop)
      return 2;

   if (op == ir_quadop_vector)
      return 4;

   assert(false);
   return 0;
}

static const char *const operator_strs[] = {
   "~",
   "!",
   "neg",
   "abs",
   "sign",
   "rcp",
   "rsq",
   "sqrt",
   "exp",
   "log",
   "exp2",
   "log2",
   "f2i",
   "i2f",
   "f2b",
   "b2f",
   "i2b",
   "b2i",
   "u2f",
   "any",
   "trunc",
   "ceil",
   "floor",
   "fract",
   "round_even",
   "sin",
   "cos",
   "sin_reduced",
   "cos_reduced",
   "dFdx",
   "dFdy",
   "noise",
   "+",
   "-",
   "*",
   "/",
   "%",
   "<",
   ">",
   "<=",
   ">=",
   "==",
   "!=",
   "all_equal",
   "any_nequal",
   "<<",
   ">>",
   "&",
   "^",
   "|",
   "&&",
   "^^",
   "||",
   "dot",
   "min",
   "max",
   "pow",
   "vector",
};

const char *ir_expression::operator_string(ir_expression_operation op)
{
   assert((unsigned int) op < Elements(operator_strs));
   assert(Elements(operator_strs) == (ir_quadop_vector + 1));
   return operator_strs[op];
}

const char *ir_expression::operator_string()
{
   return operator_string(this->operation);
}

const char*
depth_layout_string(ir_depth_layout layout)
{
   switch(layout) {
   case ir_depth_layout_none:      return "";
   case ir_depth_layout_any:       return "depth_any";
   case ir_depth_layout_greater:   return "depth_greater";
   case ir_depth_layout_less:      return "depth_less";
   case ir_depth_layout_unchanged: return "depth_unchanged";

   default:
      assert(0);
      return "";
   }
}

ir_expression_operation
ir_expression::get_operator(const char *str)
{
   const int operator_count = sizeof(operator_strs) / sizeof(operator_strs[0]);
   for (int op = 0; op < operator_count; op++) {
      if (strcmp(str, operator_strs[op]) == 0)
	 return (ir_expression_operation) op;
   }
   return (ir_expression_operation) -1;
}

ir_constant::ir_constant()
{
   this->ir_type = ir_type_constant;
}

ir_constant::ir_constant(const struct glsl_type *type,
			 const ir_constant_data *data)
{
   assert((type->base_type >= GLSL_TYPE_UINT)
	  && (type->base_type <= GLSL_TYPE_BOOL));

   this->ir_type = ir_type_constant;
   this->type = type;
   memcpy(& this->value, data, sizeof(this->value));
}

ir_constant::ir_constant(float f)
{
   this->ir_type = ir_type_constant;
   this->type = glsl_type::float_type;
   this->value.f[0] = f;
   for (int i = 1; i < 16; i++)  {
      this->value.f[i] = 0;
   }
}

ir_constant::ir_constant(unsigned int u)
{
   this->ir_type = ir_type_constant;
   this->type = glsl_type::uint_type;
   this->value.u[0] = u;
   for (int i = 1; i < 16; i++) {
      this->value.u[i] = 0;
   }
}

ir_constant::ir_constant(int i)
{
   this->ir_type = ir_type_constant;
   this->type = glsl_type::int_type;
   this->value.i[0] = i;
   for (int i = 1; i < 16; i++) {
      this->value.i[i] = 0;
   }
}

ir_constant::ir_constant(bool b)
{
   this->ir_type = ir_type_constant;
   this->type = glsl_type::bool_type;
   this->value.b[0] = b;
   for (int i = 1; i < 16; i++) {
      this->value.b[i] = false;
   }
}

ir_constant::ir_constant(const ir_constant *c, unsigned i)
{
   this->ir_type = ir_type_constant;
   this->type = c->type->get_base_type();

   switch (this->type->base_type) {
   case GLSL_TYPE_UINT:  this->value.u[0] = c->value.u[i]; break;
   case GLSL_TYPE_INT:   this->value.i[0] = c->value.i[i]; break;
   case GLSL_TYPE_FLOAT: this->value.f[0] = c->value.f[i]; break;
   case GLSL_TYPE_BOOL:  this->value.b[0] = c->value.b[i]; break;
   default:              assert(!"Should not get here."); break;
   }
}

ir_constant::ir_constant(const struct glsl_type *type, exec_list *value_list)
{
   this->ir_type = ir_type_constant;
   this->type = type;

   assert(type->is_scalar() || type->is_vector() || type->is_matrix()
	  || type->is_record() || type->is_array());

   if (type->is_array()) {
      this->array_elements = talloc_array(this, ir_constant *, type->length);
      unsigned i = 0;
      foreach_list(node, value_list) {
	 ir_constant *value = (ir_constant *) node;
	 assert(value->as_constant() != NULL);

	 this->array_elements[i++] = value;
      }
      return;
   }

   /* If the constant is a record, the types of each of the entries in
    * value_list must be a 1-for-1 match with the structure components.  Each
    * entry must also be a constant.  Just move the nodes from the value_list
    * to the list in the ir_constant.
    */
   /* FINISHME: Should there be some type checking and / or assertions here? */
   /* FINISHME: Should the new constant take ownership of the nodes from
    * FINISHME: value_list, or should it make copies?
    */
   if (type->is_record()) {
      value_list->move_nodes_to(& this->components);
      return;
   }

   for (unsigned i = 0; i < 16; i++) {
      this->value.u[i] = 0;
   }

   ir_constant *value = (ir_constant *) (value_list->head);

   /* Constructors with exactly one scalar argument are special for vectors
    * and matrices.  For vectors, the scalar value is replicated to fill all
    * the components.  For matrices, the scalar fills the components of the
    * diagonal while the rest is filled with 0.
    */
   if (value->type->is_scalar() && value->next->is_tail_sentinel()) {
      if (type->is_matrix()) {
	 /* Matrix - fill diagonal (rest is already set to 0) */
	 assert(type->base_type == GLSL_TYPE_FLOAT);
	 for (unsigned i = 0; i < type->matrix_columns; i++)
	    this->value.f[i * type->vector_elements + i] = value->value.f[0];
      } else {
	 /* Vector or scalar - fill all components */
	 switch (type->base_type) {
	 case GLSL_TYPE_UINT:
	 case GLSL_TYPE_INT:
	    for (unsigned i = 0; i < type->components(); i++)
	       this->value.u[i] = value->value.u[0];
	    break;
	 case GLSL_TYPE_FLOAT:
	    for (unsigned i = 0; i < type->components(); i++)
	       this->value.f[i] = value->value.f[0];
	    break;
	 case GLSL_TYPE_BOOL:
	    for (unsigned i = 0; i < type->components(); i++)
	       this->value.b[i] = value->value.b[0];
	    break;
	 default:
	    assert(!"Should not get here.");
	    break;
	 }
      }
      return;
   }

   if (type->is_matrix() && value->type->is_matrix()) {
      assert(value->next->is_tail_sentinel());

      /* From section 5.4.2 of the GLSL 1.20 spec:
       * "If a matrix is constructed from a matrix, then each component
       *  (column i, row j) in the result that has a corresponding component
       *  (column i, row j) in the argument will be initialized from there."
       */
      unsigned cols = MIN2(type->matrix_columns, value->type->matrix_columns);
      unsigned rows = MIN2(type->vector_elements, value->type->vector_elements);
      for (unsigned i = 0; i < cols; i++) {
	 for (unsigned j = 0; j < rows; j++) {
	    const unsigned src = i * value->type->vector_elements + j;
	    const unsigned dst = i * type->vector_elements + j;
	    this->value.f[dst] = value->value.f[src];
	 }
      }

      /* "All other components will be initialized to the identity matrix." */
      for (unsigned i = cols; i < type->matrix_columns; i++)
	 this->value.f[i * type->vector_elements + i] = 1.0;

      return;
   }

   /* Use each component from each entry in the value_list to initialize one
    * component of the constant being constructed.
    */
   for (unsigned i = 0; i < type->components(); /* empty */) {
      assert(value->as_constant() != NULL);
      assert(!value->is_tail_sentinel());

      for (unsigned j = 0; j < value->type->components(); j++) {
	 switch (type->base_type) {
	 case GLSL_TYPE_UINT:
	    this->value.u[i] = value->get_uint_component(j);
	    break;
	 case GLSL_TYPE_INT:
	    this->value.i[i] = value->get_int_component(j);
	    break;
	 case GLSL_TYPE_FLOAT:
	    this->value.f[i] = value->get_float_component(j);
	    break;
	 case GLSL_TYPE_BOOL:
	    this->value.b[i] = value->get_bool_component(j);
	    break;
	 default:
	    /* FINISHME: What to do?  Exceptions are not the answer.
	     */
	    break;
	 }

	 i++;
	 if (i >= type->components())
	    break;
      }

      value = (ir_constant *) value->next;
   }
}

ir_constant *
ir_constant::zero(void *mem_ctx, const glsl_type *type)
{
   assert(type->is_numeric() || type->is_boolean());

   ir_constant *c = new(mem_ctx) ir_constant;
   c->type = type;
   memset(&c->value, 0, sizeof(c->value));

   return c;
}

bool
ir_constant::get_bool_component(unsigned i) const
{
   switch (this->type->base_type) {
   case GLSL_TYPE_UINT:  return this->value.u[i] != 0;
   case GLSL_TYPE_INT:   return this->value.i[i] != 0;
   case GLSL_TYPE_FLOAT: return ((int)this->value.f[i]) != 0;
   case GLSL_TYPE_BOOL:  return this->value.b[i];
   default:              assert(!"Should not get here."); break;
   }

   /* Must return something to make the compiler happy.  This is clearly an
    * error case.
    */
   return false;
}

float
ir_constant::get_float_component(unsigned i) const
{
   switch (this->type->base_type) {
   case GLSL_TYPE_UINT:  return (float) this->value.u[i];
   case GLSL_TYPE_INT:   return (float) this->value.i[i];
   case GLSL_TYPE_FLOAT: return this->value.f[i];
   case GLSL_TYPE_BOOL:  return this->value.b[i] ? 1.0 : 0.0;
   default:              assert(!"Should not get here."); break;
   }

   /* Must return something to make the compiler happy.  This is clearly an
    * error case.
    */
   return 0.0;
}

int
ir_constant::get_int_component(unsigned i) const
{
   switch (this->type->base_type) {
   case GLSL_TYPE_UINT:  return this->value.u[i];
   case GLSL_TYPE_INT:   return this->value.i[i];
   case GLSL_TYPE_FLOAT: return (int) this->value.f[i];
   case GLSL_TYPE_BOOL:  return this->value.b[i] ? 1 : 0;
   default:              assert(!"Should not get here."); break;
   }

   /* Must return something to make the compiler happy.  This is clearly an
    * error case.
    */
   return 0;
}

unsigned
ir_constant::get_uint_component(unsigned i) const
{
   switch (this->type->base_type) {
   case GLSL_TYPE_UINT:  return this->value.u[i];
   case GLSL_TYPE_INT:   return this->value.i[i];
   case GLSL_TYPE_FLOAT: return (unsigned) this->value.f[i];
   case GLSL_TYPE_BOOL:  return this->value.b[i] ? 1 : 0;
   default:              assert(!"Should not get here."); break;
   }

   /* Must return something to make the compiler happy.  This is clearly an
    * error case.
    */
   return 0;
}

ir_constant *
ir_constant::get_array_element(unsigned i) const
{
   assert(this->type->is_array());

   /* From page 35 (page 41 of the PDF) of the GLSL 1.20 spec:
    *
    *     "Behavior is undefined if a shader subscripts an array with an index
    *     less than 0 or greater than or equal to the size the array was
    *     declared with."
    *
    * Most out-of-bounds accesses are removed before things could get this far.
    * There are cases where non-constant array index values can get constant
    * folded.
    */
   if (int(i) < 0)
      i = 0;
   else if (i >= this->type->length)
      i = this->type->length - 1;

   return array_elements[i];
}

ir_constant *
ir_constant::get_record_field(const char *name)
{
   int idx = this->type->field_index(name);

   if (idx < 0)
      return NULL;

   if (this->components.is_empty())
      return NULL;

   exec_node *node = this->components.head;
   for (int i = 0; i < idx; i++) {
      node = node->next;

      /* If the end of the list is encountered before the element matching the
       * requested field is found, return NULL.
       */
      if (node->is_tail_sentinel())
	 return NULL;
   }

   return (ir_constant *) node;
}


bool
ir_constant::has_value(const ir_constant *c) const
{
   if (this->type != c->type)
      return false;

   if (this->type->is_array()) {
      for (unsigned i = 0; i < this->type->length; i++) {
	 if (!this->array_elements[i]->has_value(c->array_elements[i]))
	    return false;
      }
      return true;
   }

   if (this->type->base_type == GLSL_TYPE_STRUCT) {
      const exec_node *a_node = this->components.head;
      const exec_node *b_node = c->components.head;

      while (!a_node->is_tail_sentinel()) {
	 assert(!b_node->is_tail_sentinel());

	 const ir_constant *const a_field = (ir_constant *) a_node;
	 const ir_constant *const b_field = (ir_constant *) b_node;

	 if (!a_field->has_value(b_field))
	    return false;

	 a_node = a_node->next;
	 b_node = b_node->next;
      }

      return true;
   }

   for (unsigned i = 0; i < this->type->components(); i++) {
      switch (this->type->base_type) {
      case GLSL_TYPE_UINT:
	 if (this->value.u[i] != c->value.u[i])
	    return false;
	 break;
      case GLSL_TYPE_INT:
	 if (this->value.i[i] != c->value.i[i])
	    return false;
	 break;
      case GLSL_TYPE_FLOAT:
	 if (this->value.f[i] != c->value.f[i])
	    return false;
	 break;
      case GLSL_TYPE_BOOL:
	 if (this->value.b[i] != c->value.b[i])
	    return false;
	 break;
      default:
	 assert(!"Should not get here.");
	 return false;
      }
   }

   return true;
}

bool
ir_constant::is_zero() const
{
   if (!this->type->is_scalar() && !this->type->is_vector())
      return false;

   for (unsigned c = 0; c < this->type->vector_elements; c++) {
      switch (this->type->base_type) {
      case GLSL_TYPE_FLOAT:
	 if (this->value.f[c] != 0.0)
	    return false;
	 break;
      case GLSL_TYPE_INT:
	 if (this->value.i[c] != 0)
	    return false;
	 break;
      case GLSL_TYPE_UINT:
	 if (this->value.u[c] != 0)
	    return false;
	 break;
      case GLSL_TYPE_BOOL:
	 if (this->value.b[c] != false)
	    return false;
	 break;
      default:
	 /* The only other base types are structures, arrays, and samplers.
	  * Samplers cannot be constants, and the others should have been
	  * filtered out above.
	  */
	 assert(!"Should not get here.");
	 return false;
      }
   }

   return true;
}

bool
ir_constant::is_one() const
{
   if (!this->type->is_scalar() && !this->type->is_vector())
      return false;

   for (unsigned c = 0; c < this->type->vector_elements; c++) {
      switch (this->type->base_type) {
      case GLSL_TYPE_FLOAT:
	 if (this->value.f[c] != 1.0)
	    return false;
	 break;
      case GLSL_TYPE_INT:
	 if (this->value.i[c] != 1)
	    return false;
	 break;
      case GLSL_TYPE_UINT:
	 if (this->value.u[c] != 1)
	    return false;
	 break;
      case GLSL_TYPE_BOOL:
	 if (this->value.b[c] != true)
	    return false;
	 break;
      default:
	 /* The only other base types are structures, arrays, and samplers.
	  * Samplers cannot be constants, and the others should have been
	  * filtered out above.
	  */
	 assert(!"Should not get here.");
	 return false;
      }
   }

   return true;
}

bool
ir_constant::is_negative_one() const
{
   if (!this->type->is_scalar() && !this->type->is_vector())
      return false;

   if (this->type->is_boolean())
      return false;

   for (unsigned c = 0; c < this->type->vector_elements; c++) {
      switch (this->type->base_type) {
      case GLSL_TYPE_FLOAT:
	 if (this->value.f[c] != -1.0)
	    return false;
	 break;
      case GLSL_TYPE_INT:
	 if (this->value.i[c] != -1)
	    return false;
	 break;
      case GLSL_TYPE_UINT:
	 if (int(this->value.u[c]) != -1)
	    return false;
	 break;
      default:
	 /* The only other base types are structures, arrays, samplers, and
	  * booleans.  Samplers cannot be constants, and the others should
	  * have been filtered out above.
	  */
	 assert(!"Should not get here.");
	 return false;
      }
   }

   return true;
}

ir_loop::ir_loop()
{
   this->ir_type = ir_type_loop;
   this->cmp = ir_unop_neg;
   this->from = NULL;
   this->to = NULL;
   this->increment = NULL;
   this->counter = NULL;
}


ir_dereference_variable::ir_dereference_variable(ir_variable *var)
{
   this->ir_type = ir_type_dereference_variable;
   this->var = var;
   this->type = (var != NULL) ? var->type : glsl_type::error_type;
}


ir_dereference_array::ir_dereference_array(ir_rvalue *value,
					   ir_rvalue *array_index)
{
   this->ir_type = ir_type_dereference_array;
   this->array_index = array_index;
   this->set_array(value);
}


ir_dereference_array::ir_dereference_array(ir_variable *var,
					   ir_rvalue *array_index)
{
   void *ctx = talloc_parent(var);

   this->ir_type = ir_type_dereference_array;
   this->array_index = array_index;
   this->set_array(new(ctx) ir_dereference_variable(var));
}


void
ir_dereference_array::set_array(ir_rvalue *value)
{
   this->array = value;
   this->type = glsl_type::error_type;

   if (this->array != NULL) {
      const glsl_type *const vt = this->array->type;

      if (vt->is_array()) {
	 type = vt->element_type();
      } else if (vt->is_matrix()) {
	 type = vt->column_type();
      } else if (vt->is_vector()) {
	 type = vt->get_base_type();
      }
   }
}


ir_dereference_record::ir_dereference_record(ir_rvalue *value,
					     const char *field)
{
   this->ir_type = ir_type_dereference_record;
   this->record = value;
   this->field = talloc_strdup(this, field);
   this->type = (this->record != NULL)
      ? this->record->type->field_type(field) : glsl_type::error_type;
}


ir_dereference_record::ir_dereference_record(ir_variable *var,
					     const char *field)
{
   void *ctx = talloc_parent(var);

   this->ir_type = ir_type_dereference_record;
   this->record = new(ctx) ir_dereference_variable(var);
   this->field = talloc_strdup(this, field);
   this->type = (this->record != NULL)
      ? this->record->type->field_type(field) : glsl_type::error_type;
}

bool type_contains_sampler(const glsl_type *type)
{
   if (type->is_array()) {
      return type_contains_sampler(type->fields.array);
   } else if (type->is_record()) {
      for (unsigned int i = 0; i < type->length; i++) {
	 if (type_contains_sampler(type->fields.structure[i].type))
	    return true;
      }
      return false;
   } else {
      return type->is_sampler();
   }
}

bool
ir_dereference::is_lvalue()
{
   ir_variable *var = this->variable_referenced();

   /* Every l-value derference chain eventually ends in a variable.
    */
   if ((var == NULL) || var->read_only)
      return false;

   if (this->type->is_array() && !var->array_lvalue)
      return false;

   /* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
    *
    *    "Samplers cannot be treated as l-values; hence cannot be used
    *     as out or inout function parameters, nor can they be
    *     assigned into."
    */
   if (type_contains_sampler(this->type))
      return false;

   return true;
}


const char *tex_opcode_strs[] = { "tex", "txb", "txl", "txd", "txf" };

const char *ir_texture::opcode_string()
{
   assert((unsigned int) op <=
	  sizeof(tex_opcode_strs) / sizeof(tex_opcode_strs[0]));
   return tex_opcode_strs[op];
}

ir_texture_opcode
ir_texture::get_opcode(const char *str)
{
   const int count = sizeof(tex_opcode_strs) / sizeof(tex_opcode_strs[0]);
   for (int op = 0; op < count; op++) {
      if (strcmp(str, tex_opcode_strs[op]) == 0)
	 return (ir_texture_opcode) op;
   }
   return (ir_texture_opcode) -1;
}


void
ir_texture::set_sampler(ir_dereference *sampler)
{
   assert(sampler != NULL);
   this->sampler = sampler;

   switch (sampler->type->sampler_type) {
   case GLSL_TYPE_FLOAT:
      this->type = glsl_type::vec4_type;
      break;
   case GLSL_TYPE_INT:
      this->type = glsl_type::ivec4_type;
      break;
   case GLSL_TYPE_UINT:
      this->type = glsl_type::uvec4_type;
      break;
   }
}


void
ir_swizzle::init_mask(const unsigned *comp, unsigned count)
{
   assert((count >= 1) && (count <= 4));

   memset(&this->mask, 0, sizeof(this->mask));
   this->mask.num_components = count;

   unsigned dup_mask = 0;
   switch (count) {
   case 4:
      assert(comp[3] <= 3);
      dup_mask |= (1U << comp[3])
	 & ((1U << comp[0]) | (1U << comp[1]) | (1U << comp[2]));
      this->mask.w = comp[3];

   case 3:
      assert(comp[2] <= 3);
      dup_mask |= (1U << comp[2])
	 & ((1U << comp[0]) | (1U << comp[1]));
      this->mask.z = comp[2];

   case 2:
      assert(comp[1] <= 3);
      dup_mask |= (1U << comp[1])
	 & ((1U << comp[0]));
      this->mask.y = comp[1];

   case 1:
      assert(comp[0] <= 3);
      this->mask.x = comp[0];
   }

   this->mask.has_duplicates = dup_mask != 0;

   /* Based on the number of elements in the swizzle and the base type
    * (i.e., float, int, unsigned, or bool) of the vector being swizzled,
    * generate the type of the resulting value.
    */
   type = glsl_type::get_instance(val->type->base_type, mask.num_components, 1);
}

ir_swizzle::ir_swizzle(ir_rvalue *val, unsigned x, unsigned y, unsigned z,
		       unsigned w, unsigned count)
   : val(val)
{
   const unsigned components[4] = { x, y, z, w };
   this->ir_type = ir_type_swizzle;
   this->init_mask(components, count);
}

ir_swizzle::ir_swizzle(ir_rvalue *val, const unsigned *comp,
		       unsigned count)
   : val(val)
{
   this->ir_type = ir_type_swizzle;
   this->init_mask(comp, count);
}

ir_swizzle::ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask)
{
   this->ir_type = ir_type_swizzle;
   this->val = val;
   this->mask = mask;
   this->type = glsl_type::get_instance(val->type->base_type,
					mask.num_components, 1);
}

#define X 1
#define R 5
#define S 9
#define I 13

ir_swizzle *
ir_swizzle::create(ir_rvalue *val, const char *str, unsigned vector_length)
{
   void *ctx = talloc_parent(val);

   /* For each possible swizzle character, this table encodes the value in
    * \c idx_map that represents the 0th element of the vector.  For invalid
    * swizzle characters (e.g., 'k'), a special value is used that will allow
    * detection of errors.
    */
   static const unsigned char base_idx[26] = {
   /* a  b  c  d  e  f  g  h  i  j  k  l  m */
      R, R, I, I, I, I, R, I, I, I, I, I, I,
   /* n  o  p  q  r  s  t  u  v  w  x  y  z */
      I, I, S, S, R, S, S, I, I, X, X, X, X
   };

   /* Each valid swizzle character has an entry in the previous table.  This
    * table encodes the base index encoded in the previous table plus the actual
    * index of the swizzle character.  When processing swizzles, the first
    * character in the string is indexed in the previous table.  Each character
    * in the string is indexed in this table, and the value found there has the
    * value form the first table subtracted.  The result must be on the range
    * [0,3].
    *
    * For example, the string "wzyx" will get X from the first table.  Each of
    * the charcaters will get X+3, X+2, X+1, and X+0 from this table.  After
    * subtraction, the swizzle values are { 3, 2, 1, 0 }.
    *
    * The string "wzrg" will get X from the first table.  Each of the characters
    * will get X+3, X+2, R+0, and R+1 from this table.  After subtraction, the
    * swizzle values are { 3, 2, 4, 5 }.  Since 4 and 5 are outside the range
    * [0,3], the error is detected.
    */
   static const unsigned char idx_map[26] = {
   /* a    b    c    d    e    f    g    h    i    j    k    l    m */
      R+3, R+2, 0,   0,   0,   0,   R+1, 0,   0,   0,   0,   0,   0,
   /* n    o    p    q    r    s    t    u    v    w    x    y    z */
      0,   0,   S+2, S+3, R+0, S+0, S+1, 0,   0,   X+3, X+0, X+1, X+2
   };

   int swiz_idx[4] = { 0, 0, 0, 0 };
   unsigned i;


   /* Validate the first character in the swizzle string and look up the base
    * index value as described above.
    */
   if ((str[0] < 'a') || (str[0] > 'z'))
      return NULL;

   const unsigned base = base_idx[str[0] - 'a'];


   for (i = 0; (i < 4) && (str[i] != '\0'); i++) {
      /* Validate the next character, and, as described above, convert it to a
       * swizzle index.
       */
      if ((str[i] < 'a') || (str[i] > 'z'))
	 return NULL;

      swiz_idx[i] = idx_map[str[i] - 'a'] - base;
      if ((swiz_idx[i] < 0) || (swiz_idx[i] >= (int) vector_length))
	 return NULL;
   }

   if (str[i] != '\0')
	 return NULL;

   return new(ctx) ir_swizzle(val, swiz_idx[0], swiz_idx[1], swiz_idx[2],
			      swiz_idx[3], i);
}

#undef X
#undef R
#undef S
#undef I

ir_variable *
ir_swizzle::variable_referenced()
{
   return this->val->variable_referenced();
}


ir_variable::ir_variable(const struct glsl_type *type, const char *name,
			 ir_variable_mode mode)
   : max_array_access(0), read_only(false), centroid(false), invariant(false),
     mode(mode), interpolation(ir_var_smooth), array_lvalue(false)
{
   this->ir_type = ir_type_variable;
   this->type = type;
   this->name = talloc_strdup(this, name);
   this->explicit_location = false;
   this->location = -1;
   this->warn_extension = NULL;
   this->constant_value = NULL;
   this->origin_upper_left = false;
   this->pixel_center_integer = false;
   this->depth_layout = ir_depth_layout_none;
   this->used = false;

   if (type && type->base_type == GLSL_TYPE_SAMPLER)
      this->read_only = true;
}


const char *
ir_variable::interpolation_string() const
{
   switch (this->interpolation) {
   case ir_var_smooth:        return "smooth";
   case ir_var_flat:          return "flat";
   case ir_var_noperspective: return "noperspective";
   }

   assert(!"Should not get here.");
   return "";
}


unsigned
ir_variable::component_slots() const
{
   /* FINISHME: Sparsely accessed arrays require fewer slots. */
   return this->type->component_slots();
}


ir_function_signature::ir_function_signature(const glsl_type *return_type)
   : return_type(return_type), is_defined(false), _function(NULL)
{
   this->ir_type = ir_type_function_signature;
   this->is_builtin = false;
}


const char *
ir_function_signature::qualifiers_match(exec_list *params)
{
   exec_list_iterator iter_a = parameters.iterator();
   exec_list_iterator iter_b = params->iterator();

   /* check that the qualifiers match. */
   while (iter_a.has_next()) {
      ir_variable *a = (ir_variable *)iter_a.get();
      ir_variable *b = (ir_variable *)iter_b.get();

      if (a->read_only != b->read_only ||
	  a->mode != b->mode ||
	  a->interpolation != b->interpolation ||
	  a->centroid != b->centroid) {

	 /* parameter a's qualifiers don't match */
	 return a->name;
      }

      iter_a.next();
      iter_b.next();
   }
   return NULL;
}


void
ir_function_signature::replace_parameters(exec_list *new_params)
{
   /* Destroy all of the previous parameter information.  If the previous
    * parameter information comes from the function prototype, it may either
    * specify incorrect parameter names or not have names at all.
    */
   foreach_iter(exec_list_iterator, iter, parameters) {
      assert(((ir_instruction *) iter.get())->as_variable() != NULL);

      iter.remove();
   }

   new_params->move_nodes_to(&parameters);
}


ir_function::ir_function(const char *name)
{
   this->ir_type = ir_type_function;
   this->name = talloc_strdup(this, name);
}


bool
ir_function::has_user_signature()
{
   foreach_list(n, &this->signatures) {
      ir_function_signature *const sig = (ir_function_signature *) n;
      if (!sig->is_builtin)
	 return true;
   }
   return false;
}


ir_call *
ir_call::get_error_instruction(void *ctx)
{
   ir_call *call = new(ctx) ir_call;

   call->type = glsl_type::error_type;
   return call;
}

void
ir_call::set_callee(ir_function_signature *sig)
{
   assert((this->type == NULL) || (this->type == sig->return_type));

   this->callee = sig;
}

void
visit_exec_list(exec_list *list, ir_visitor *visitor)
{
   foreach_iter(exec_list_iterator, iter, *list) {
      ((ir_instruction *)iter.get())->accept(visitor);
   }
}


static void
steal_memory(ir_instruction *ir, void *new_ctx)
{
   ir_variable *var = ir->as_variable();
   ir_constant *constant = ir->as_constant();
   if (var != NULL && var->constant_value != NULL)
      steal_memory(var->constant_value, ir);

   /* The components of aggregate constants are not visited by the normal
    * visitor, so steal their values by hand.
    */
   if (constant != NULL) {
      if (constant->type->is_record()) {
	 foreach_iter(exec_list_iterator, iter, constant->components) {
	    ir_constant *field = (ir_constant *)iter.get();
	    steal_memory(field, ir);
	 }
      } else if (constant->type->is_array()) {
	 for (unsigned int i = 0; i < constant->type->length; i++) {
	    steal_memory(constant->array_elements[i], ir);
	 }
      }
   }

   talloc_steal(new_ctx, ir);
}


void
reparent_ir(exec_list *list, void *mem_ctx)
{
   foreach_list(node, list) {
      visit_tree((ir_instruction *) node, steal_memory, mem_ctx);
   }
}


static ir_rvalue *
try_min_one(ir_rvalue *ir)
{
   ir_expression *expr = ir->as_expression();

   if (!expr || expr->operation != ir_binop_min)
      return NULL;

   if (expr->operands[0]->is_one())
      return expr->operands[1];

   if (expr->operands[1]->is_one())
      return expr->operands[0];

   return NULL;
}

static ir_rvalue *
try_max_zero(ir_rvalue *ir)
{
   ir_expression *expr = ir->as_expression();

   if (!expr || expr->operation != ir_binop_max)
      return NULL;

   if (expr->operands[0]->is_zero())
      return expr->operands[1];

   if (expr->operands[1]->is_zero())
      return expr->operands[0];

   return NULL;
}

ir_rvalue *
ir_rvalue::as_rvalue_to_saturate()
{
   ir_expression *expr = this->as_expression();

   if (!expr)
      return NULL;

   ir_rvalue *max_zero = try_max_zero(expr);
   if (max_zero) {
      return try_min_one(max_zero);
   } else {
      ir_rvalue *min_one = try_min_one(expr);
      if (min_one) {
	 return try_max_zero(min_one);
      }
   }

   return NULL;
}