1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
|
/*
* Copyright © 2010 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
/**
* \file opt_algebraic.cpp
*
* Takes advantage of association, commutivity, and other algebraic
* properties to simplify expressions.
*/
#include "ir.h"
#include "ir_visitor.h"
#include "ir_rvalue_visitor.h"
#include "ir_optimization.h"
#include "glsl_types.h"
namespace {
/**
* Visitor class for replacing expressions with ir_constant values.
*/
class ir_algebraic_visitor : public ir_rvalue_visitor {
public:
ir_algebraic_visitor()
{
this->progress = false;
this->mem_ctx = NULL;
}
virtual ~ir_algebraic_visitor()
{
}
ir_rvalue *handle_expression(ir_expression *ir);
void handle_rvalue(ir_rvalue **rvalue);
bool reassociate_constant(ir_expression *ir1,
int const_index,
ir_constant *constant,
ir_expression *ir2);
void reassociate_operands(ir_expression *ir1,
int op1,
ir_expression *ir2,
int op2);
ir_rvalue *swizzle_if_required(ir_expression *expr,
ir_rvalue *operand);
void *mem_ctx;
bool progress;
};
} /* unnamed namespace */
static inline bool
is_vec_zero(ir_constant *ir)
{
return (ir == NULL) ? false : ir->is_zero();
}
static inline bool
is_vec_one(ir_constant *ir)
{
return (ir == NULL) ? false : ir->is_one();
}
static inline bool
is_vec_negative_one(ir_constant *ir)
{
return (ir == NULL) ? false : ir->is_negative_one();
}
static inline bool
is_vec_basis(ir_constant *ir)
{
return (ir == NULL) ? false : ir->is_basis();
}
static void
update_type(ir_expression *ir)
{
if (ir->operands[0]->type->is_vector())
ir->type = ir->operands[0]->type;
else
ir->type = ir->operands[1]->type;
}
void
ir_algebraic_visitor::reassociate_operands(ir_expression *ir1,
int op1,
ir_expression *ir2,
int op2)
{
ir_rvalue *temp = ir2->operands[op2];
ir2->operands[op2] = ir1->operands[op1];
ir1->operands[op1] = temp;
/* Update the type of ir2. The type of ir1 won't have changed --
* base types matched, and at least one of the operands of the 2
* binops is still a vector if any of them were.
*/
update_type(ir2);
this->progress = true;
}
/**
* Reassociates a constant down a tree of adds or multiplies.
*
* Consider (2 * (a * (b * 0.5))). We want to send up with a * b.
*/
bool
ir_algebraic_visitor::reassociate_constant(ir_expression *ir1, int const_index,
ir_constant *constant,
ir_expression *ir2)
{
if (!ir2 || ir1->operation != ir2->operation)
return false;
/* Don't want to even think about matrices. */
if (ir1->operands[0]->type->is_matrix() ||
ir1->operands[1]->type->is_matrix() ||
ir2->operands[0]->type->is_matrix() ||
ir2->operands[1]->type->is_matrix())
return false;
ir_constant *ir2_const[2];
ir2_const[0] = ir2->operands[0]->constant_expression_value();
ir2_const[1] = ir2->operands[1]->constant_expression_value();
if (ir2_const[0] && ir2_const[1])
return false;
if (ir2_const[0]) {
reassociate_operands(ir1, const_index, ir2, 1);
return true;
} else if (ir2_const[1]) {
reassociate_operands(ir1, const_index, ir2, 0);
return true;
}
if (reassociate_constant(ir1, const_index, constant,
ir2->operands[0]->as_expression())) {
update_type(ir2);
return true;
}
if (reassociate_constant(ir1, const_index, constant,
ir2->operands[1]->as_expression())) {
update_type(ir2);
return true;
}
return false;
}
/* When eliminating an expression and just returning one of its operands,
* we may need to swizzle that operand out to a vector if the expression was
* vector type.
*/
ir_rvalue *
ir_algebraic_visitor::swizzle_if_required(ir_expression *expr,
ir_rvalue *operand)
{
if (expr->type->is_vector() && operand->type->is_scalar()) {
return new(mem_ctx) ir_swizzle(operand, 0, 0, 0, 0,
expr->type->vector_elements);
} else
return operand;
}
ir_rvalue *
ir_algebraic_visitor::handle_expression(ir_expression *ir)
{
ir_constant *op_const[4] = {NULL, NULL, NULL, NULL};
ir_expression *op_expr[4] = {NULL, NULL, NULL, NULL};
ir_expression *temp;
unsigned int i;
assert(ir->get_num_operands() <= 4);
for (i = 0; i < ir->get_num_operands(); i++) {
if (ir->operands[i]->type->is_matrix())
return ir;
op_const[i] = ir->operands[i]->constant_expression_value();
op_expr[i] = ir->operands[i]->as_expression();
}
if (this->mem_ctx == NULL)
this->mem_ctx = ralloc_parent(ir);
switch (ir->operation) {
case ir_unop_logic_not: {
enum ir_expression_operation new_op = ir_unop_logic_not;
if (op_expr[0] == NULL)
break;
switch (op_expr[0]->operation) {
case ir_binop_less: new_op = ir_binop_gequal; break;
case ir_binop_greater: new_op = ir_binop_lequal; break;
case ir_binop_lequal: new_op = ir_binop_greater; break;
case ir_binop_gequal: new_op = ir_binop_less; break;
case ir_binop_equal: new_op = ir_binop_nequal; break;
case ir_binop_nequal: new_op = ir_binop_equal; break;
case ir_binop_all_equal: new_op = ir_binop_any_nequal; break;
case ir_binop_any_nequal: new_op = ir_binop_all_equal; break;
default:
/* The default case handler is here to silence a warning from GCC.
*/
break;
}
if (new_op != ir_unop_logic_not) {
this->progress = true;
return new(mem_ctx) ir_expression(new_op,
ir->type,
op_expr[0]->operands[0],
op_expr[0]->operands[1]);
}
break;
}
case ir_binop_add:
if (is_vec_zero(op_const[0])) {
this->progress = true;
return swizzle_if_required(ir, ir->operands[1]);
}
if (is_vec_zero(op_const[1])) {
this->progress = true;
return swizzle_if_required(ir, ir->operands[0]);
}
/* Reassociate addition of constants so that we can do constant
* folding.
*/
if (op_const[0] && !op_const[1])
reassociate_constant(ir, 0, op_const[0],
ir->operands[1]->as_expression());
if (op_const[1] && !op_const[0])
reassociate_constant(ir, 1, op_const[1],
ir->operands[0]->as_expression());
break;
case ir_binop_sub:
if (is_vec_zero(op_const[0])) {
this->progress = true;
temp = new(mem_ctx) ir_expression(ir_unop_neg,
ir->operands[1]->type,
ir->operands[1],
NULL);
return swizzle_if_required(ir, temp);
}
if (is_vec_zero(op_const[1])) {
this->progress = true;
return swizzle_if_required(ir, ir->operands[0]);
}
break;
case ir_binop_mul:
if (is_vec_one(op_const[0])) {
this->progress = true;
return swizzle_if_required(ir, ir->operands[1]);
}
if (is_vec_one(op_const[1])) {
this->progress = true;
return swizzle_if_required(ir, ir->operands[0]);
}
if (is_vec_zero(op_const[0]) || is_vec_zero(op_const[1])) {
this->progress = true;
return ir_constant::zero(ir, ir->type);
}
if (is_vec_negative_one(op_const[0])) {
this->progress = true;
temp = new(mem_ctx) ir_expression(ir_unop_neg,
ir->operands[1]->type,
ir->operands[1],
NULL);
return swizzle_if_required(ir, temp);
}
if (is_vec_negative_one(op_const[1])) {
this->progress = true;
temp = new(mem_ctx) ir_expression(ir_unop_neg,
ir->operands[0]->type,
ir->operands[0],
NULL);
return swizzle_if_required(ir, temp);
}
/* Reassociate multiplication of constants so that we can do
* constant folding.
*/
if (op_const[0] && !op_const[1])
reassociate_constant(ir, 0, op_const[0],
ir->operands[1]->as_expression());
if (op_const[1] && !op_const[0])
reassociate_constant(ir, 1, op_const[1],
ir->operands[0]->as_expression());
break;
case ir_binop_div:
if (is_vec_one(op_const[0]) && ir->type->base_type == GLSL_TYPE_FLOAT) {
this->progress = true;
temp = new(mem_ctx) ir_expression(ir_unop_rcp,
ir->operands[1]->type,
ir->operands[1],
NULL);
return swizzle_if_required(ir, temp);
}
if (is_vec_one(op_const[1])) {
this->progress = true;
return swizzle_if_required(ir, ir->operands[0]);
}
break;
case ir_binop_dot:
if (is_vec_zero(op_const[0]) || is_vec_zero(op_const[1])) {
this->progress = true;
return ir_constant::zero(mem_ctx, ir->type);
}
if (is_vec_basis(op_const[0])) {
this->progress = true;
unsigned component = 0;
for (unsigned c = 0; c < op_const[0]->type->vector_elements; c++) {
if (op_const[0]->value.f[c] == 1.0)
component = c;
}
return new(mem_ctx) ir_swizzle(ir->operands[1], component, 0, 0, 0, 1);
}
if (is_vec_basis(op_const[1])) {
this->progress = true;
unsigned component = 0;
for (unsigned c = 0; c < op_const[1]->type->vector_elements; c++) {
if (op_const[1]->value.f[c] == 1.0)
component = c;
}
return new(mem_ctx) ir_swizzle(ir->operands[0], component, 0, 0, 0, 1);
}
break;
case ir_binop_logic_and:
/* FINISHME: Also simplify (a && a) to (a). */
if (is_vec_one(op_const[0])) {
this->progress = true;
return ir->operands[1];
} else if (is_vec_one(op_const[1])) {
this->progress = true;
return ir->operands[0];
} else if (is_vec_zero(op_const[0]) || is_vec_zero(op_const[1])) {
this->progress = true;
return ir_constant::zero(mem_ctx, ir->type);
}
break;
case ir_binop_logic_xor:
/* FINISHME: Also simplify (a ^^ a) to (false). */
if (is_vec_zero(op_const[0])) {
this->progress = true;
return ir->operands[1];
} else if (is_vec_zero(op_const[1])) {
this->progress = true;
return ir->operands[0];
} else if (is_vec_one(op_const[0])) {
this->progress = true;
return new(mem_ctx) ir_expression(ir_unop_logic_not, ir->type,
ir->operands[1], NULL);
} else if (is_vec_one(op_const[1])) {
this->progress = true;
return new(mem_ctx) ir_expression(ir_unop_logic_not, ir->type,
ir->operands[0], NULL);
}
break;
case ir_binop_logic_or:
/* FINISHME: Also simplify (a || a) to (a). */
if (is_vec_zero(op_const[0])) {
this->progress = true;
return ir->operands[1];
} else if (is_vec_zero(op_const[1])) {
this->progress = true;
return ir->operands[0];
} else if (is_vec_one(op_const[0]) || is_vec_one(op_const[1])) {
ir_constant_data data;
for (unsigned i = 0; i < 16; i++)
data.b[i] = true;
this->progress = true;
return new(mem_ctx) ir_constant(ir->type, &data);
}
break;
case ir_unop_rcp:
if (op_expr[0] && op_expr[0]->operation == ir_unop_rcp) {
this->progress = true;
return op_expr[0]->operands[0];
}
/* FINISHME: We should do rcp(rsq(x)) -> sqrt(x) for some
* backends, except that some backends will have done sqrt ->
* rcp(rsq(x)) and we don't want to undo it for them.
*/
/* As far as we know, all backends are OK with rsq. */
if (op_expr[0] && op_expr[0]->operation == ir_unop_sqrt) {
this->progress = true;
temp = new(mem_ctx) ir_expression(ir_unop_rsq,
op_expr[0]->operands[0]->type,
op_expr[0]->operands[0],
NULL);
return swizzle_if_required(ir, temp);
}
break;
case ir_triop_lrp:
/* Operands are (x, y, a). */
if (is_vec_zero(op_const[2])) {
this->progress = true;
return swizzle_if_required(ir, ir->operands[0]);
} else if (is_vec_one(op_const[2])) {
this->progress = true;
return swizzle_if_required(ir, ir->operands[1]);
}
break;
default:
break;
}
return ir;
}
void
ir_algebraic_visitor::handle_rvalue(ir_rvalue **rvalue)
{
if (!*rvalue)
return;
ir_expression *expr = (*rvalue)->as_expression();
if (!expr || expr->operation == ir_quadop_vector)
return;
*rvalue = handle_expression(expr);
}
bool
do_algebraic(exec_list *instructions)
{
ir_algebraic_visitor v;
visit_list_elements(&v, instructions);
return v.progress;
}
|