1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
|
/*
* Copyright © 2014 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
/**
* \file opt_minmax.cpp
*
* Drop operands from an expression tree of only min/max operations if they
* can be proven to not contribute to the final result.
*
* The algorithm is similar to alpha-beta pruning on a minmax search.
*/
#include "ir.h"
#include "ir_visitor.h"
#include "ir_rvalue_visitor.h"
#include "ir_optimization.h"
#include "ir_builder.h"
#include "program/prog_instruction.h"
#include "glsl_types.h"
#include "main/macros.h"
using namespace ir_builder;
namespace {
enum compare_components_result {
LESS,
LESS_OR_EQUAL,
EQUAL,
GREATER_OR_EQUAL,
GREATER,
MIXED
};
class minmax_range {
public:
minmax_range(ir_constant *low = NULL, ir_constant *high = NULL)
{
this->low = low;
this->high = high;
}
/* low is the lower limit of the range, high is the higher limit. NULL on
* low means negative infinity (unlimited) and on high positive infinity
* (unlimited). Because of the two interpretations of the value NULL,
* arbitrary comparison between ir_constants is impossible.
*/
ir_constant *low;
ir_constant *high;
};
class ir_minmax_visitor : public ir_rvalue_enter_visitor {
public:
ir_minmax_visitor()
: progress(false)
{
}
ir_rvalue *prune_expression(ir_expression *expr, minmax_range baserange);
void handle_rvalue(ir_rvalue **rvalue);
bool progress;
};
/*
* Returns LESS if all vector components of `a' are strictly lower than of `b',
* GREATER if all vector components of `a' are strictly greater than of `b',
* MIXED if some vector components of `a' are strictly lower than of `b' while
* others are strictly greater, or EQUAL otherwise.
*/
static enum compare_components_result
compare_components(ir_constant *a, ir_constant *b)
{
assert(a != NULL);
assert(b != NULL);
assert(a->type->base_type == b->type->base_type);
unsigned a_inc = a->type->is_scalar() ? 0 : 1;
unsigned b_inc = b->type->is_scalar() ? 0 : 1;
unsigned components = MAX2(a->type->components(), b->type->components());
bool foundless = false;
bool foundgreater = false;
bool foundequal = false;
for (unsigned i = 0, c0 = 0, c1 = 0;
i < components;
c0 += a_inc, c1 += b_inc, ++i) {
switch (a->type->base_type) {
case GLSL_TYPE_UINT:
if (a->value.u[c0] < b->value.u[c1])
foundless = true;
else if (a->value.u[c0] > b->value.u[c1])
foundgreater = true;
else
foundequal = true;
break;
case GLSL_TYPE_INT:
if (a->value.i[c0] < b->value.i[c1])
foundless = true;
else if (a->value.i[c0] > b->value.i[c1])
foundgreater = true;
else
foundequal = true;
break;
case GLSL_TYPE_FLOAT:
if (a->value.f[c0] < b->value.f[c1])
foundless = true;
else if (a->value.f[c0] > b->value.f[c1])
foundgreater = true;
else
foundequal = true;
break;
default:
unreachable("not reached");
}
}
if (foundless && foundgreater) {
/* Some components are strictly lower, others are strictly greater */
return MIXED;
}
if (foundequal) {
/* It is not mixed, but it is not strictly lower or greater */
if (foundless)
return LESS_OR_EQUAL;
if (foundgreater)
return GREATER_OR_EQUAL;
return EQUAL;
}
/* All components are strictly lower or strictly greater */
return foundless ? LESS : GREATER;
}
static ir_constant *
combine_constant(bool ismin, ir_constant *a, ir_constant *b)
{
void *mem_ctx = ralloc_parent(a);
ir_constant *c = a->clone(mem_ctx, NULL);
for (unsigned i = 0; i < c->type->components(); i++) {
switch (c->type->base_type) {
case GLSL_TYPE_UINT:
if ((ismin && b->value.u[i] < c->value.u[i]) ||
(!ismin && b->value.u[i] > c->value.u[i]))
c->value.u[i] = b->value.u[i];
break;
case GLSL_TYPE_INT:
if ((ismin && b->value.i[i] < c->value.i[i]) ||
(!ismin && b->value.i[i] > c->value.i[i]))
c->value.i[i] = b->value.i[i];
break;
case GLSL_TYPE_FLOAT:
if ((ismin && b->value.f[i] < c->value.f[i]) ||
(!ismin && b->value.f[i] > c->value.f[i]))
c->value.f[i] = b->value.f[i];
break;
default:
assert(!"not reached");
}
}
return c;
}
static ir_constant *
smaller_constant(ir_constant *a, ir_constant *b)
{
assert(a != NULL);
assert(b != NULL);
enum compare_components_result ret = compare_components(a, b);
if (ret == MIXED)
return combine_constant(true, a, b);
else if (ret < EQUAL)
return a;
else
return b;
}
static ir_constant *
larger_constant(ir_constant *a, ir_constant *b)
{
assert(a != NULL);
assert(b != NULL);
enum compare_components_result ret = compare_components(a, b);
if (ret == MIXED)
return combine_constant(false, a, b);
else if (ret < EQUAL)
return b;
else
return a;
}
/* Combines two ranges by doing an element-wise min() / max() depending on the
* operation.
*/
static minmax_range
combine_range(minmax_range r0, minmax_range r1, bool ismin)
{
minmax_range ret;
if (!r0.low) {
ret.low = ismin ? r0.low : r1.low;
} else if (!r1.low) {
ret.low = ismin ? r1.low : r0.low;
} else {
ret.low = ismin ? smaller_constant(r0.low, r1.low) :
larger_constant(r0.low, r1.low);
}
if (!r0.high) {
ret.high = ismin ? r1.high : r0.high;
} else if (!r1.high) {
ret.high = ismin ? r0.high : r1.high;
} else {
ret.high = ismin ? smaller_constant(r0.high, r1.high) :
larger_constant(r0.high, r1.high);
}
return ret;
}
/* Returns a range so that lower limit is the larger of the two lower limits,
* and higher limit is the smaller of the two higher limits.
*/
static minmax_range
range_intersection(minmax_range r0, minmax_range r1)
{
minmax_range ret;
if (!r0.low)
ret.low = r1.low;
else if (!r1.low)
ret.low = r0.low;
else
ret.low = larger_constant(r0.low, r1.low);
if (!r0.high)
ret.high = r1.high;
else if (!r1.high)
ret.high = r0.high;
else
ret.high = smaller_constant(r0.high, r1.high);
return ret;
}
static minmax_range
get_range(ir_rvalue *rval)
{
ir_expression *expr = rval->as_expression();
if (expr && (expr->operation == ir_binop_min ||
expr->operation == ir_binop_max)) {
minmax_range r0 = get_range(expr->operands[0]);
minmax_range r1 = get_range(expr->operands[1]);
return combine_range(r0, r1, expr->operation == ir_binop_min);
}
ir_constant *c = rval->as_constant();
if (c) {
return minmax_range(c, c);
}
return minmax_range();
}
/**
* Prunes a min/max expression considering the base range of the parent
* min/max expression.
*
* @param baserange the range that the parents of this min/max expression
* in the min/max tree will clamp its value to.
*/
ir_rvalue *
ir_minmax_visitor::prune_expression(ir_expression *expr, minmax_range baserange)
{
assert(expr->operation == ir_binop_min ||
expr->operation == ir_binop_max);
bool ismin = expr->operation == ir_binop_min;
minmax_range limits[2];
/* Recurse to get the ranges for each of the subtrees of this
* expression. We need to do this as a separate step because we need to
* know the ranges of each of the subtrees before we prune either one.
* Consider something like this:
*
* max
* / \
* max max
* / \ / \
* 3 a b 2
*
* We would like to prune away the max on the bottom-right, but to do so
* we need to know the range of the expression on the left beforehand,
* and there's no guarantee that we will visit either subtree in a
* particular order.
*/
for (unsigned i = 0; i < 2; ++i)
limits[i] = get_range(expr->operands[i]);
for (unsigned i = 0; i < 2; ++i) {
bool is_redundant = false;
enum compare_components_result cr = LESS;
if (ismin) {
/* If this operand will always be greater than the other one, it's
* redundant.
*/
if (limits[i].low && limits[1 - i].high) {
cr = compare_components(limits[i].low, limits[1 - i].high);
if (cr >= EQUAL && cr != MIXED)
is_redundant = true;
}
/* If this operand is always greater than baserange, then even if
* it's smaller than the other one it'll get clamped, so it's
* redundant.
*/
if (!is_redundant && limits[i].low && baserange.high) {
cr = compare_components(limits[i].low, baserange.high);
if (cr >= EQUAL && cr != MIXED)
is_redundant = true;
}
} else {
/* If this operand will always be lower than the other one, it's
* redundant.
*/
if (limits[i].high && limits[1 - i].low) {
cr = compare_components(limits[i].high, limits[1 - i].low);
if (cr <= EQUAL)
is_redundant = true;
}
/* If this operand is always lower than baserange, then even if
* it's greater than the other one it'll get clamped, so it's
* redundant.
*/
if (!is_redundant && limits[i].high && baserange.low) {
cr = compare_components(limits[i].high, baserange.low);
if (cr <= EQUAL)
is_redundant = true;
}
}
if (is_redundant) {
progress = true;
/* Recurse if necessary. */
ir_expression *op_expr = expr->operands[1 - i]->as_expression();
if (op_expr && (op_expr->operation == ir_binop_min ||
op_expr->operation == ir_binop_max)) {
return prune_expression(op_expr, baserange);
}
return expr->operands[1 - i];
} else if (cr == MIXED) {
/* If we have mixed vector operands, we can try to resolve the minmax
* expression by doing a component-wise minmax:
*
* min min
* / \ / \
* min a ===> [1,1] a
* / \
* [1,3] [3,1]
*
*/
ir_constant *a = expr->operands[0]->as_constant();
ir_constant *b = expr->operands[1]->as_constant();
if (a && b)
return combine_constant(ismin, a, b);
}
}
/* Now recurse to operands giving them the proper baserange. The baserange
* to pass is the intersection of our baserange and the other operand's
* limit with one of the ranges unlimited. If we can't compute a valid
* intersection, we use the current baserange.
*/
for (unsigned i = 0; i < 2; ++i) {
ir_expression *op_expr = expr->operands[i]->as_expression();
if (op_expr && (op_expr->operation == ir_binop_min ||
op_expr->operation == ir_binop_max)) {
/* We can only compute a new baserange for this operand if we managed
* to compute a valid range for the other operand.
*/
if (ismin)
limits[1 - i].low = NULL;
else
limits[1 - i].high = NULL;
minmax_range base = range_intersection(limits[1 - i], baserange);
expr->operands[i] = prune_expression(op_expr, base);
}
}
/* If we got here we could not discard any of the operands of the minmax
* expression, but we can still try to resolve the expression if both
* operands are constant. We do this after the loop above, to make sure
* that if our operands are minmax expressions we have tried to prune them
* first (hopefully reducing them to constants).
*/
ir_constant *a = expr->operands[0]->as_constant();
ir_constant *b = expr->operands[1]->as_constant();
if (a && b)
return combine_constant(ismin, a, b);
return expr;
}
static ir_rvalue *
swizzle_if_required(ir_expression *expr, ir_rvalue *rval)
{
if (expr->type->is_vector() && rval->type->is_scalar()) {
return swizzle(rval, SWIZZLE_XXXX, expr->type->vector_elements);
} else {
return rval;
}
}
void
ir_minmax_visitor::handle_rvalue(ir_rvalue **rvalue)
{
if (!*rvalue)
return;
ir_expression *expr = (*rvalue)->as_expression();
if (!expr || (expr->operation != ir_binop_min &&
expr->operation != ir_binop_max))
return;
ir_rvalue *new_rvalue = prune_expression(expr, minmax_range());
if (new_rvalue == *rvalue)
return;
/* If the expression type is a vector and the optimization leaves a scalar
* as the result, we need to turn it into a vector.
*/
*rvalue = swizzle_if_required(expr, new_rvalue);
progress = true;
}
}
bool
do_minmax_prune(exec_list *instructions)
{
ir_minmax_visitor v;
visit_list_elements(&v, instructions);
return v.progress;
}
|