1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
|
/**
* \file macros.h
* A collection of useful macros.
*/
/*
* Mesa 3-D graphics library
* Version: 6.5.2
*
* Copyright (C) 1999-2006 Brian Paul All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
* AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#ifndef MACROS_H
#define MACROS_H
#include "imports.h"
/**
* \name Integer / float conversion for colors, normals, etc.
*/
/*@{*/
/** Convert GLubyte in [0,255] to GLfloat in [0.0,1.0] */
extern GLfloat _mesa_ubyte_to_float_color_tab[256];
#define UBYTE_TO_FLOAT(u) _mesa_ubyte_to_float_color_tab[(unsigned int)(u)]
/** Convert GLfloat in [0.0,1.0] to GLubyte in [0,255] */
#define FLOAT_TO_UBYTE(X) ((GLubyte) (GLint) ((X) * 255.0F))
/** Convert GLbyte in [-128,127] to GLfloat in [-1.0,1.0] */
#define BYTE_TO_FLOAT(B) ((2.0F * (B) + 1.0F) * (1.0F/255.0F))
/** Convert GLfloat in [-1.0,1.0] to GLbyte in [-128,127] */
#define FLOAT_TO_BYTE(X) ( (((GLint) (255.0F * (X))) - 1) / 2 )
/** Convert GLbyte to GLfloat while preserving zero */
#define BYTE_TO_FLOATZ(B) ((B) == 0 ? 0.0F : BYTE_TO_FLOAT(B))
/** Convert GLbyte in [-128,127] to GLfloat in [-1.0,1.0], texture/fb data */
#define BYTE_TO_FLOAT_TEX(B) ((B) == -128 ? -1.0F : (B) * (1.0F/127.0F))
/** Convert GLfloat in [-1.0,1.0] to GLbyte in [-128,127], texture/fb data */
#define FLOAT_TO_BYTE_TEX(X) CLAMP( (GLint) (127.0F * (X)), -128, 127 )
/** Convert GLushort in [0,65535] to GLfloat in [0.0,1.0] */
#define USHORT_TO_FLOAT(S) ((GLfloat) (S) * (1.0F / 65535.0F))
/** Convert GLfloat in [0.0,1.0] to GLushort in [0, 65535] */
#define FLOAT_TO_USHORT(X) ((GLuint) ((X) * 65535.0F))
/** Convert GLshort in [-32768,32767] to GLfloat in [-1.0,1.0] */
#define SHORT_TO_FLOAT(S) ((2.0F * (S) + 1.0F) * (1.0F/65535.0F))
/** Convert GLfloat in [-1.0,1.0] to GLshort in [-32768,32767] */
#define FLOAT_TO_SHORT(X) ( (((GLint) (65535.0F * (X))) - 1) / 2 )
/** Convert GLshort to GLfloat while preserving zero */
#define SHORT_TO_FLOATZ(S) ((S) == 0 ? 0.0F : SHORT_TO_FLOAT(S))
/** Convert GLshort in [-32768,32767] to GLfloat in [-1.0,1.0], texture/fb data */
#define SHORT_TO_FLOAT_TEX(S) ((S) == -32768 ? -1.0F : (S) * (1.0F/32767.0F))
/** Convert GLfloat in [-1.0,1.0] to GLshort in [-32768,32767], texture/fb data */
#define FLOAT_TO_SHORT_TEX(X) ( (GLint) (32767.0F * (X)) )
/** Convert GLuint in [0,4294967295] to GLfloat in [0.0,1.0] */
#define UINT_TO_FLOAT(U) ((GLfloat) ((U) * (1.0F / 4294967295.0)))
/** Convert GLfloat in [0.0,1.0] to GLuint in [0,4294967295] */
#define FLOAT_TO_UINT(X) ((GLuint) ((X) * 4294967295.0))
/** Convert GLint in [-2147483648,2147483647] to GLfloat in [-1.0,1.0] */
#define INT_TO_FLOAT(I) ((GLfloat) ((2.0F * (I) + 1.0F) * (1.0F/4294967294.0)))
/** Convert GLfloat in [-1.0,1.0] to GLint in [-2147483648,2147483647] */
/* causes overflow:
#define FLOAT_TO_INT(X) ( (((GLint) (4294967294.0 * (X))) - 1) / 2 )
*/
/* a close approximation: */
#define FLOAT_TO_INT(X) ( (GLint) (2147483647.0 * (X)) )
/** Convert GLfloat in [-1.0,1.0] to GLint64 in [-(1<<63),(1 << 63) -1] */
#define FLOAT_TO_INT64(X) ( (GLint64) (9223372036854775807.0 * (double)(X)) )
/** Convert GLint in [-2147483648,2147483647] to GLfloat in [-1.0,1.0], texture/fb data */
#define INT_TO_FLOAT_TEX(I) ((I) == -2147483648 ? -1.0F : (I) * (1.0F/2147483647.0))
/** Convert GLfloat in [-1.0,1.0] to GLint in [-2147483648,2147483647], texture/fb data */
#define FLOAT_TO_INT_TEX(X) ( (GLint) (2147483647.0 * (X)) )
#define BYTE_TO_UBYTE(b) ((GLubyte) ((b) < 0 ? 0 : (GLubyte) (b)))
#define SHORT_TO_UBYTE(s) ((GLubyte) ((s) < 0 ? 0 : (GLubyte) ((s) >> 7)))
#define USHORT_TO_UBYTE(s) ((GLubyte) ((s) >> 8))
#define INT_TO_UBYTE(i) ((GLubyte) ((i) < 0 ? 0 : (GLubyte) ((i) >> 23)))
#define UINT_TO_UBYTE(i) ((GLubyte) ((i) >> 24))
#define BYTE_TO_USHORT(b) ((b) < 0 ? 0 : ((GLushort) (((b) * 65535) / 255)))
#define UBYTE_TO_USHORT(b) (((GLushort) (b) << 8) | (GLushort) (b))
#define SHORT_TO_USHORT(s) ((s) < 0 ? 0 : ((GLushort) (((s) * 65535 / 32767))))
#define INT_TO_USHORT(i) ((i) < 0 ? 0 : ((GLushort) ((i) >> 15)))
#define UINT_TO_USHORT(i) ((i) < 0 ? 0 : ((GLushort) ((i) >> 16)))
#define UNCLAMPED_FLOAT_TO_USHORT(us, f) \
us = ( (GLushort) F_TO_I( CLAMP((f), 0.0F, 1.0F) * 65535.0F) )
#define CLAMPED_FLOAT_TO_USHORT(us, f) \
us = ( (GLushort) F_TO_I( (f) * 65535.0F) )
#define UNCLAMPED_FLOAT_TO_SHORT(s, f) \
s = ( (GLshort) F_TO_I( CLAMP((f), -1.0F, 1.0F) * 32767.0F) )
/***
*** UNCLAMPED_FLOAT_TO_UBYTE: clamp float to [0,1] and map to ubyte in [0,255]
*** CLAMPED_FLOAT_TO_UBYTE: map float known to be in [0,1] to ubyte in [0,255]
***/
#if defined(USE_IEEE) && !defined(DEBUG)
#define IEEE_0996 0x3f7f0000 /* 0.996 or so */
/* This function/macro is sensitive to precision. Test very carefully
* if you change it!
*/
#define UNCLAMPED_FLOAT_TO_UBYTE(UB, F) \
do { \
fi_type __tmp; \
__tmp.f = (F); \
if (__tmp.i < 0) \
UB = (GLubyte) 0; \
else if (__tmp.i >= IEEE_0996) \
UB = (GLubyte) 255; \
else { \
__tmp.f = __tmp.f * (255.0F/256.0F) + 32768.0F; \
UB = (GLubyte) __tmp.i; \
} \
} while (0)
#define CLAMPED_FLOAT_TO_UBYTE(UB, F) \
do { \
fi_type __tmp; \
__tmp.f = (F) * (255.0F/256.0F) + 32768.0F; \
UB = (GLubyte) __tmp.i; \
} while (0)
#else
#define UNCLAMPED_FLOAT_TO_UBYTE(ub, f) \
ub = ((GLubyte) F_TO_I(CLAMP((f), 0.0F, 1.0F) * 255.0F))
#define CLAMPED_FLOAT_TO_UBYTE(ub, f) \
ub = ((GLubyte) F_TO_I((f) * 255.0F))
#endif
/*@}*/
/** Stepping a GLfloat pointer by a byte stride */
#define STRIDE_F(p, i) (p = (GLfloat *)((GLubyte *)p + i))
/** Stepping a GLuint pointer by a byte stride */
#define STRIDE_UI(p, i) (p = (GLuint *)((GLubyte *)p + i))
/** Stepping a GLubyte[4] pointer by a byte stride */
#define STRIDE_4UB(p, i) (p = (GLubyte (*)[4])((GLubyte *)p + i))
/** Stepping a GLfloat[4] pointer by a byte stride */
#define STRIDE_4F(p, i) (p = (GLfloat (*)[4])((GLubyte *)p + i))
/** Stepping a \p t pointer by a byte stride */
#define STRIDE_T(p, t, i) (p = (t)((GLubyte *)p + i))
/**********************************************************************/
/** \name 4-element vector operations */
/*@{*/
/** Zero */
#define ZERO_4V( DST ) (DST)[0] = (DST)[1] = (DST)[2] = (DST)[3] = 0
/** Test for equality */
#define TEST_EQ_4V(a,b) ((a)[0] == (b)[0] && \
(a)[1] == (b)[1] && \
(a)[2] == (b)[2] && \
(a)[3] == (b)[3])
/** Test for equality (unsigned bytes) */
static inline GLboolean
TEST_EQ_4UBV(const GLubyte a[4], const GLubyte b[4])
{
#if defined(__i386__)
return *((const GLuint *) a) == *((const GLuint *) b);
#else
return TEST_EQ_4V(a, b);
#endif
}
/** Copy a 4-element vector */
#define COPY_4V( DST, SRC ) \
do { \
(DST)[0] = (SRC)[0]; \
(DST)[1] = (SRC)[1]; \
(DST)[2] = (SRC)[2]; \
(DST)[3] = (SRC)[3]; \
} while (0)
/** Copy a 4-element unsigned byte vector */
static inline void
COPY_4UBV(GLubyte dst[4], const GLubyte src[4])
{
#if defined(__i386__)
*((GLuint *) dst) = *((GLuint *) src);
#else
/* The GLuint cast might fail if DST or SRC are not dword-aligned (RISC) */
COPY_4V(dst, src);
#endif
}
/** Copy a 4-element float vector */
static inline void
COPY_4FV(GLfloat dst[4], const GLfloat src[4])
{
/* memcpy seems to be most efficient */
memcpy(dst, src, sizeof(GLfloat) * 4);
}
/** Copy \p SZ elements into a 4-element vector */
#define COPY_SZ_4V(DST, SZ, SRC) \
do { \
switch (SZ) { \
case 4: (DST)[3] = (SRC)[3]; \
case 3: (DST)[2] = (SRC)[2]; \
case 2: (DST)[1] = (SRC)[1]; \
case 1: (DST)[0] = (SRC)[0]; \
} \
} while(0)
/** Copy \p SZ elements into a homegeneous (4-element) vector, giving
* default values to the remaining */
#define COPY_CLEAN_4V(DST, SZ, SRC) \
do { \
ASSIGN_4V( DST, 0, 0, 0, 1 ); \
COPY_SZ_4V( DST, SZ, SRC ); \
} while (0)
/** Subtraction */
#define SUB_4V( DST, SRCA, SRCB ) \
do { \
(DST)[0] = (SRCA)[0] - (SRCB)[0]; \
(DST)[1] = (SRCA)[1] - (SRCB)[1]; \
(DST)[2] = (SRCA)[2] - (SRCB)[2]; \
(DST)[3] = (SRCA)[3] - (SRCB)[3]; \
} while (0)
/** Addition */
#define ADD_4V( DST, SRCA, SRCB ) \
do { \
(DST)[0] = (SRCA)[0] + (SRCB)[0]; \
(DST)[1] = (SRCA)[1] + (SRCB)[1]; \
(DST)[2] = (SRCA)[2] + (SRCB)[2]; \
(DST)[3] = (SRCA)[3] + (SRCB)[3]; \
} while (0)
/** Element-wise multiplication */
#define SCALE_4V( DST, SRCA, SRCB ) \
do { \
(DST)[0] = (SRCA)[0] * (SRCB)[0]; \
(DST)[1] = (SRCA)[1] * (SRCB)[1]; \
(DST)[2] = (SRCA)[2] * (SRCB)[2]; \
(DST)[3] = (SRCA)[3] * (SRCB)[3]; \
} while (0)
/** In-place addition */
#define ACC_4V( DST, SRC ) \
do { \
(DST)[0] += (SRC)[0]; \
(DST)[1] += (SRC)[1]; \
(DST)[2] += (SRC)[2]; \
(DST)[3] += (SRC)[3]; \
} while (0)
/** Element-wise multiplication and addition */
#define ACC_SCALE_4V( DST, SRCA, SRCB ) \
do { \
(DST)[0] += (SRCA)[0] * (SRCB)[0]; \
(DST)[1] += (SRCA)[1] * (SRCB)[1]; \
(DST)[2] += (SRCA)[2] * (SRCB)[2]; \
(DST)[3] += (SRCA)[3] * (SRCB)[3]; \
} while (0)
/** In-place scalar multiplication and addition */
#define ACC_SCALE_SCALAR_4V( DST, S, SRCB ) \
do { \
(DST)[0] += S * (SRCB)[0]; \
(DST)[1] += S * (SRCB)[1]; \
(DST)[2] += S * (SRCB)[2]; \
(DST)[3] += S * (SRCB)[3]; \
} while (0)
/** Scalar multiplication */
#define SCALE_SCALAR_4V( DST, S, SRCB ) \
do { \
(DST)[0] = S * (SRCB)[0]; \
(DST)[1] = S * (SRCB)[1]; \
(DST)[2] = S * (SRCB)[2]; \
(DST)[3] = S * (SRCB)[3]; \
} while (0)
/** In-place scalar multiplication */
#define SELF_SCALE_SCALAR_4V( DST, S ) \
do { \
(DST)[0] *= S; \
(DST)[1] *= S; \
(DST)[2] *= S; \
(DST)[3] *= S; \
} while (0)
/** Assignment */
#define ASSIGN_4V( V, V0, V1, V2, V3 ) \
do { \
V[0] = V0; \
V[1] = V1; \
V[2] = V2; \
V[3] = V3; \
} while(0)
/*@}*/
/**********************************************************************/
/** \name 3-element vector operations*/
/*@{*/
/** Zero */
#define ZERO_3V( DST ) (DST)[0] = (DST)[1] = (DST)[2] = 0
/** Test for equality */
#define TEST_EQ_3V(a,b) \
((a)[0] == (b)[0] && \
(a)[1] == (b)[1] && \
(a)[2] == (b)[2])
/** Copy a 3-element vector */
#define COPY_3V( DST, SRC ) \
do { \
(DST)[0] = (SRC)[0]; \
(DST)[1] = (SRC)[1]; \
(DST)[2] = (SRC)[2]; \
} while (0)
/** Copy a 3-element vector with cast */
#define COPY_3V_CAST( DST, SRC, CAST ) \
do { \
(DST)[0] = (CAST)(SRC)[0]; \
(DST)[1] = (CAST)(SRC)[1]; \
(DST)[2] = (CAST)(SRC)[2]; \
} while (0)
/** Copy a 3-element float vector */
#define COPY_3FV( DST, SRC ) \
do { \
const GLfloat *_tmp = (SRC); \
(DST)[0] = _tmp[0]; \
(DST)[1] = _tmp[1]; \
(DST)[2] = _tmp[2]; \
} while (0)
/** Subtraction */
#define SUB_3V( DST, SRCA, SRCB ) \
do { \
(DST)[0] = (SRCA)[0] - (SRCB)[0]; \
(DST)[1] = (SRCA)[1] - (SRCB)[1]; \
(DST)[2] = (SRCA)[2] - (SRCB)[2]; \
} while (0)
/** Addition */
#define ADD_3V( DST, SRCA, SRCB ) \
do { \
(DST)[0] = (SRCA)[0] + (SRCB)[0]; \
(DST)[1] = (SRCA)[1] + (SRCB)[1]; \
(DST)[2] = (SRCA)[2] + (SRCB)[2]; \
} while (0)
/** In-place scalar multiplication */
#define SCALE_3V( DST, SRCA, SRCB ) \
do { \
(DST)[0] = (SRCA)[0] * (SRCB)[0]; \
(DST)[1] = (SRCA)[1] * (SRCB)[1]; \
(DST)[2] = (SRCA)[2] * (SRCB)[2]; \
} while (0)
/** In-place element-wise multiplication */
#define SELF_SCALE_3V( DST, SRC ) \
do { \
(DST)[0] *= (SRC)[0]; \
(DST)[1] *= (SRC)[1]; \
(DST)[2] *= (SRC)[2]; \
} while (0)
/** In-place addition */
#define ACC_3V( DST, SRC ) \
do { \
(DST)[0] += (SRC)[0]; \
(DST)[1] += (SRC)[1]; \
(DST)[2] += (SRC)[2]; \
} while (0)
/** Element-wise multiplication and addition */
#define ACC_SCALE_3V( DST, SRCA, SRCB ) \
do { \
(DST)[0] += (SRCA)[0] * (SRCB)[0]; \
(DST)[1] += (SRCA)[1] * (SRCB)[1]; \
(DST)[2] += (SRCA)[2] * (SRCB)[2]; \
} while (0)
/** Scalar multiplication */
#define SCALE_SCALAR_3V( DST, S, SRCB ) \
do { \
(DST)[0] = S * (SRCB)[0]; \
(DST)[1] = S * (SRCB)[1]; \
(DST)[2] = S * (SRCB)[2]; \
} while (0)
/** In-place scalar multiplication and addition */
#define ACC_SCALE_SCALAR_3V( DST, S, SRCB ) \
do { \
(DST)[0] += S * (SRCB)[0]; \
(DST)[1] += S * (SRCB)[1]; \
(DST)[2] += S * (SRCB)[2]; \
} while (0)
/** In-place scalar multiplication */
#define SELF_SCALE_SCALAR_3V( DST, S ) \
do { \
(DST)[0] *= S; \
(DST)[1] *= S; \
(DST)[2] *= S; \
} while (0)
/** In-place scalar addition */
#define ACC_SCALAR_3V( DST, S ) \
do { \
(DST)[0] += S; \
(DST)[1] += S; \
(DST)[2] += S; \
} while (0)
/** Assignment */
#define ASSIGN_3V( V, V0, V1, V2 ) \
do { \
V[0] = V0; \
V[1] = V1; \
V[2] = V2; \
} while(0)
/*@}*/
/**********************************************************************/
/** \name 2-element vector operations*/
/*@{*/
/** Zero */
#define ZERO_2V( DST ) (DST)[0] = (DST)[1] = 0
/** Copy a 2-element vector */
#define COPY_2V( DST, SRC ) \
do { \
(DST)[0] = (SRC)[0]; \
(DST)[1] = (SRC)[1]; \
} while (0)
/** Copy a 2-element vector with cast */
#define COPY_2V_CAST( DST, SRC, CAST ) \
do { \
(DST)[0] = (CAST)(SRC)[0]; \
(DST)[1] = (CAST)(SRC)[1]; \
} while (0)
/** Copy a 2-element float vector */
#define COPY_2FV( DST, SRC ) \
do { \
const GLfloat *_tmp = (SRC); \
(DST)[0] = _tmp[0]; \
(DST)[1] = _tmp[1]; \
} while (0)
/** Subtraction */
#define SUB_2V( DST, SRCA, SRCB ) \
do { \
(DST)[0] = (SRCA)[0] - (SRCB)[0]; \
(DST)[1] = (SRCA)[1] - (SRCB)[1]; \
} while (0)
/** Addition */
#define ADD_2V( DST, SRCA, SRCB ) \
do { \
(DST)[0] = (SRCA)[0] + (SRCB)[0]; \
(DST)[1] = (SRCA)[1] + (SRCB)[1]; \
} while (0)
/** In-place scalar multiplication */
#define SCALE_2V( DST, SRCA, SRCB ) \
do { \
(DST)[0] = (SRCA)[0] * (SRCB)[0]; \
(DST)[1] = (SRCA)[1] * (SRCB)[1]; \
} while (0)
/** In-place addition */
#define ACC_2V( DST, SRC ) \
do { \
(DST)[0] += (SRC)[0]; \
(DST)[1] += (SRC)[1]; \
} while (0)
/** Element-wise multiplication and addition */
#define ACC_SCALE_2V( DST, SRCA, SRCB ) \
do { \
(DST)[0] += (SRCA)[0] * (SRCB)[0]; \
(DST)[1] += (SRCA)[1] * (SRCB)[1]; \
} while (0)
/** Scalar multiplication */
#define SCALE_SCALAR_2V( DST, S, SRCB ) \
do { \
(DST)[0] = S * (SRCB)[0]; \
(DST)[1] = S * (SRCB)[1]; \
} while (0)
/** In-place scalar multiplication and addition */
#define ACC_SCALE_SCALAR_2V( DST, S, SRCB ) \
do { \
(DST)[0] += S * (SRCB)[0]; \
(DST)[1] += S * (SRCB)[1]; \
} while (0)
/** In-place scalar multiplication */
#define SELF_SCALE_SCALAR_2V( DST, S ) \
do { \
(DST)[0] *= S; \
(DST)[1] *= S; \
} while (0)
/** In-place scalar addition */
#define ACC_SCALAR_2V( DST, S ) \
do { \
(DST)[0] += S; \
(DST)[1] += S; \
} while (0)
/** Assign scalers to short vectors */
#define ASSIGN_2V( V, V0, V1 ) \
do { \
V[0] = V0; \
V[1] = V1; \
} while(0)
/*@}*/
/** \name Linear interpolation functions */
/*@{*/
static inline GLfloat
LINTERP(GLfloat t, GLfloat out, GLfloat in)
{
return out + t * (in - out);
}
static inline void
INTERP_3F(GLfloat t, GLfloat dst[3], const GLfloat out[3], const GLfloat in[3])
{
dst[0] = LINTERP( t, out[0], in[0] );
dst[1] = LINTERP( t, out[1], in[1] );
dst[2] = LINTERP( t, out[2], in[2] );
}
static inline void
INTERP_4F(GLfloat t, GLfloat dst[4], const GLfloat out[4], const GLfloat in[4])
{
dst[0] = LINTERP( t, out[0], in[0] );
dst[1] = LINTERP( t, out[1], in[1] );
dst[2] = LINTERP( t, out[2], in[2] );
dst[3] = LINTERP( t, out[3], in[3] );
}
/*@}*/
/** Clamp X to [MIN,MAX] */
#define CLAMP( X, MIN, MAX ) ( (X)<(MIN) ? (MIN) : ((X)>(MAX) ? (MAX) : (X)) )
/** Minimum of two values: */
#define MIN2( A, B ) ( (A)<(B) ? (A) : (B) )
/** Maximum of two values: */
#define MAX2( A, B ) ( (A)>(B) ? (A) : (B) )
/** Minimum and maximum of three values: */
#define MIN3( A, B, C ) ((A) < (B) ? MIN2(A, C) : MIN2(B, C))
#define MAX3( A, B, C ) ((A) > (B) ? MAX2(A, C) : MAX2(B, C))
/** Cross product of two 3-element vectors */
static inline void
CROSS3(GLfloat n[3], const GLfloat u[3], const GLfloat v[3])
{
n[0] = u[1] * v[2] - u[2] * v[1];
n[1] = u[2] * v[0] - u[0] * v[2];
n[2] = u[0] * v[1] - u[1] * v[0];
}
/** Dot product of two 2-element vectors */
static inline GLfloat
DOT2(const GLfloat a[2], const GLfloat b[2])
{
return a[0] * b[0] + a[1] * b[1];
}
static inline GLfloat
DOT3(const GLfloat a[3], const GLfloat b[3])
{
return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
}
static inline GLfloat
DOT4(const GLfloat a[4], const GLfloat b[4])
{
return a[0] * b[0] + a[1] * b[1] + a[2] * b[2] + a[3] * b[3];
}
static inline GLfloat
LEN_SQUARED_3FV(const GLfloat v[3])
{
return DOT3(v, v);
}
static inline GLfloat
LEN_SQUARED_2FV(const GLfloat v[2])
{
return DOT2(v, v);
}
static inline GLfloat
LEN_3FV(const GLfloat v[3])
{
return sqrtf(LEN_SQUARED_3FV(v));
}
static inline GLfloat
LEN_2FV(const GLfloat v[2])
{
return sqrtf(LEN_SQUARED_2FV(v));
}
/* Normalize a 3-element vector to unit length. */
static inline void
NORMALIZE_3FV(GLfloat v[3])
{
GLfloat len = (GLfloat) LEN_SQUARED_3FV(v);
if (len) {
len = INV_SQRTF(len);
v[0] *= len;
v[1] *= len;
v[2] *= len;
}
}
/** Is float value negative? */
static inline GLboolean
IS_NEGATIVE(float x)
{
#if defined(USE_IEEE)
fi_type fi;
fi.f = x;
return fi.i < 0;
#else
return x < 0.0F;
#endif
}
/** Test two floats have opposite signs */
static inline GLboolean
DIFFERENT_SIGNS(GLfloat x, GLfloat y)
{
#if defined(USE_IEEE)
fi_type xfi, yfi;
xfi.f = x;
yfi.f = y;
return (xfi.i ^ yfi.i) & (1u << 31);
#else
/* Could just use (x*y<0) except for the flatshading requirements.
* Maybe there's a better way?
*/
return ((x) * (y) <= 0.0F && (x) - (y) != 0.0F);
#endif
}
/** Compute ceiling of integer quotient of A divided by B. */
#define CEILING( A, B ) ( (A) % (B) == 0 ? (A)/(B) : (A)/(B)+1 )
/** casts to silence warnings with some compilers */
#define ENUM_TO_INT(E) ((GLint)(E))
#define ENUM_TO_FLOAT(E) ((GLfloat)(GLint)(E))
#define ENUM_TO_DOUBLE(E) ((GLdouble)(GLint)(E))
#define ENUM_TO_BOOLEAN(E) ((E) ? GL_TRUE : GL_FALSE)
#endif
|