aboutsummaryrefslogtreecommitdiff
path: root/mesalib/src/mesa/program/prog_optimize.c
blob: 60530ebf0191b1784cd6ab320d89de30cab466aa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
/*
 * Mesa 3-D graphics library
 *
 * Copyright (C) 2009  VMware, Inc.  All Rights Reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included
 * in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * VMWARE BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 */



#include "main/glheader.h"
#include "main/context.h"
#include "main/macros.h"
#include "program.h"
#include "prog_instruction.h"
#include "prog_optimize.h"
#include "prog_print.h"


#define MAX_LOOP_NESTING 50
/* MAX_PROGRAM_TEMPS is a low number (256), and we want to be able to
 * register allocate many temporary values into that small number of
 * temps.  So allow large temporary indices coming into the register
 * allocator.
 */
#define REG_ALLOCATE_MAX_PROGRAM_TEMPS	((1 << INST_INDEX_BITS) - 1)

static GLboolean dbg = GL_FALSE;

#define NO_MASK 0xf

/**
 * Returns the mask of channels (bitmask of WRITEMASK_X,Y,Z,W) which
 * are read from the given src in this instruction, We also provide
 * one optional masks which may mask other components in the dst
 * register
 */
static GLuint
get_src_arg_mask(const struct prog_instruction *inst,
                 GLuint arg, GLuint dst_mask)
{
   GLuint read_mask, channel_mask;
   GLuint comp;

   ASSERT(arg < _mesa_num_inst_src_regs(inst->Opcode));

   /* Form the dst register, find the written channels */
   if (inst->CondUpdate) {
      channel_mask = WRITEMASK_XYZW;
   }
   else {
      switch (inst->Opcode) {
      case OPCODE_MOV:
      case OPCODE_MIN:
      case OPCODE_MAX:
      case OPCODE_ABS:
      case OPCODE_ADD:
      case OPCODE_MAD:
      case OPCODE_MUL:
      case OPCODE_SUB:
      case OPCODE_CMP:
      case OPCODE_FLR:
      case OPCODE_FRC:
      case OPCODE_LRP:
      case OPCODE_SEQ:
      case OPCODE_SGE:
      case OPCODE_SGT:
      case OPCODE_SLE:
      case OPCODE_SLT:
      case OPCODE_SNE:
      case OPCODE_SSG:
         channel_mask = inst->DstReg.WriteMask & dst_mask;
         break;
      case OPCODE_RCP:
      case OPCODE_SIN:
      case OPCODE_COS:
      case OPCODE_RSQ:
      case OPCODE_POW:
      case OPCODE_EX2:
      case OPCODE_LOG:
         channel_mask = WRITEMASK_X;
         break;
      case OPCODE_DP2:
         channel_mask = WRITEMASK_XY;
         break;
      case OPCODE_DP3:
      case OPCODE_XPD:
         channel_mask = WRITEMASK_XYZ;
         break;
      default:
         channel_mask = WRITEMASK_XYZW;
         break;
      }
   }

   /* Now, given the src swizzle and the written channels, find which
    * components are actually read
    */
   read_mask = 0x0;
   for (comp = 0; comp < 4; ++comp) {
      const GLuint coord = GET_SWZ(inst->SrcReg[arg].Swizzle, comp);
      if (channel_mask & (1 << comp) && coord <= SWIZZLE_W)
         read_mask |= 1 << coord;
   }

   return read_mask;
}


/**
 * For a MOV instruction, compute a write mask when src register also has
 * a mask
 */
static GLuint
get_dst_mask_for_mov(const struct prog_instruction *mov, GLuint src_mask)
{
   const GLuint mask = mov->DstReg.WriteMask;
   GLuint comp;
   GLuint updated_mask = 0x0;

   ASSERT(mov->Opcode == OPCODE_MOV);

   for (comp = 0; comp < 4; ++comp) {
      GLuint src_comp;
      if ((mask & (1 << comp)) == 0)
         continue;
      src_comp = GET_SWZ(mov->SrcReg[0].Swizzle, comp);
      if ((src_mask & (1 << src_comp)) == 0)
         continue;
      updated_mask |= 1 << comp;
   }

   return updated_mask;
}


/**
 * Ensure that the swizzle is regular.  That is, all of the swizzle
 * terms are SWIZZLE_X,Y,Z,W and not SWIZZLE_ZERO or SWIZZLE_ONE.
 */
static GLboolean
is_swizzle_regular(GLuint swz)
{
   return GET_SWZ(swz,0) <= SWIZZLE_W &&
          GET_SWZ(swz,1) <= SWIZZLE_W &&
          GET_SWZ(swz,2) <= SWIZZLE_W &&
          GET_SWZ(swz,3) <= SWIZZLE_W;
}


/**
 * In 'prog' remove instruction[i] if removeFlags[i] == TRUE.
 * \return number of instructions removed
 */
static GLuint
remove_instructions(struct gl_program *prog, const GLboolean *removeFlags)
{
   GLint i, removeEnd = 0, removeCount = 0;
   GLuint totalRemoved = 0;

   /* go backward */
   for (i = prog->NumInstructions - 1; i >= 0; i--) {
      if (removeFlags[i]) {
         totalRemoved++;
         if (removeCount == 0) {
            /* begin a run of instructions to remove */
            removeEnd = i;
            removeCount = 1;
         }
         else {
            /* extend the run of instructions to remove */
            removeCount++;
         }
      }
      else {
         /* don't remove this instruction, but check if the preceeding
          * instructions are to be removed.
          */
         if (removeCount > 0) {
            GLint removeStart = removeEnd - removeCount + 1;
            _mesa_delete_instructions(prog, removeStart, removeCount);
            removeStart = removeCount = 0; /* reset removal info */
         }
      }
   }
   /* Finish removing if the first instruction was to be removed. */
   if (removeCount > 0) {
      GLint removeStart = removeEnd - removeCount + 1;
      _mesa_delete_instructions(prog, removeStart, removeCount);
   }
   return totalRemoved;
}


/**
 * Remap register indexes according to map.
 * \param prog  the program to search/replace
 * \param file  the type of register file to search/replace
 * \param map  maps old register indexes to new indexes
 */
static void
replace_regs(struct gl_program *prog, gl_register_file file, const GLint map[])
{
   GLuint i;

   for (i = 0; i < prog->NumInstructions; i++) {
      struct prog_instruction *inst = prog->Instructions + i;
      const GLuint numSrc = _mesa_num_inst_src_regs(inst->Opcode);
      GLuint j;
      for (j = 0; j < numSrc; j++) {
         if (inst->SrcReg[j].File == file) {
            GLuint index = inst->SrcReg[j].Index;
            ASSERT(map[index] >= 0);
            inst->SrcReg[j].Index = map[index];
         }
      }
      if (inst->DstReg.File == file) {
         const GLuint index = inst->DstReg.Index;
         ASSERT(map[index] >= 0);
         inst->DstReg.Index = map[index];
      }
   }
}


/**
 * Remove dead instructions from the given program.
 * This is very primitive for now.  Basically look for temp registers
 * that are written to but never read.  Remove any instructions that
 * write to such registers.  Be careful with condition code setters.
 */
static GLboolean
_mesa_remove_dead_code_global(struct gl_program *prog)
{
   GLboolean tempRead[REG_ALLOCATE_MAX_PROGRAM_TEMPS][4];
   GLboolean *removeInst; /* per-instruction removal flag */
   GLuint i, rem = 0, comp;

   memset(tempRead, 0, sizeof(tempRead));

   if (dbg) {
      printf("Optimize: Begin dead code removal\n");
      /*_mesa_print_program(prog);*/
   }

   removeInst =
      calloc(prog->NumInstructions, sizeof(GLboolean));

   /* Determine which temps are read and written */
   for (i = 0; i < prog->NumInstructions; i++) {
      const struct prog_instruction *inst = prog->Instructions + i;
      const GLuint numSrc = _mesa_num_inst_src_regs(inst->Opcode);
      GLuint j;

      /* check src regs */
      for (j = 0; j < numSrc; j++) {
         if (inst->SrcReg[j].File == PROGRAM_TEMPORARY) {
            const GLuint index = inst->SrcReg[j].Index;
            GLuint read_mask;
            ASSERT(index < REG_ALLOCATE_MAX_PROGRAM_TEMPS);
	    read_mask = get_src_arg_mask(inst, j, NO_MASK);

            if (inst->SrcReg[j].RelAddr) {
               if (dbg)
                  printf("abort remove dead code (indirect temp)\n");
               goto done;
            }

	    for (comp = 0; comp < 4; comp++) {
	       const GLuint swz = GET_SWZ(inst->SrcReg[j].Swizzle, comp);
               if (swz <= SWIZZLE_W) {
                  if ((read_mask & (1 << swz)) == 0)
                     continue;
                  tempRead[index][swz] = GL_TRUE;
               }
	    }
         }
      }

      /* check dst reg */
      if (inst->DstReg.File == PROGRAM_TEMPORARY) {
         const GLuint index = inst->DstReg.Index;
         ASSERT(index < REG_ALLOCATE_MAX_PROGRAM_TEMPS);

         if (inst->DstReg.RelAddr) {
            if (dbg)
               printf("abort remove dead code (indirect temp)\n");
            goto done;
         }

         if (inst->CondUpdate) {
            /* If we're writing to this register and setting condition
             * codes we cannot remove the instruction.  Prevent removal
             * by setting the 'read' flag.
             */
            tempRead[index][0] = GL_TRUE;
            tempRead[index][1] = GL_TRUE;
            tempRead[index][2] = GL_TRUE;
            tempRead[index][3] = GL_TRUE;
         }
      }
   }

   /* find instructions that write to dead registers, flag for removal */
   for (i = 0; i < prog->NumInstructions; i++) {
      struct prog_instruction *inst = prog->Instructions + i;
      const GLuint numDst = _mesa_num_inst_dst_regs(inst->Opcode);

      if (numDst != 0 && inst->DstReg.File == PROGRAM_TEMPORARY) {
         GLint chan, index = inst->DstReg.Index;

	 for (chan = 0; chan < 4; chan++) {
	    if (!tempRead[index][chan] &&
		inst->DstReg.WriteMask & (1 << chan)) {
	       if (dbg) {
		  printf("Remove writemask on %u.%c\n", i,
			       chan == 3 ? 'w' : 'x' + chan);
	       }
	       inst->DstReg.WriteMask &= ~(1 << chan);
	       rem++;
	    }
	 }

	 if (inst->DstReg.WriteMask == 0) {
	    /* If we cleared all writes, the instruction can be removed. */
	    if (dbg)
	       printf("Remove instruction %u: \n", i);
	    removeInst[i] = GL_TRUE;
	 }
      }
   }

   /* now remove the instructions which aren't needed */
   rem = remove_instructions(prog, removeInst);

   if (dbg) {
      printf("Optimize: End dead code removal.\n");
      printf("  %u channel writes removed\n", rem);
      printf("  %u instructions removed\n", rem);
      /*_mesa_print_program(prog);*/
   }

done:
   free(removeInst);
   return rem != 0;
}


enum inst_use
{
   READ,
   WRITE,
   FLOW,
   END
};


/**
 * Scan forward in program from 'start' for the next occurances of TEMP[index].
 * We look if an instruction reads the component given by the masks and if they
 * are overwritten.
 * Return READ, WRITE, FLOW or END to indicate the next usage or an indicator
 * that we can't look further.
 */
static enum inst_use
find_next_use(const struct gl_program *prog,
              GLuint start,
              GLuint index,
              GLuint mask)
{
   GLuint i;

   for (i = start; i < prog->NumInstructions; i++) {
      const struct prog_instruction *inst = prog->Instructions + i;
      switch (inst->Opcode) {
      case OPCODE_BGNLOOP:
      case OPCODE_BGNSUB:
      case OPCODE_CAL:
      case OPCODE_CONT:
      case OPCODE_IF:
      case OPCODE_ELSE:
      case OPCODE_ENDIF:
      case OPCODE_ENDLOOP:
      case OPCODE_ENDSUB:
      case OPCODE_RET:
         return FLOW;
      case OPCODE_END:
         return END;
      default:
         {
            const GLuint numSrc = _mesa_num_inst_src_regs(inst->Opcode);
            GLuint j;
            for (j = 0; j < numSrc; j++) {
               if (inst->SrcReg[j].RelAddr ||
                   (inst->SrcReg[j].File == PROGRAM_TEMPORARY &&
                   inst->SrcReg[j].Index == index &&
                   (get_src_arg_mask(inst,j,NO_MASK) & mask)))
                  return READ;
            }
            if (_mesa_num_inst_dst_regs(inst->Opcode) == 1 &&
                inst->DstReg.File == PROGRAM_TEMPORARY &&
                inst->DstReg.Index == index) {
               mask &= ~inst->DstReg.WriteMask;
               if (mask == 0)
                  return WRITE;
            }
         }
      }
   }
   return END;
}


/**
 * Is the given instruction opcode a flow-control opcode?
 * XXX maybe move this into prog_instruction.[ch]
 */
static GLboolean
_mesa_is_flow_control_opcode(enum prog_opcode opcode)
{
   switch (opcode) {
   case OPCODE_BGNLOOP:
   case OPCODE_BGNSUB:
   case OPCODE_CAL:
   case OPCODE_CONT:
   case OPCODE_IF:
   case OPCODE_ELSE:
   case OPCODE_END:
   case OPCODE_ENDIF:
   case OPCODE_ENDLOOP:
   case OPCODE_ENDSUB:
   case OPCODE_RET:
      return GL_TRUE;
   default:
      return GL_FALSE;
   }
}


/**
 * Test if the given instruction is a simple MOV (no conditional updating,
 * not relative addressing, no negation/abs, etc).
 */
static GLboolean
can_downward_mov_be_modifed(const struct prog_instruction *mov)
{
   return
      mov->Opcode == OPCODE_MOV &&
      mov->CondUpdate == GL_FALSE &&
      mov->SrcReg[0].RelAddr == 0 &&
      mov->SrcReg[0].Negate == 0 &&
      mov->SrcReg[0].Abs == 0 &&
      mov->SrcReg[0].HasIndex2 == 0 &&
      mov->SrcReg[0].RelAddr2 == 0 &&
      mov->DstReg.RelAddr == 0 &&
      mov->DstReg.CondMask == COND_TR;
}


static GLboolean
can_upward_mov_be_modifed(const struct prog_instruction *mov)
{
   return
      can_downward_mov_be_modifed(mov) &&
      mov->DstReg.File == PROGRAM_TEMPORARY &&
      mov->SaturateMode == SATURATE_OFF;
}


/**
 * Try to remove use of extraneous MOV instructions, to free them up for dead
 * code removal.
 */
static void
_mesa_remove_extra_move_use(struct gl_program *prog)
{
   GLuint i, j;

   if (dbg) {
      printf("Optimize: Begin remove extra move use\n");
      _mesa_print_program(prog);
   }

   /*
    * Look for sequences such as this:
    *    MOV tmpX, arg0;
    *    ...
    *    FOO tmpY, tmpX, arg1;
    * and convert into:
    *    MOV tmpX, arg0;
    *    ...
    *    FOO tmpY, arg0, arg1;
    */

   for (i = 0; i + 1 < prog->NumInstructions; i++) {
      const struct prog_instruction *mov = prog->Instructions + i;
      GLuint dst_mask, src_mask;
      if (can_upward_mov_be_modifed(mov) == GL_FALSE)
         continue;

      /* Scanning the code, we maintain the components which are still active in
       * these two masks
       */
      dst_mask = mov->DstReg.WriteMask;
      src_mask = get_src_arg_mask(mov, 0, NO_MASK);

      /* Walk through remaining instructions until the or src reg gets
       * rewritten or we get into some flow-control, eliminating the use of
       * this MOV.
       */
      for (j = i + 1; j < prog->NumInstructions; j++) {
	 struct prog_instruction *inst2 = prog->Instructions + j;
         GLuint arg;

	 if (_mesa_is_flow_control_opcode(inst2->Opcode))
	     break;

	 /* First rewrite this instruction's args if appropriate. */
	 for (arg = 0; arg < _mesa_num_inst_src_regs(inst2->Opcode); arg++) {
	    GLuint comp, read_mask;

	    if (inst2->SrcReg[arg].File != mov->DstReg.File ||
		inst2->SrcReg[arg].Index != mov->DstReg.Index ||
		inst2->SrcReg[arg].RelAddr ||
		inst2->SrcReg[arg].Abs)
	       continue;
            read_mask = get_src_arg_mask(inst2, arg, NO_MASK);

	    /* Adjust the swizzles of inst2 to point at MOV's source if ALL the
             * components read still come from the mov instructions
             */
            if (is_swizzle_regular(inst2->SrcReg[arg].Swizzle) &&
               (read_mask & dst_mask) == read_mask) {
               for (comp = 0; comp < 4; comp++) {
                  const GLuint inst2_swz =
                     GET_SWZ(inst2->SrcReg[arg].Swizzle, comp);
                  const GLuint s = GET_SWZ(mov->SrcReg[0].Swizzle, inst2_swz);
                  inst2->SrcReg[arg].Swizzle &= ~(7 << (3 * comp));
                  inst2->SrcReg[arg].Swizzle |= s << (3 * comp);
                  inst2->SrcReg[arg].Negate ^= (((mov->SrcReg[0].Negate >>
                                                  inst2_swz) & 0x1) << comp);
               }
               inst2->SrcReg[arg].File = mov->SrcReg[0].File;
               inst2->SrcReg[arg].Index = mov->SrcReg[0].Index;
            }
	 }

	 /* The source of MOV is written. This potentially deactivates some
          * components from the src and dst of the MOV instruction
          */
	 if (inst2->DstReg.File == mov->DstReg.File &&
	     (inst2->DstReg.RelAddr ||
	      inst2->DstReg.Index == mov->DstReg.Index)) {
            dst_mask &= ~inst2->DstReg.WriteMask;
            src_mask = get_src_arg_mask(mov, 0, dst_mask);
         }

         /* Idem when the destination of mov is written */
	 if (inst2->DstReg.File == mov->SrcReg[0].File &&
	     (inst2->DstReg.RelAddr ||
	      inst2->DstReg.Index == mov->SrcReg[0].Index)) {
            src_mask &= ~inst2->DstReg.WriteMask;
            dst_mask &= get_dst_mask_for_mov(mov, src_mask);
         }
         if (dst_mask == 0)
            break;
      }
   }

   if (dbg) {
      printf("Optimize: End remove extra move use.\n");
      /*_mesa_print_program(prog);*/
   }
}


/**
 * Complements dead_code_global. Try to remove code in block of code by
 * carefully monitoring the swizzles. Both functions should be merged into one
 * with a proper control flow graph
 */
static GLboolean
_mesa_remove_dead_code_local(struct gl_program *prog)
{
   GLboolean *removeInst;
   GLuint i, arg, rem = 0;

   removeInst =
      calloc(prog->NumInstructions, sizeof(GLboolean));

   for (i = 0; i < prog->NumInstructions; i++) {
      const struct prog_instruction *inst = prog->Instructions + i;
      const GLuint index = inst->DstReg.Index;
      const GLuint mask = inst->DstReg.WriteMask;
      enum inst_use use;

      /* We must deactivate the pass as soon as some indirection is used */
      if (inst->DstReg.RelAddr)
         goto done;
      for (arg = 0; arg < _mesa_num_inst_src_regs(inst->Opcode); arg++)
         if (inst->SrcReg[arg].RelAddr)
            goto done;

      if (_mesa_is_flow_control_opcode(inst->Opcode) ||
          _mesa_num_inst_dst_regs(inst->Opcode) == 0 ||
          inst->DstReg.File != PROGRAM_TEMPORARY ||
          inst->DstReg.RelAddr)
         continue;

      use = find_next_use(prog, i+1, index, mask);
      if (use == WRITE || use == END)
         removeInst[i] = GL_TRUE;
   }

   rem = remove_instructions(prog, removeInst);

done:
   free(removeInst);
   return rem != 0;
}


/**
 * Try to inject the destination of mov as the destination of inst and recompute
 * the swizzles operators for the sources of inst if required. Return GL_TRUE
 * of the substitution was possible, GL_FALSE otherwise
 */
static GLboolean
_mesa_merge_mov_into_inst(struct prog_instruction *inst,
                          const struct prog_instruction *mov)
{
   /* Indirection table which associates destination and source components for
    * the mov instruction
    */
   const GLuint mask = get_src_arg_mask(mov, 0, NO_MASK);

   /* Some components are not written by inst. We cannot remove the mov */
   if (mask != (inst->DstReg.WriteMask & mask))
      return GL_FALSE;

   inst->SaturateMode |= mov->SaturateMode;

   /* Depending on the instruction, we may need to recompute the swizzles.
    * Also, some other instructions (like TEX) are not linear. We will only
    * consider completely active sources and destinations
    */
   switch (inst->Opcode) {

   /* Carstesian instructions: we compute the swizzle */
   case OPCODE_MOV:
   case OPCODE_MIN:
   case OPCODE_MAX:
   case OPCODE_ABS:
   case OPCODE_ADD:
   case OPCODE_MAD:
   case OPCODE_MUL:
   case OPCODE_SUB:
   {
      GLuint dst_to_src_comp[4] = {0,0,0,0};
      GLuint dst_comp, arg;
      for (dst_comp = 0; dst_comp < 4; ++dst_comp) {
         if (mov->DstReg.WriteMask & (1 << dst_comp)) {
            const GLuint src_comp = GET_SWZ(mov->SrcReg[0].Swizzle, dst_comp);
            ASSERT(src_comp < 4);
            dst_to_src_comp[dst_comp] = src_comp;
         }
      }

      /* Patch each source of the instruction */
      for (arg = 0; arg < _mesa_num_inst_src_regs(inst->Opcode); arg++) {
         const GLuint arg_swz = inst->SrcReg[arg].Swizzle;
         inst->SrcReg[arg].Swizzle = 0;

         /* Reset each active component of the swizzle */
         for (dst_comp = 0; dst_comp < 4; ++dst_comp) {
            GLuint src_comp, arg_comp;
            if ((mov->DstReg.WriteMask & (1 << dst_comp)) == 0)
               continue;
            src_comp = dst_to_src_comp[dst_comp];
            ASSERT(src_comp < 4);
            arg_comp = GET_SWZ(arg_swz, src_comp);
            ASSERT(arg_comp < 4);
            inst->SrcReg[arg].Swizzle |= arg_comp << (3*dst_comp);
         }
      }
      inst->DstReg = mov->DstReg;
      return GL_TRUE;
   }

   /* Dot products and scalar instructions: we only change the destination */
   case OPCODE_RCP:
   case OPCODE_SIN:
   case OPCODE_COS:
   case OPCODE_RSQ:
   case OPCODE_POW:
   case OPCODE_EX2:
   case OPCODE_LOG:
   case OPCODE_DP2:
   case OPCODE_DP3:
   case OPCODE_DP4:
      inst->DstReg = mov->DstReg;
      return GL_TRUE;

   /* All other instructions require fully active components with no swizzle */
   default:
      if (mov->SrcReg[0].Swizzle != SWIZZLE_XYZW ||
          inst->DstReg.WriteMask != WRITEMASK_XYZW)
         return GL_FALSE;
      inst->DstReg = mov->DstReg;
      return GL_TRUE;
   }
}


/**
 * Try to remove extraneous MOV instructions from the given program.
 */
static GLboolean
_mesa_remove_extra_moves(struct gl_program *prog)
{
   GLboolean *removeInst; /* per-instruction removal flag */
   GLuint i, rem = 0, nesting = 0;

   if (dbg) {
      printf("Optimize: Begin remove extra moves\n");
      _mesa_print_program(prog);
   }

   removeInst =
      calloc(prog->NumInstructions, sizeof(GLboolean));

   /*
    * Look for sequences such as this:
    *    FOO tmpX, arg0, arg1;
    *    MOV tmpY, tmpX;
    * and convert into:
    *    FOO tmpY, arg0, arg1;
    */

   for (i = 0; i < prog->NumInstructions; i++) {
      const struct prog_instruction *mov = prog->Instructions + i;

      switch (mov->Opcode) {
      case OPCODE_BGNLOOP:
      case OPCODE_BGNSUB:
      case OPCODE_IF:
         nesting++;
         break;
      case OPCODE_ENDLOOP:
      case OPCODE_ENDSUB:
      case OPCODE_ENDIF:
         nesting--;
         break;
      case OPCODE_MOV:
         if (i > 0 &&
             can_downward_mov_be_modifed(mov) &&
             mov->SrcReg[0].File == PROGRAM_TEMPORARY &&
             nesting == 0)
         {

            /* see if this MOV can be removed */
            const GLuint id = mov->SrcReg[0].Index;
            struct prog_instruction *prevInst;
            GLuint prevI;

            /* get pointer to previous instruction */
            prevI = i - 1;
            while (prevI > 0 && removeInst[prevI])
               prevI--;
            prevInst = prog->Instructions + prevI;

            if (prevInst->DstReg.File == PROGRAM_TEMPORARY &&
                prevInst->DstReg.Index == id &&
                prevInst->DstReg.RelAddr == 0 &&
                prevInst->DstReg.CondMask == COND_TR) {

               const GLuint dst_mask = prevInst->DstReg.WriteMask;
               enum inst_use next_use = find_next_use(prog, i+1, id, dst_mask);

               if (next_use == WRITE || next_use == END) {
                  /* OK, we can safely remove this MOV instruction.
                   * Transform:
                   *   prevI: FOO tempIndex, x, y;
                   *       i: MOV z, tempIndex;
                   * Into:
                   *   prevI: FOO z, x, y;
                   */
                  if (_mesa_merge_mov_into_inst(prevInst, mov)) {
                     removeInst[i] = GL_TRUE;
                     if (dbg) {
                        printf("Remove MOV at %u\n", i);
                        printf("new prev inst %u: ", prevI);
                        _mesa_print_instruction(prevInst);
                     }
                  }
               }
            }
         }
         break;
      default:
         ; /* nothing */
      }
   }

   /* now remove the instructions which aren't needed */
   rem = remove_instructions(prog, removeInst);

   free(removeInst);

   if (dbg) {
      printf("Optimize: End remove extra moves.  %u instructions removed\n", rem);
      /*_mesa_print_program(prog);*/
   }

   return rem != 0;
}


/** A live register interval */
struct interval
{
   GLuint Reg;         /** The temporary register index */
   GLuint Start, End;  /** Start/end instruction numbers */
};


/** A list of register intervals */
struct interval_list
{
   GLuint Num;
   struct interval Intervals[REG_ALLOCATE_MAX_PROGRAM_TEMPS];
};


static void
append_interval(struct interval_list *list, const struct interval *inv)
{
   list->Intervals[list->Num++] = *inv;
}


/** Insert interval inv into list, sorted by interval end */
static void
insert_interval_by_end(struct interval_list *list, const struct interval *inv)
{
   /* XXX we could do a binary search insertion here since list is sorted */
   GLint i = list->Num - 1;
   while (i >= 0 && list->Intervals[i].End > inv->End) {
      list->Intervals[i + 1] = list->Intervals[i];
      i--;
   }
   list->Intervals[i + 1] = *inv;
   list->Num++;

#ifdef DEBUG
   {
      GLuint i;
      for (i = 0; i + 1 < list->Num; i++) {
         ASSERT(list->Intervals[i].End <= list->Intervals[i + 1].End);
      }
   }
#endif
}


/** Remove the given interval from the interval list */
static void
remove_interval(struct interval_list *list, const struct interval *inv)
{
   /* XXX we could binary search since list is sorted */
   GLuint k;
   for (k = 0; k < list->Num; k++) {
      if (list->Intervals[k].Reg == inv->Reg) {
         /* found, remove it */
         ASSERT(list->Intervals[k].Start == inv->Start);
         ASSERT(list->Intervals[k].End == inv->End);
         while (k < list->Num - 1) {
            list->Intervals[k] = list->Intervals[k + 1];
            k++;
         }
         list->Num--;
         return;
      }
   }
}


/** called by qsort() */
static int
compare_start(const void *a, const void *b)
{
   const struct interval *ia = (const struct interval *) a;
   const struct interval *ib = (const struct interval *) b;
   if (ia->Start < ib->Start)
      return -1;
   else if (ia->Start > ib->Start)
      return +1;
   else
      return 0;
}


/** sort the interval list according to interval starts */
static void
sort_interval_list_by_start(struct interval_list *list)
{
   qsort(list->Intervals, list->Num, sizeof(struct interval), compare_start);
#ifdef DEBUG
   {
      GLuint i;
      for (i = 0; i + 1 < list->Num; i++) {
         ASSERT(list->Intervals[i].Start <= list->Intervals[i + 1].Start);
      }
   }
#endif
}

struct loop_info
{
   GLuint Start, End;  /**< Start, end instructions of loop */
};

/**
 * Update the intermediate interval info for register 'index' and
 * instruction 'ic'.
 */
static void
update_interval(GLint intBegin[], GLint intEnd[],
		struct loop_info *loopStack, GLuint loopStackDepth,
		GLuint index, GLuint ic)
{
   int i;
   GLuint begin = ic;
   GLuint end = ic;

   /* If the register is used in a loop, extend its lifetime through the end
    * of the outermost loop that doesn't contain its definition.
    */
   for (i = 0; i < loopStackDepth; i++) {
      if (intBegin[index] < loopStack[i].Start) {
	 end = loopStack[i].End;
	 break;
      }
   }

   /* Variables that are live at the end of a loop will also be live at the
    * beginning, so an instruction inside of a loop should have its live
    * interval begin at the start of the outermost loop.
    */
   if (loopStackDepth > 0 && ic > loopStack[0].Start && ic < loopStack[0].End) {
      begin = loopStack[0].Start;
   }

   ASSERT(index < REG_ALLOCATE_MAX_PROGRAM_TEMPS);
   if (intBegin[index] == -1) {
      ASSERT(intEnd[index] == -1);
      intBegin[index] = begin;
      intEnd[index] = end;
   }
   else {
      intEnd[index] = end;
   }
}


/**
 * Find first/last instruction that references each temporary register.
 */
GLboolean
_mesa_find_temp_intervals(const struct prog_instruction *instructions,
                          GLuint numInstructions,
                          GLint intBegin[REG_ALLOCATE_MAX_PROGRAM_TEMPS],
                          GLint intEnd[REG_ALLOCATE_MAX_PROGRAM_TEMPS])
{
   struct loop_info loopStack[MAX_LOOP_NESTING];
   GLuint loopStackDepth = 0;
   GLuint i;

   for (i = 0; i < REG_ALLOCATE_MAX_PROGRAM_TEMPS; i++){
      intBegin[i] = intEnd[i] = -1;
   }

   /* Scan instructions looking for temporary registers */
   for (i = 0; i < numInstructions; i++) {
      const struct prog_instruction *inst = instructions + i;
      if (inst->Opcode == OPCODE_BGNLOOP) {
         loopStack[loopStackDepth].Start = i;
         loopStack[loopStackDepth].End = inst->BranchTarget;
         loopStackDepth++;
      }
      else if (inst->Opcode == OPCODE_ENDLOOP) {
         loopStackDepth--;
      }
      else if (inst->Opcode == OPCODE_CAL) {
         return GL_FALSE;
      }
      else {
         const GLuint numSrc = 3;/*_mesa_num_inst_src_regs(inst->Opcode);*/
         GLuint j;
         for (j = 0; j < numSrc; j++) {
            if (inst->SrcReg[j].File == PROGRAM_TEMPORARY) {
               const GLuint index = inst->SrcReg[j].Index;
               if (inst->SrcReg[j].RelAddr)
                  return GL_FALSE;
               update_interval(intBegin, intEnd, loopStack, loopStackDepth,
			       index, i);
            }
         }
         if (inst->DstReg.File == PROGRAM_TEMPORARY) {
            const GLuint index = inst->DstReg.Index;
            if (inst->DstReg.RelAddr)
               return GL_FALSE;
            update_interval(intBegin, intEnd, loopStack, loopStackDepth,
			    index, i);
         }
      }
   }

   return GL_TRUE;
}


/**
 * Find the live intervals for each temporary register in the program.
 * For register R, the interval [A,B] indicates that R is referenced
 * from instruction A through instruction B.
 * Special consideration is needed for loops and subroutines.
 * \return GL_TRUE if success, GL_FALSE if we cannot proceed for some reason
 */
static GLboolean
find_live_intervals(struct gl_program *prog,
                    struct interval_list *liveIntervals)
{
   GLint intBegin[REG_ALLOCATE_MAX_PROGRAM_TEMPS];
   GLint intEnd[REG_ALLOCATE_MAX_PROGRAM_TEMPS];
   GLuint i;

   /*
    * Note: we'll return GL_FALSE below if we find relative indexing
    * into the TEMP register file.  We can't handle that yet.
    * We also give up on subroutines for now.
    */

   if (dbg) {
      printf("Optimize: Begin find intervals\n");
   }

   /* build intermediate arrays */
   if (!_mesa_find_temp_intervals(prog->Instructions, prog->NumInstructions,
                                  intBegin, intEnd))
      return GL_FALSE;

   /* Build live intervals list from intermediate arrays */
   liveIntervals->Num = 0;
   for (i = 0; i < REG_ALLOCATE_MAX_PROGRAM_TEMPS; i++) {
      if (intBegin[i] >= 0) {
         struct interval inv;
         inv.Reg = i;
         inv.Start = intBegin[i];
         inv.End = intEnd[i];
         append_interval(liveIntervals, &inv);
      }
   }

   /* Sort the list according to interval starts */
   sort_interval_list_by_start(liveIntervals);

   if (dbg) {
      /* print interval info */
      for (i = 0; i < liveIntervals->Num; i++) {
         const struct interval *inv = liveIntervals->Intervals + i;
         printf("Reg[%d] live [%d, %d]:",
                      inv->Reg, inv->Start, inv->End);
         if (1) {
            GLuint j;
            for (j = 0; j < inv->Start; j++)
               printf(" ");
            for (j = inv->Start; j <= inv->End; j++)
               printf("x");
         }
         printf("\n");
      }
   }

   return GL_TRUE;
}


/** Scan the array of used register flags to find free entry */
static GLint
alloc_register(GLboolean usedRegs[REG_ALLOCATE_MAX_PROGRAM_TEMPS])
{
   GLuint k;
   for (k = 0; k < REG_ALLOCATE_MAX_PROGRAM_TEMPS; k++) {
      if (!usedRegs[k]) {
         usedRegs[k] = GL_TRUE;
         return k;
      }
   }
   return -1;
}


/**
 * This function implements "Linear Scan Register Allocation" to reduce
 * the number of temporary registers used by the program.
 *
 * We compute the "live interval" for all temporary registers then
 * examine the overlap of the intervals to allocate new registers.
 * Basically, if two intervals do not overlap, they can use the same register.
 */
static void
_mesa_reallocate_registers(struct gl_program *prog)
{
   struct interval_list liveIntervals;
   GLint registerMap[REG_ALLOCATE_MAX_PROGRAM_TEMPS];
   GLboolean usedRegs[REG_ALLOCATE_MAX_PROGRAM_TEMPS];
   GLuint i;
   GLint maxTemp = -1;

   if (dbg) {
      printf("Optimize: Begin live-interval register reallocation\n");
      _mesa_print_program(prog);
   }

   for (i = 0; i < REG_ALLOCATE_MAX_PROGRAM_TEMPS; i++){
      registerMap[i] = -1;
      usedRegs[i] = GL_FALSE;
   }

   if (!find_live_intervals(prog, &liveIntervals)) {
      if (dbg)
         printf("Aborting register reallocation\n");
      return;
   }

   {
      struct interval_list activeIntervals;
      activeIntervals.Num = 0;

      /* loop over live intervals, allocating a new register for each */
      for (i = 0; i < liveIntervals.Num; i++) {
         const struct interval *live = liveIntervals.Intervals + i;

         if (dbg)
            printf("Consider register %u\n", live->Reg);

         /* Expire old intervals.  Intervals which have ended with respect
          * to the live interval can have their remapped registers freed.
          */
         {
            GLint j;
            for (j = 0; j < (GLint) activeIntervals.Num; j++) {
               const struct interval *inv = activeIntervals.Intervals + j;
               if (inv->End >= live->Start) {
                  /* Stop now.  Since the activeInterval list is sorted
                   * we know we don't have to go further.
                   */
                  break;
               }
               else {
                  /* Interval 'inv' has expired */
                  const GLint regNew = registerMap[inv->Reg];
                  ASSERT(regNew >= 0);

                  if (dbg)
                     printf("  expire interval for reg %u\n", inv->Reg);

                  /* remove interval j from active list */
                  remove_interval(&activeIntervals, inv);
                  j--;  /* counter-act j++ in for-loop above */

                  /* return register regNew to the free pool */
                  if (dbg)
                     printf("  free reg %d\n", regNew);
                  ASSERT(usedRegs[regNew] == GL_TRUE);
                  usedRegs[regNew] = GL_FALSE;
               }
            }
         }

         /* find a free register for this live interval */
         {
            const GLint k = alloc_register(usedRegs);
            if (k < 0) {
               /* out of registers, give up */
               return;
            }
            registerMap[live->Reg] = k;
            maxTemp = MAX2(maxTemp, k);
            if (dbg)
               printf("  remap register %u -> %d\n", live->Reg, k);
         }

         /* Insert this live interval into the active list which is sorted
          * by increasing end points.
          */
         insert_interval_by_end(&activeIntervals, live);
      }
   }

   if (maxTemp + 1 < (GLint) liveIntervals.Num) {
      /* OK, we've reduced the number of registers needed.
       * Scan the program and replace all the old temporary register
       * indexes with the new indexes.
       */
      replace_regs(prog, PROGRAM_TEMPORARY, registerMap);

      prog->NumTemporaries = maxTemp + 1;
   }

   if (dbg) {
      printf("Optimize: End live-interval register reallocation\n");
      printf("Num temp regs before: %u  after: %u\n",
                   liveIntervals.Num, maxTemp + 1);
      _mesa_print_program(prog);
   }
}


#if 0
static void
print_it(struct gl_context *ctx, struct gl_program *program, const char *txt) {
   fprintf(stderr, "%s (%u inst):\n", txt, program->NumInstructions);
   _mesa_print_program(program);
   _mesa_print_program_parameters(ctx, program);
   fprintf(stderr, "\n\n");
}
#endif

/**
 * This pass replaces CMP T0, T1 T2 T0 with MOV T0, T2 when the CMP
 * instruction is the first instruction to write to register T0.  The are
 * several lowering passes done in GLSL IR (e.g. branches and
 * relative addressing) that create a large number of conditional assignments
 * that ir_to_mesa converts to CMP instructions like the one mentioned above.
 *
 * Here is why this conversion is safe:
 * CMP T0, T1 T2 T0 can be expanded to:
 * if (T1 < 0.0)
 * 	MOV T0, T2;
 * else
 * 	MOV T0, T0;
 *
 * If (T1 < 0.0) evaluates to true then our replacement MOV T0, T2 is the same
 * as the original program.  If (T1 < 0.0) evaluates to false, executing
 * MOV T0, T0 will store a garbage value in T0 since T0 is uninitialized.
 * Therefore, it doesn't matter that we are replacing MOV T0, T0 with MOV T0, T2
 * because any instruction that was going to read from T0 after this was going
 * to read a garbage value anyway.
 */
static void
_mesa_simplify_cmp(struct gl_program * program)
{
   GLuint tempWrites[REG_ALLOCATE_MAX_PROGRAM_TEMPS];
   GLuint outputWrites[MAX_PROGRAM_OUTPUTS];
   GLuint i;

   if (dbg) {
      printf("Optimize: Begin reads without writes\n");
      _mesa_print_program(program);
   }

   for (i = 0; i < REG_ALLOCATE_MAX_PROGRAM_TEMPS; i++) {
      tempWrites[i] = 0;
   }

   for (i = 0; i < MAX_PROGRAM_OUTPUTS; i++) {
      outputWrites[i] = 0;
   }

   for (i = 0; i < program->NumInstructions; i++) {
      struct prog_instruction *inst = program->Instructions + i;
      GLuint prevWriteMask;

      /* Give up if we encounter relative addressing or flow control. */
      if (_mesa_is_flow_control_opcode(inst->Opcode) || inst->DstReg.RelAddr) {
         return;
      }

      if (inst->DstReg.File == PROGRAM_OUTPUT) {
         assert(inst->DstReg.Index < MAX_PROGRAM_OUTPUTS);
         prevWriteMask = outputWrites[inst->DstReg.Index];
         outputWrites[inst->DstReg.Index] |= inst->DstReg.WriteMask;
      } else if (inst->DstReg.File == PROGRAM_TEMPORARY) {
         assert(inst->DstReg.Index < REG_ALLOCATE_MAX_PROGRAM_TEMPS);
         prevWriteMask = tempWrites[inst->DstReg.Index];
         tempWrites[inst->DstReg.Index] |= inst->DstReg.WriteMask;
      } else {
         /* No other register type can be a destination register. */
         continue;
      }

      /* For a CMP to be considered a conditional write, the destination
       * register and source register two must be the same. */
      if (inst->Opcode == OPCODE_CMP
          && !(inst->DstReg.WriteMask & prevWriteMask)
          && inst->SrcReg[2].File == inst->DstReg.File
          && inst->SrcReg[2].Index == inst->DstReg.Index
          && inst->DstReg.WriteMask == get_src_arg_mask(inst, 2, NO_MASK)) {

         inst->Opcode = OPCODE_MOV;
         inst->SrcReg[0] = inst->SrcReg[1];

	 /* Unused operands are expected to have the file set to
	  * PROGRAM_UNDEFINED.  This is how _mesa_init_instructions initializes
	  * all of the sources.
	  */
	 inst->SrcReg[1].File = PROGRAM_UNDEFINED;
	 inst->SrcReg[1].Swizzle = SWIZZLE_NOOP;
	 inst->SrcReg[2].File = PROGRAM_UNDEFINED;
	 inst->SrcReg[2].Swizzle = SWIZZLE_NOOP;
      }
   }
   if (dbg) {
      printf("Optimize: End reads without writes\n");
      _mesa_print_program(program);
   }
}

/**
 * Apply optimizations to the given program to eliminate unnecessary
 * instructions, temp regs, etc.
 */
void
_mesa_optimize_program(struct gl_context *ctx, struct gl_program *program)
{
   GLboolean any_change;

   _mesa_simplify_cmp(program);
   /* Stop when no modifications were output */
   do {
      any_change = GL_FALSE;
      _mesa_remove_extra_move_use(program);
      if (_mesa_remove_dead_code_global(program))
         any_change = GL_TRUE;
      if (_mesa_remove_extra_moves(program))
         any_change = GL_TRUE;
      if (_mesa_remove_dead_code_local(program))
         any_change = GL_TRUE;

      any_change = _mesa_constant_fold(program) || any_change;
      _mesa_reallocate_registers(program);
   } while (any_change);
}