1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
|
/*
* Mesa 3-D graphics library
*
* Copyright (C) 1999-2008 Brian Paul All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include "main/glheader.h"
#include "main/macros.h"
#include "main/imports.h"
#include "main/format_pack.h"
#include "main/colormac.h"
#include "s_context.h"
#include "s_span.h"
#include "s_stencil.h"
#include "s_zoom.h"
/**
* Compute the bounds of the region resulting from zooming a pixel span.
* The resulting region will be entirely inside the window/scissor bounds
* so no additional clipping is needed.
* \param imageX, imageY position of the mage being drawn (gl WindowPos)
* \param spanX, spanY position of span being drawing
* \param width number of pixels in span
* \param x0, x1 returned X bounds of zoomed region [x0, x1)
* \param y0, y1 returned Y bounds of zoomed region [y0, y1)
* \return GL_TRUE if any zoomed pixels visible, GL_FALSE if totally clipped
*/
static GLboolean
compute_zoomed_bounds(struct gl_context *ctx, GLint imageX, GLint imageY,
GLint spanX, GLint spanY, GLint width,
GLint *x0, GLint *x1, GLint *y0, GLint *y1)
{
const struct gl_framebuffer *fb = ctx->DrawBuffer;
GLint c0, c1, r0, r1;
ASSERT(spanX >= imageX);
ASSERT(spanY >= imageY);
/*
* Compute destination columns: [c0, c1)
*/
c0 = imageX + (GLint) ((spanX - imageX) * ctx->Pixel.ZoomX);
c1 = imageX + (GLint) ((spanX + width - imageX) * ctx->Pixel.ZoomX);
if (c1 < c0) {
/* swap */
GLint tmp = c1;
c1 = c0;
c0 = tmp;
}
c0 = CLAMP(c0, fb->_Xmin, fb->_Xmax);
c1 = CLAMP(c1, fb->_Xmin, fb->_Xmax);
if (c0 == c1) {
return GL_FALSE; /* no width */
}
/*
* Compute destination rows: [r0, r1)
*/
r0 = imageY + (GLint) ((spanY - imageY) * ctx->Pixel.ZoomY);
r1 = imageY + (GLint) ((spanY + 1 - imageY) * ctx->Pixel.ZoomY);
if (r1 < r0) {
/* swap */
GLint tmp = r1;
r1 = r0;
r0 = tmp;
}
r0 = CLAMP(r0, fb->_Ymin, fb->_Ymax);
r1 = CLAMP(r1, fb->_Ymin, fb->_Ymax);
if (r0 == r1) {
return GL_FALSE; /* no height */
}
*x0 = c0;
*x1 = c1;
*y0 = r0;
*y1 = r1;
return GL_TRUE;
}
/**
* Convert a zoomed x image coordinate back to an unzoomed x coord.
* 'zx' is screen position of a pixel in the zoomed image, who's left edge
* is at 'imageX'.
* return corresponding x coord in the original, unzoomed image.
* This can use this for unzooming X or Y values.
*/
static inline GLint
unzoom_x(GLfloat zoomX, GLint imageX, GLint zx)
{
/*
zx = imageX + (x - imageX) * zoomX;
zx - imageX = (x - imageX) * zoomX;
(zx - imageX) / zoomX = x - imageX;
*/
GLint x;
if (zoomX < 0.0)
zx++;
x = imageX + (GLint) ((zx - imageX) / zoomX);
return x;
}
/**
* Helper function called from _swrast_write_zoomed_rgba/rgb/
* index/depth_span().
*/
static void
zoom_span( struct gl_context *ctx, GLint imgX, GLint imgY, const SWspan *span,
const GLvoid *src, GLenum format )
{
SWcontext *swrast = SWRAST_CONTEXT(ctx);
SWspan zoomed;
GLint x0, x1, y0, y1;
GLint zoomedWidth;
if (!compute_zoomed_bounds(ctx, imgX, imgY, span->x, span->y, span->end,
&x0, &x1, &y0, &y1)) {
return; /* totally clipped */
}
if (!swrast->ZoomedArrays) {
/* allocate on demand */
swrast->ZoomedArrays = (SWspanarrays *) calloc(1, sizeof(SWspanarrays));
if (!swrast->ZoomedArrays)
return;
}
zoomedWidth = x1 - x0;
ASSERT(zoomedWidth > 0);
ASSERT(zoomedWidth <= SWRAST_MAX_WIDTH);
/* no pixel arrays! must be horizontal spans. */
ASSERT((span->arrayMask & SPAN_XY) == 0);
ASSERT(span->primitive == GL_BITMAP);
INIT_SPAN(zoomed, GL_BITMAP);
zoomed.x = x0;
zoomed.end = zoomedWidth;
zoomed.array = swrast->ZoomedArrays;
zoomed.array->ChanType = span->array->ChanType;
if (zoomed.array->ChanType == GL_UNSIGNED_BYTE)
zoomed.array->rgba = (GLchan (*)[4]) zoomed.array->rgba8;
else if (zoomed.array->ChanType == GL_UNSIGNED_SHORT)
zoomed.array->rgba = (GLchan (*)[4]) zoomed.array->rgba16;
else
zoomed.array->rgba = (GLchan (*)[4]) zoomed.array->attribs[VARYING_SLOT_COL0];
COPY_4V(zoomed.attrStart[VARYING_SLOT_POS], span->attrStart[VARYING_SLOT_POS]);
COPY_4V(zoomed.attrStepX[VARYING_SLOT_POS], span->attrStepX[VARYING_SLOT_POS]);
COPY_4V(zoomed.attrStepY[VARYING_SLOT_POS], span->attrStepY[VARYING_SLOT_POS]);
zoomed.attrStart[VARYING_SLOT_FOGC][0] = span->attrStart[VARYING_SLOT_FOGC][0];
zoomed.attrStepX[VARYING_SLOT_FOGC][0] = span->attrStepX[VARYING_SLOT_FOGC][0];
zoomed.attrStepY[VARYING_SLOT_FOGC][0] = span->attrStepY[VARYING_SLOT_FOGC][0];
if (format == GL_RGBA || format == GL_RGB) {
/* copy Z info */
zoomed.z = span->z;
zoomed.zStep = span->zStep;
/* we'll generate an array of colorss */
zoomed.interpMask = span->interpMask & ~SPAN_RGBA;
zoomed.arrayMask |= SPAN_RGBA;
zoomed.arrayAttribs |= VARYING_BIT_COL0; /* we'll produce these values */
ASSERT(span->arrayMask & SPAN_RGBA);
}
else if (format == GL_DEPTH_COMPONENT) {
/* Copy color info */
zoomed.red = span->red;
zoomed.green = span->green;
zoomed.blue = span->blue;
zoomed.alpha = span->alpha;
zoomed.redStep = span->redStep;
zoomed.greenStep = span->greenStep;
zoomed.blueStep = span->blueStep;
zoomed.alphaStep = span->alphaStep;
/* we'll generate an array of depth values */
zoomed.interpMask = span->interpMask & ~SPAN_Z;
zoomed.arrayMask |= SPAN_Z;
ASSERT(span->arrayMask & SPAN_Z);
}
else {
_mesa_problem(ctx, "Bad format in zoom_span");
return;
}
/* zoom the span horizontally */
if (format == GL_RGBA) {
if (zoomed.array->ChanType == GL_UNSIGNED_BYTE) {
const GLubyte (*rgba)[4] = (const GLubyte (*)[4]) src;
GLint i;
for (i = 0; i < zoomedWidth; i++) {
GLint j = unzoom_x(ctx->Pixel.ZoomX, imgX, x0 + i) - span->x;
ASSERT(j >= 0);
ASSERT(j < (GLint) span->end);
COPY_4UBV(zoomed.array->rgba8[i], rgba[j]);
}
}
else if (zoomed.array->ChanType == GL_UNSIGNED_SHORT) {
const GLushort (*rgba)[4] = (const GLushort (*)[4]) src;
GLint i;
for (i = 0; i < zoomedWidth; i++) {
GLint j = unzoom_x(ctx->Pixel.ZoomX, imgX, x0 + i) - span->x;
ASSERT(j >= 0);
ASSERT(j < (GLint) span->end);
COPY_4V(zoomed.array->rgba16[i], rgba[j]);
}
}
else {
const GLfloat (*rgba)[4] = (const GLfloat (*)[4]) src;
GLint i;
for (i = 0; i < zoomedWidth; i++) {
GLint j = unzoom_x(ctx->Pixel.ZoomX, imgX, x0 + i) - span->x;
ASSERT(j >= 0);
ASSERT(j < (GLint) span->end);
COPY_4V(zoomed.array->attribs[VARYING_SLOT_COL0][i], rgba[j]);
}
}
}
else if (format == GL_RGB) {
if (zoomed.array->ChanType == GL_UNSIGNED_BYTE) {
const GLubyte (*rgb)[3] = (const GLubyte (*)[3]) src;
GLint i;
for (i = 0; i < zoomedWidth; i++) {
GLint j = unzoom_x(ctx->Pixel.ZoomX, imgX, x0 + i) - span->x;
ASSERT(j >= 0);
ASSERT(j < (GLint) span->end);
zoomed.array->rgba8[i][0] = rgb[j][0];
zoomed.array->rgba8[i][1] = rgb[j][1];
zoomed.array->rgba8[i][2] = rgb[j][2];
zoomed.array->rgba8[i][3] = 0xff;
}
}
else if (zoomed.array->ChanType == GL_UNSIGNED_SHORT) {
const GLushort (*rgb)[3] = (const GLushort (*)[3]) src;
GLint i;
for (i = 0; i < zoomedWidth; i++) {
GLint j = unzoom_x(ctx->Pixel.ZoomX, imgX, x0 + i) - span->x;
ASSERT(j >= 0);
ASSERT(j < (GLint) span->end);
zoomed.array->rgba16[i][0] = rgb[j][0];
zoomed.array->rgba16[i][1] = rgb[j][1];
zoomed.array->rgba16[i][2] = rgb[j][2];
zoomed.array->rgba16[i][3] = 0xffff;
}
}
else {
const GLfloat (*rgb)[3] = (const GLfloat (*)[3]) src;
GLint i;
for (i = 0; i < zoomedWidth; i++) {
GLint j = unzoom_x(ctx->Pixel.ZoomX, imgX, x0 + i) - span->x;
ASSERT(j >= 0);
ASSERT(j < (GLint) span->end);
zoomed.array->attribs[VARYING_SLOT_COL0][i][0] = rgb[j][0];
zoomed.array->attribs[VARYING_SLOT_COL0][i][1] = rgb[j][1];
zoomed.array->attribs[VARYING_SLOT_COL0][i][2] = rgb[j][2];
zoomed.array->attribs[VARYING_SLOT_COL0][i][3] = 1.0F;
}
}
}
else if (format == GL_DEPTH_COMPONENT) {
const GLuint *zValues = (const GLuint *) src;
GLint i;
for (i = 0; i < zoomedWidth; i++) {
GLint j = unzoom_x(ctx->Pixel.ZoomX, imgX, x0 + i) - span->x;
ASSERT(j >= 0);
ASSERT(j < (GLint) span->end);
zoomed.array->z[i] = zValues[j];
}
/* Now, fall into the RGB path below */
format = GL_RGBA;
}
/* write the span in rows [r0, r1) */
if (format == GL_RGBA || format == GL_RGB) {
/* Writing the span may modify the colors, so make a backup now if we're
* going to call _swrast_write_zoomed_span() more than once.
* Also, clipping may change the span end value, so store it as well.
*/
const GLint end = zoomed.end; /* save */
void *rgbaSave;
const GLint pixelSize =
(zoomed.array->ChanType == GL_UNSIGNED_BYTE) ? 4 * sizeof(GLubyte) :
((zoomed.array->ChanType == GL_UNSIGNED_SHORT) ? 4 * sizeof(GLushort)
: 4 * sizeof(GLfloat));
rgbaSave = malloc(zoomed.end * pixelSize);
if (!rgbaSave) {
return;
}
if (y1 - y0 > 1) {
memcpy(rgbaSave, zoomed.array->rgba, zoomed.end * pixelSize);
}
for (zoomed.y = y0; zoomed.y < y1; zoomed.y++) {
_swrast_write_rgba_span(ctx, &zoomed);
zoomed.end = end; /* restore */
if (y1 - y0 > 1) {
/* restore the colors */
memcpy(zoomed.array->rgba, rgbaSave, zoomed.end * pixelSize);
}
}
free(rgbaSave);
}
}
void
_swrast_write_zoomed_rgba_span(struct gl_context *ctx, GLint imgX, GLint imgY,
const SWspan *span, const GLvoid *rgba)
{
zoom_span(ctx, imgX, imgY, span, rgba, GL_RGBA);
}
void
_swrast_write_zoomed_rgb_span(struct gl_context *ctx, GLint imgX, GLint imgY,
const SWspan *span, const GLvoid *rgb)
{
zoom_span(ctx, imgX, imgY, span, rgb, GL_RGB);
}
void
_swrast_write_zoomed_depth_span(struct gl_context *ctx, GLint imgX, GLint imgY,
const SWspan *span)
{
zoom_span(ctx, imgX, imgY, span,
(const GLvoid *) span->array->z, GL_DEPTH_COMPONENT);
}
/**
* Zoom/write stencil values.
* No per-fragment operations are applied.
*/
void
_swrast_write_zoomed_stencil_span(struct gl_context *ctx, GLint imgX, GLint imgY,
GLint width, GLint spanX, GLint spanY,
const GLubyte stencil[])
{
GLubyte *zoomedVals;
GLint x0, x1, y0, y1, y;
GLint i, zoomedWidth;
if (!compute_zoomed_bounds(ctx, imgX, imgY, spanX, spanY, width,
&x0, &x1, &y0, &y1)) {
return; /* totally clipped */
}
zoomedWidth = x1 - x0;
ASSERT(zoomedWidth > 0);
ASSERT(zoomedWidth <= SWRAST_MAX_WIDTH);
zoomedVals = malloc(zoomedWidth * sizeof(GLubyte));
if (!zoomedVals)
return;
/* zoom the span horizontally */
for (i = 0; i < zoomedWidth; i++) {
GLint j = unzoom_x(ctx->Pixel.ZoomX, imgX, x0 + i) - spanX;
ASSERT(j >= 0);
ASSERT(j < width);
zoomedVals[i] = stencil[j];
}
/* write the zoomed spans */
for (y = y0; y < y1; y++) {
_swrast_write_stencil_span(ctx, zoomedWidth, x0, y, zoomedVals);
}
free(zoomedVals);
}
/**
* Zoom/write 32-bit Z values.
* No per-fragment operations are applied.
*/
void
_swrast_write_zoomed_z_span(struct gl_context *ctx, GLint imgX, GLint imgY,
GLint width, GLint spanX, GLint spanY,
const GLuint *zVals)
{
struct gl_renderbuffer *rb =
ctx->DrawBuffer->Attachment[BUFFER_DEPTH].Renderbuffer;
GLuint *zoomedVals;
GLint x0, x1, y0, y1, y;
GLint i, zoomedWidth;
if (!compute_zoomed_bounds(ctx, imgX, imgY, spanX, spanY, width,
&x0, &x1, &y0, &y1)) {
return; /* totally clipped */
}
zoomedWidth = x1 - x0;
ASSERT(zoomedWidth > 0);
ASSERT(zoomedWidth <= SWRAST_MAX_WIDTH);
zoomedVals = malloc(zoomedWidth * sizeof(GLuint));
if (!zoomedVals)
return;
/* zoom the span horizontally */
for (i = 0; i < zoomedWidth; i++) {
GLint j = unzoom_x(ctx->Pixel.ZoomX, imgX, x0 + i) - spanX;
ASSERT(j >= 0);
ASSERT(j < width);
zoomedVals[i] = zVals[j];
}
/* write the zoomed spans */
for (y = y0; y < y1; y++) {
GLubyte *dst = _swrast_pixel_address(rb, x0, y);
_mesa_pack_uint_z_row(rb->Format, zoomedWidth, zoomedVals, dst);
}
free(zoomedVals);
}
|