1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
|
/* crypto/camellia/camellia_ctr.c -*- mode:C; c-file-style: "eay" -*- */
/* ====================================================================
* Copyright (c) 2006 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
*/
#ifndef CAMELLIA_DEBUG
# ifndef NDEBUG
# define NDEBUG
# endif
#endif
#include <assert.h>
#include <openssl/camellia.h>
#include "cmll_locl.h"
/* NOTE: the IV/counter CTR mode is big-endian. The rest of the Camellia code
* is endian-neutral. */
/* increment counter (128-bit int) by 1 */
static void Camellia_ctr128_inc(unsigned char *counter)
{
unsigned long c;
/* Grab bottom dword of counter and increment */
c = GETU32(counter + 12);
c++; c &= 0xFFFFFFFF;
PUTU32(counter + 12, c);
/* if no overflow, we're done */
if (c)
return;
/* Grab 1st dword of counter and increment */
c = GETU32(counter + 8);
c++; c &= 0xFFFFFFFF;
PUTU32(counter + 8, c);
/* if no overflow, we're done */
if (c)
return;
/* Grab 2nd dword of counter and increment */
c = GETU32(counter + 4);
c++; c &= 0xFFFFFFFF;
PUTU32(counter + 4, c);
/* if no overflow, we're done */
if (c)
return;
/* Grab top dword of counter and increment */
c = GETU32(counter + 0);
c++; c &= 0xFFFFFFFF;
PUTU32(counter + 0, c);
}
/* The input encrypted as though 128bit counter mode is being
* used. The extra state information to record how much of the
* 128bit block we have used is contained in *num, and the
* encrypted counter is kept in ecount_buf. Both *num and
* ecount_buf must be initialised with zeros before the first
* call to Camellia_ctr128_encrypt().
*
* This algorithm assumes that the counter is in the x lower bits
* of the IV (ivec), and that the application has full control over
* overflow and the rest of the IV. This implementation takes NO
* responsability for checking that the counter doesn't overflow
* into the rest of the IV when incremented.
*/
void Camellia_ctr128_encrypt(const unsigned char *in, unsigned char *out,
const unsigned long length, const CAMELLIA_KEY *key,
unsigned char ivec[CAMELLIA_BLOCK_SIZE],
unsigned char ecount_buf[CAMELLIA_BLOCK_SIZE],
unsigned int *num)
{
unsigned int n;
unsigned long l=length;
assert(in && out && key && counter && num);
assert(*num < CAMELLIA_BLOCK_SIZE);
n = *num;
while (l--)
{
if (n == 0)
{
Camellia_encrypt(ivec, ecount_buf, key);
Camellia_ctr128_inc(ivec);
}
*(out++) = *(in++) ^ ecount_buf[n];
n = (n+1) % CAMELLIA_BLOCK_SIZE;
}
*num=n;
}
|