aboutsummaryrefslogtreecommitdiff
path: root/openssl/crypto/modes/asm/ghash-s390x.pl
blob: 39096b423ad805d7e6475e6aa42bdc8b6ed041ae (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
#!/usr/bin/env perl

# ====================================================================
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
# ====================================================================

# September 2010.
#
# The module implements "4-bit" GCM GHASH function and underlying
# single multiplication operation in GF(2^128). "4-bit" means that it
# uses 256 bytes per-key table [+128 bytes shared table]. Performance
# was measured to be ~18 cycles per processed byte on z10, which is
# almost 40% better than gcc-generated code. It should be noted that
# 18 cycles is worse result than expected: loop is scheduled for 12
# and the result should be close to 12. In the lack of instruction-
# level profiling data it's impossible to tell why...

# November 2010.
#
# Adapt for -m31 build. If kernel supports what's called "highgprs"
# feature on Linux [see /proc/cpuinfo], it's possible to use 64-bit
# instructions and achieve "64-bit" performance even in 31-bit legacy
# application context. The feature is not specific to any particular
# processor, as long as it's "z-CPU". Latter implies that the code
# remains z/Architecture specific. On z990 it was measured to perform
# 2.8x better than 32-bit code generated by gcc 4.3.

# March 2011.
#
# Support for hardware KIMD-GHASH is verified to produce correct
# result and therefore is engaged. On z196 it was measured to process
# 8KB buffer ~7 faster than software implementation. It's not as
# impressive for smaller buffer sizes and for smallest 16-bytes buffer
# it's actually almost 2 times slower. Which is the reason why
# KIMD-GHASH is not used in gcm_gmult_4bit.

$flavour = shift;

if ($flavour =~ /3[12]/) {
	$SIZE_T=4;
	$g="";
} else {
	$SIZE_T=8;
	$g="g";
}

while (($output=shift) && ($output!~/^\w[\w\-]*\.\w+$/)) {}
open STDOUT,">$output";

$softonly=0;

$Zhi="%r0";
$Zlo="%r1";

$Xi="%r2";	# argument block
$Htbl="%r3";
$inp="%r4";
$len="%r5";

$rem0="%r6";	# variables
$rem1="%r7";
$nlo="%r8";
$nhi="%r9";
$xi="%r10";
$cnt="%r11";
$tmp="%r12";
$x78="%r13";
$rem_4bit="%r14";

$sp="%r15";

$code.=<<___;
.text

.globl	gcm_gmult_4bit
.align	32
gcm_gmult_4bit:
___
$code.=<<___ if(!$softonly && 0);	# hardware is slow for single block...
	larl	%r1,OPENSSL_s390xcap_P
	lg	%r0,0(%r1)
	tmhl	%r0,0x4000	# check for message-security-assist
	jz	.Lsoft_gmult
	lghi	%r0,0
	la	%r1,16($sp)
	.long	0xb93e0004	# kimd %r0,%r4
	lg	%r1,24($sp)
	tmhh	%r1,0x4000	# check for function 65
	jz	.Lsoft_gmult
	stg	%r0,16($sp)	# arrange 16 bytes of zero input
	stg	%r0,24($sp)
	lghi	%r0,65		# function 65
	la	%r1,0($Xi)	# H lies right after Xi in gcm128_context
	la	$inp,16($sp)
	lghi	$len,16
	.long	0xb93e0004	# kimd %r0,$inp
	brc	1,.-4		# pay attention to "partial completion"
	br	%r14
.align	32
.Lsoft_gmult:
___
$code.=<<___;
	stm${g}	%r6,%r14,6*$SIZE_T($sp)

	aghi	$Xi,-1
	lghi	$len,1
	lghi	$x78,`0xf<<3`
	larl	$rem_4bit,rem_4bit

	lg	$Zlo,8+1($Xi)		# Xi
	j	.Lgmult_shortcut
.type	gcm_gmult_4bit,\@function
.size	gcm_gmult_4bit,(.-gcm_gmult_4bit)

.globl	gcm_ghash_4bit
.align	32
gcm_ghash_4bit:
___
$code.=<<___ if(!$softonly);
	larl	%r1,OPENSSL_s390xcap_P
	lg	%r0,0(%r1)
	tmhl	%r0,0x4000	# check for message-security-assist
	jz	.Lsoft_ghash
	lghi	%r0,0
	la	%r1,16($sp)
	.long	0xb93e0004	# kimd %r0,%r4
	lg	%r1,24($sp)
	tmhh	%r1,0x4000	# check for function 65
	jz	.Lsoft_ghash
	lghi	%r0,65		# function 65
	la	%r1,0($Xi)	# H lies right after Xi in gcm128_context
	.long	0xb93e0004	# kimd %r0,$inp
	brc	1,.-4		# pay attention to "partial completion"
	br	%r14
.align	32
.Lsoft_ghash:
___
$code.=<<___ if ($flavour =~ /3[12]/);
	llgfr	$len,$len
___
$code.=<<___;
	stm${g}	%r6,%r14,6*$SIZE_T($sp)

	aghi	$Xi,-1
	srlg	$len,$len,4
	lghi	$x78,`0xf<<3`
	larl	$rem_4bit,rem_4bit

	lg	$Zlo,8+1($Xi)		# Xi
	lg	$Zhi,0+1($Xi)
	lghi	$tmp,0
.Louter:
	xg	$Zhi,0($inp)		# Xi ^= inp 
	xg	$Zlo,8($inp)
	xgr	$Zhi,$tmp
	stg	$Zlo,8+1($Xi)
	stg	$Zhi,0+1($Xi)

.Lgmult_shortcut:
	lghi	$tmp,0xf0
	sllg	$nlo,$Zlo,4
	srlg	$xi,$Zlo,8		# extract second byte
	ngr	$nlo,$tmp
	lgr	$nhi,$Zlo
	lghi	$cnt,14
	ngr	$nhi,$tmp

	lg	$Zlo,8($nlo,$Htbl)
	lg	$Zhi,0($nlo,$Htbl)

	sllg	$nlo,$xi,4
	sllg	$rem0,$Zlo,3
	ngr	$nlo,$tmp
	ngr	$rem0,$x78
	ngr	$xi,$tmp

	sllg	$tmp,$Zhi,60
	srlg	$Zlo,$Zlo,4
	srlg	$Zhi,$Zhi,4
	xg	$Zlo,8($nhi,$Htbl)
	xg	$Zhi,0($nhi,$Htbl)
	lgr	$nhi,$xi
	sllg	$rem1,$Zlo,3
	xgr	$Zlo,$tmp
	ngr	$rem1,$x78
	sllg	$tmp,$Zhi,60
	j	.Lghash_inner
.align	16
.Lghash_inner:
	srlg	$Zlo,$Zlo,4
	srlg	$Zhi,$Zhi,4
	xg	$Zlo,8($nlo,$Htbl)
	llgc	$xi,0($cnt,$Xi)
	xg	$Zhi,0($nlo,$Htbl)
	sllg	$nlo,$xi,4
	xg	$Zhi,0($rem0,$rem_4bit)
	nill	$nlo,0xf0
	sllg	$rem0,$Zlo,3
	xgr	$Zlo,$tmp
	ngr	$rem0,$x78
	nill	$xi,0xf0

	sllg	$tmp,$Zhi,60
	srlg	$Zlo,$Zlo,4
	srlg	$Zhi,$Zhi,4
	xg	$Zlo,8($nhi,$Htbl)
	xg	$Zhi,0($nhi,$Htbl)
	lgr	$nhi,$xi
	xg	$Zhi,0($rem1,$rem_4bit)
	sllg	$rem1,$Zlo,3
	xgr	$Zlo,$tmp
	ngr	$rem1,$x78
	sllg	$tmp,$Zhi,60
	brct	$cnt,.Lghash_inner

	srlg	$Zlo,$Zlo,4
	srlg	$Zhi,$Zhi,4
	xg	$Zlo,8($nlo,$Htbl)
	xg	$Zhi,0($nlo,$Htbl)
	sllg	$xi,$Zlo,3
	xg	$Zhi,0($rem0,$rem_4bit)
	xgr	$Zlo,$tmp
	ngr	$xi,$x78

	sllg	$tmp,$Zhi,60
	srlg	$Zlo,$Zlo,4
	srlg	$Zhi,$Zhi,4
	xg	$Zlo,8($nhi,$Htbl)
	xg	$Zhi,0($nhi,$Htbl)
	xgr	$Zlo,$tmp
	xg	$Zhi,0($rem1,$rem_4bit)

	lg	$tmp,0($xi,$rem_4bit)
	la	$inp,16($inp)
	sllg	$tmp,$tmp,4		# correct last rem_4bit[rem]
	brctg	$len,.Louter

	xgr	$Zhi,$tmp
	stg	$Zlo,8+1($Xi)
	stg	$Zhi,0+1($Xi)
	lm${g}	%r6,%r14,6*$SIZE_T($sp)
	br	%r14
.type	gcm_ghash_4bit,\@function
.size	gcm_ghash_4bit,(.-gcm_ghash_4bit)

.align	64
rem_4bit:
	.long	`0x0000<<12`,0,`0x1C20<<12`,0,`0x3840<<12`,0,`0x2460<<12`,0
	.long	`0x7080<<12`,0,`0x6CA0<<12`,0,`0x48C0<<12`,0,`0x54E0<<12`,0
	.long	`0xE100<<12`,0,`0xFD20<<12`,0,`0xD940<<12`,0,`0xC560<<12`,0
	.long	`0x9180<<12`,0,`0x8DA0<<12`,0,`0xA9C0<<12`,0,`0xB5E0<<12`,0
.type	rem_4bit,\@object
.size	rem_4bit,(.-rem_4bit)
.string	"GHASH for s390x, CRYPTOGAMS by <appro\@openssl.org>"
___

$code =~ s/\`([^\`]*)\`/eval $1/gem;
print $code;
close STDOUT;