aboutsummaryrefslogtreecommitdiff
path: root/openssl/crypto/modes/asm/ghashv8-armx.pl
blob: 54a1ac4db8d3b27c2368fd719aebd9d31c396b4f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
#!/usr/bin/env perl
#
# ====================================================================
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
# ====================================================================
#
# GHASH for ARMv8 Crypto Extension, 64-bit polynomial multiplication.
#
# June 2014
#
# Initial version was developed in tight cooperation with Ard
# Biesheuvel <ard.biesheuvel@linaro.org> from bits-n-pieces from
# other assembly modules. Just like aesv8-armx.pl this module
# supports both AArch32 and AArch64 execution modes.
#
# Current performance in cycles per processed byte:
#
#		PMULL[2]	32-bit NEON(*)
# Apple A7	1.76		5.62
# Cortex-A53	1.45		8.39
# Cortex-A57	2.22		7.61
#
# (*)	presented for reference/comparison purposes;

$flavour = shift;
open STDOUT,">".shift;

$Xi="x0";	# argument block
$Htbl="x1";
$inp="x2";
$len="x3";

$inc="x12";

{
my ($Xl,$Xm,$Xh,$IN)=map("q$_",(0..3));
my ($t0,$t1,$t2,$t3,$H,$Hhl)=map("q$_",(8..14));

$code=<<___;
#include "arm_arch.h"

.text
___
$code.=".arch	armv8-a+crypto\n"	if ($flavour =~ /64/);
$code.=".fpu	neon\n.code	32\n"	if ($flavour !~ /64/);

$code.=<<___;
.global	gcm_init_v8
.type	gcm_init_v8,%function
.align	4
gcm_init_v8:
	vld1.64		{$t1},[x1]		@ load H
	vmov.i8		$t0,#0xe1
	vext.8		$IN,$t1,$t1,#8
	vshl.i64	$t0,$t0,#57
	vshr.u64	$t2,$t0,#63
	vext.8		$t0,$t2,$t0,#8		@ t0=0xc2....01
	vdup.32		$t1,${t1}[1]
	vshr.u64	$t3,$IN,#63
	vshr.s32	$t1,$t1,#31		@ broadcast carry bit
	vand		$t3,$t3,$t0
	vshl.i64	$IN,$IN,#1
	vext.8		$t3,$t3,$t3,#8
	vand		$t0,$t0,$t1
	vorr		$IN,$IN,$t3		@ H<<<=1
	veor		$IN,$IN,$t0		@ twisted H
	vst1.64		{$IN},[x0]

	ret
.size	gcm_init_v8,.-gcm_init_v8

.global	gcm_gmult_v8
.type	gcm_gmult_v8,%function
.align	4
gcm_gmult_v8:
	vld1.64		{$t1},[$Xi]		@ load Xi
	vmov.i8		$t3,#0xe1
	vld1.64		{$H},[$Htbl]		@ load twisted H
	vshl.u64	$t3,$t3,#57
#ifndef __ARMEB__
	vrev64.8	$t1,$t1
#endif
	vext.8		$Hhl,$H,$H,#8
	mov		$len,#0
	vext.8		$IN,$t1,$t1,#8
	mov		$inc,#0
	veor		$Hhl,$Hhl,$H		@ Karatsuba pre-processing
	mov		$inp,$Xi
	b		.Lgmult_v8
.size	gcm_gmult_v8,.-gcm_gmult_v8

.global	gcm_ghash_v8
.type	gcm_ghash_v8,%function
.align	4
gcm_ghash_v8:
	vld1.64		{$Xl},[$Xi]		@ load [rotated] Xi
	subs		$len,$len,#16
	vmov.i8		$t3,#0xe1
	mov		$inc,#16
	vld1.64		{$H},[$Htbl]		@ load twisted H
	cclr		$inc,eq
	vext.8		$Xl,$Xl,$Xl,#8
	vshl.u64	$t3,$t3,#57
	vld1.64		{$t1},[$inp],$inc	@ load [rotated] inp
	vext.8		$Hhl,$H,$H,#8
#ifndef __ARMEB__
	vrev64.8	$Xl,$Xl
	vrev64.8	$t1,$t1
#endif
	veor		$Hhl,$Hhl,$H		@ Karatsuba pre-processing
	vext.8		$IN,$t1,$t1,#8
	b		.Loop_v8

.align	4
.Loop_v8:
	vext.8		$t2,$Xl,$Xl,#8
	veor		$IN,$IN,$Xl		@ inp^=Xi
	veor		$t1,$t1,$t2		@ $t1 is rotated inp^Xi

.Lgmult_v8:
	vpmull.p64	$Xl,$H,$IN		@ H.lo·Xi.lo
	veor		$t1,$t1,$IN		@ Karatsuba pre-processing
	vpmull2.p64	$Xh,$H,$IN		@ H.hi·Xi.hi
	subs		$len,$len,#16
	vpmull.p64	$Xm,$Hhl,$t1		@ (H.lo+H.hi)·(Xi.lo+Xi.hi)
	cclr		$inc,eq

	vext.8		$t1,$Xl,$Xh,#8		@ Karatsuba post-processing
	veor		$t2,$Xl,$Xh
	veor		$Xm,$Xm,$t1
	 vld1.64	{$t1},[$inp],$inc	@ load [rotated] inp
	veor		$Xm,$Xm,$t2
	vpmull.p64	$t2,$Xl,$t3		@ 1st phase

	vmov		$Xh#lo,$Xm#hi		@ Xh|Xm - 256-bit result
	vmov		$Xm#hi,$Xl#lo		@ Xm is rotated Xl
#ifndef __ARMEB__
	 vrev64.8	$t1,$t1
#endif
	veor		$Xl,$Xm,$t2
	 vext.8		$IN,$t1,$t1,#8

	vext.8		$t2,$Xl,$Xl,#8		@ 2nd phase
	vpmull.p64	$Xl,$Xl,$t3
	veor		$t2,$t2,$Xh
	veor		$Xl,$Xl,$t2
	b.hs		.Loop_v8

#ifndef __ARMEB__
	vrev64.8	$Xl,$Xl
#endif
	vext.8		$Xl,$Xl,$Xl,#8
	vst1.64		{$Xl},[$Xi]		@ write out Xi

	ret
.size	gcm_ghash_v8,.-gcm_ghash_v8
___
}
$code.=<<___;
.asciz  "GHASH for ARMv8, CRYPTOGAMS by <appro\@openssl.org>"
.align  2
___

if ($flavour =~ /64/) {			######## 64-bit code
    sub unvmov {
	my $arg=shift;

	$arg =~ m/q([0-9]+)#(lo|hi),\s*q([0-9]+)#(lo|hi)/o &&
	sprintf	"ins	v%d.d[%d],v%d.d[%d]",$1,($2 eq "lo")?0:1,$3,($4 eq "lo")?0:1;
    }
    foreach(split("\n",$code)) {
	s/cclr\s+([wx])([^,]+),\s*([a-z]+)/csel	$1$2,$1zr,$1$2,$3/o	or
	s/vmov\.i8/movi/o		or	# fix up legacy mnemonics
	s/vmov\s+(.*)/unvmov($1)/geo	or
	s/vext\.8/ext/o			or
	s/vshr\.s/sshr\.s/o		or
	s/vshr/ushr/o			or
	s/^(\s+)v/$1/o			or	# strip off v prefix
	s/\bbx\s+lr\b/ret/o;

	s/\bq([0-9]+)\b/"v".($1<8?$1:$1+8).".16b"/geo;	# old->new registers
	s/@\s/\/\//o;				# old->new style commentary

	# fix up remainig legacy suffixes
	s/\.[ui]?8(\s)/$1/o;
	s/\.[uis]?32//o and s/\.16b/\.4s/go;
	m/\.p64/o and s/\.16b/\.1q/o;		# 1st pmull argument
	m/l\.p64/o and s/\.16b/\.1d/go;		# 2nd and 3rd pmull arguments
	s/\.[uisp]?64//o and s/\.16b/\.2d/go;
	s/\.[42]([sd])\[([0-3])\]/\.$1\[$2\]/o;

	print $_,"\n";
    }
} else {				######## 32-bit code
    sub unvdup32 {
	my $arg=shift;

	$arg =~ m/q([0-9]+),\s*q([0-9]+)\[([0-3])\]/o &&
	sprintf	"vdup.32	q%d,d%d[%d]",$1,2*$2+($3>>1),$3&1;
    }
    sub unvpmullp64 {
	my ($mnemonic,$arg)=@_;

	if ($arg =~ m/q([0-9]+),\s*q([0-9]+),\s*q([0-9]+)/o) {
	    my $word = 0xf2a00e00|(($1&7)<<13)|(($1&8)<<19)
				 |(($2&7)<<17)|(($2&8)<<4)
				 |(($3&7)<<1) |(($3&8)<<2);
	    $word |= 0x00010001	 if ($mnemonic =~ "2");
	    # since ARMv7 instructions are always encoded little-endian.
	    # correct solution is to use .inst directive, but older
	    # assemblers don't implement it:-(
	    sprintf ".byte\t0x%02x,0x%02x,0x%02x,0x%02x\t@ %s %s",
			$word&0xff,($word>>8)&0xff,
			($word>>16)&0xff,($word>>24)&0xff,
			$mnemonic,$arg;
	}
    }

    foreach(split("\n",$code)) {
	s/\b[wx]([0-9]+)\b/r$1/go;		# new->old registers
	s/\bv([0-9])\.[12468]+[bsd]\b/q$1/go;	# new->old registers
        s/\/\/\s?/@ /o;				# new->old style commentary

	# fix up remainig new-style suffixes
	s/\],#[0-9]+/]!/o;

	s/cclr\s+([^,]+),\s*([a-z]+)/mov$2	$1,#0/o			or
	s/vdup\.32\s+(.*)/unvdup32($1)/geo				or
	s/v?(pmull2?)\.p64\s+(.*)/unvpmullp64($1,$2)/geo		or
	s/\bq([0-9]+)#(lo|hi)/sprintf "d%d",2*$1+($2 eq "hi")/geo	or
	s/^(\s+)b\./$1b/o						or
	s/^(\s+)ret/$1bx\tlr/o;

        print $_,"\n";
    }
}

close STDOUT; # enforce flush