aboutsummaryrefslogtreecommitdiff
path: root/openssl/crypto/sha/asm/sha1-586.pl
blob: a1f876281a03a1e8aa00c2549c5cd24252bd6b8b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
#!/usr/bin/env perl

# ====================================================================
# [Re]written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
# ====================================================================

# "[Re]written" was achieved in two major overhauls. In 2004 BODY_*
# functions were re-implemented to address P4 performance issue [see
# commentary below], and in 2006 the rest was rewritten in order to
# gain freedom to liberate licensing terms.

# It was noted that Intel IA-32 C compiler generates code which
# performs ~30% *faster* on P4 CPU than original *hand-coded*
# SHA1 assembler implementation. To address this problem (and
# prove that humans are still better than machines:-), the
# original code was overhauled, which resulted in following
# performance changes:
#
#		compared with original	compared with Intel cc
#		assembler impl.		generated code
# Pentium	-16%			+48%
# PIII/AMD	+8%			+16%
# P4		+85%(!)			+45%
#
# As you can see Pentium came out as looser:-( Yet I reckoned that
# improvement on P4 outweights the loss and incorporate this
# re-tuned code to 0.9.7 and later.
# ----------------------------------------------------------------
#					<appro@fy.chalmers.se>

$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
push(@INC,"${dir}","${dir}../../perlasm");
require "x86asm.pl";

&asm_init($ARGV[0],"sha1-586.pl",$ARGV[$#ARGV] eq "386");

$A="eax";
$B="ebx";
$C="ecx";
$D="edx";
$E="edi";
$T="esi";
$tmp1="ebp";

@V=($A,$B,$C,$D,$E,$T);

sub BODY_00_15
	{
	local($n,$a,$b,$c,$d,$e,$f)=@_;

	&comment("00_15 $n");

	&mov($f,$c);			# f to hold F_00_19(b,c,d)
	 if ($n==0)  { &mov($tmp1,$a); }
	 else        { &mov($a,$tmp1); }
	&rotl($tmp1,5);			# tmp1=ROTATE(a,5)
	 &xor($f,$d);
	&add($tmp1,$e);			# tmp1+=e;
	 &and($f,$b);
	&mov($e,&swtmp($n%16));		# e becomes volatile and is loaded
	 				# with xi, also note that e becomes
					# f in next round...
	 &xor($f,$d);			# f holds F_00_19(b,c,d)
	&rotr($b,2);			# b=ROTATE(b,30)
	 &lea($tmp1,&DWP(0x5a827999,$tmp1,$e));	# tmp1+=K_00_19+xi

	if ($n==15) { &add($f,$tmp1); }	# f+=tmp1
	else        { &add($tmp1,$f); }	# f becomes a in next round
	}

sub BODY_16_19
	{
	local($n,$a,$b,$c,$d,$e,$f)=@_;

	&comment("16_19 $n");

	&mov($f,&swtmp($n%16));		# f to hold Xupdate(xi,xa,xb,xc,xd)
	 &mov($tmp1,$c);		# tmp1 to hold F_00_19(b,c,d)
	&xor($f,&swtmp(($n+2)%16));
	 &xor($tmp1,$d);
	&xor($f,&swtmp(($n+8)%16));
	 &and($tmp1,$b);		# tmp1 holds F_00_19(b,c,d)
	&rotr($b,2);			# b=ROTATE(b,30)
	 &xor($f,&swtmp(($n+13)%16));	# f holds xa^xb^xc^xd
	&rotl($f,1);			# f=ROTATE(f,1)
	 &xor($tmp1,$d);		# tmp1=F_00_19(b,c,d)
	&mov(&swtmp($n%16),$f);		# xi=f
	&lea($f,&DWP(0x5a827999,$f,$e));# f+=K_00_19+e
	 &mov($e,$a);			# e becomes volatile
	&rotl($e,5);			# e=ROTATE(a,5)
	 &add($f,$tmp1);		# f+=F_00_19(b,c,d)
	&add($f,$e);			# f+=ROTATE(a,5)
	}

sub BODY_20_39
	{
	local($n,$a,$b,$c,$d,$e,$f)=@_;
	local $K=($n<40)?0x6ed9eba1:0xca62c1d6;

	&comment("20_39 $n");

	&mov($tmp1,$b);			# tmp1 to hold F_20_39(b,c,d)
	 &mov($f,&swtmp($n%16));	# f to hold Xupdate(xi,xa,xb,xc,xd)
	&rotr($b,2);			# b=ROTATE(b,30)
	 &xor($f,&swtmp(($n+2)%16));
	&xor($tmp1,$c);
	 &xor($f,&swtmp(($n+8)%16));
	&xor($tmp1,$d);			# tmp1 holds F_20_39(b,c,d)
	 &xor($f,&swtmp(($n+13)%16));	# f holds xa^xb^xc^xd
	&rotl($f,1);			# f=ROTATE(f,1)
	 &add($tmp1,$e);
	&mov(&swtmp($n%16),$f);		# xi=f
	 &mov($e,$a);			# e becomes volatile
	&rotl($e,5);			# e=ROTATE(a,5)
	 &lea($f,&DWP($K,$f,$tmp1));	# f+=K_20_39+e
	&add($f,$e);			# f+=ROTATE(a,5)
	}

sub BODY_40_59
	{
	local($n,$a,$b,$c,$d,$e,$f)=@_;

	&comment("40_59 $n");

	&mov($f,&swtmp($n%16));		# f to hold Xupdate(xi,xa,xb,xc,xd)
	 &mov($tmp1,&swtmp(($n+2)%16));
	&xor($f,$tmp1);
	 &mov($tmp1,&swtmp(($n+8)%16));
	&xor($f,$tmp1);
	 &mov($tmp1,&swtmp(($n+13)%16));
	&xor($f,$tmp1);			# f holds xa^xb^xc^xd
	 &mov($tmp1,$b);		# tmp1 to hold F_40_59(b,c,d)
	&rotl($f,1);			# f=ROTATE(f,1)
	 &or($tmp1,$c);
	&mov(&swtmp($n%16),$f);		# xi=f
	 &and($tmp1,$d);
	&lea($f,&DWP(0x8f1bbcdc,$f,$e));# f+=K_40_59+e
	 &mov($e,$b);			# e becomes volatile and is used
					# to calculate F_40_59(b,c,d)
	&rotr($b,2);			# b=ROTATE(b,30)
	 &and($e,$c);
	&or($tmp1,$e);			# tmp1 holds F_40_59(b,c,d)		
	 &mov($e,$a);
	&rotl($e,5);			# e=ROTATE(a,5)
	 &add($f,$tmp1);		# f+=tmp1;
	&add($f,$e);			# f+=ROTATE(a,5)
	}

&function_begin("sha1_block_data_order");
	&mov($tmp1,&wparam(0));	# SHA_CTX *c
	&mov($T,&wparam(1));	# const void *input
	&mov($A,&wparam(2));	# size_t num
	&stack_push(16);	# allocate X[16]
	&shl($A,6);
	&add($A,$T);
	&mov(&wparam(2),$A);	# pointer beyond the end of input
	&mov($E,&DWP(16,$tmp1));# pre-load E

	&set_label("loop",16);

	# copy input chunk to X, but reversing byte order!
	for ($i=0; $i<16; $i+=4)
		{
		&mov($A,&DWP(4*($i+0),$T));
		&mov($B,&DWP(4*($i+1),$T));
		&mov($C,&DWP(4*($i+2),$T));
		&mov($D,&DWP(4*($i+3),$T));
		&bswap($A);
		&bswap($B);
		&bswap($C);
		&bswap($D);
		&mov(&swtmp($i+0),$A);
		&mov(&swtmp($i+1),$B);
		&mov(&swtmp($i+2),$C);
		&mov(&swtmp($i+3),$D);
		}
	&mov(&wparam(1),$T);	# redundant in 1st spin

	&mov($A,&DWP(0,$tmp1));	# load SHA_CTX
	&mov($B,&DWP(4,$tmp1));
	&mov($C,&DWP(8,$tmp1));
	&mov($D,&DWP(12,$tmp1));
	# E is pre-loaded

	for($i=0;$i<16;$i++)	{ &BODY_00_15($i,@V); unshift(@V,pop(@V)); }
	for(;$i<20;$i++)	{ &BODY_16_19($i,@V); unshift(@V,pop(@V)); }
	for(;$i<40;$i++)	{ &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
	for(;$i<60;$i++)	{ &BODY_40_59($i,@V); unshift(@V,pop(@V)); }
	for(;$i<80;$i++)	{ &BODY_20_39($i,@V); unshift(@V,pop(@V)); }

	(($V[5] eq $D) and ($V[0] eq $E)) or die;	# double-check

	&mov($tmp1,&wparam(0));	# re-load SHA_CTX*
	&mov($D,&wparam(1));	# D is last "T" and is discarded

	&add($E,&DWP(0,$tmp1));	# E is last "A"...
	&add($T,&DWP(4,$tmp1));
	&add($A,&DWP(8,$tmp1));
	&add($B,&DWP(12,$tmp1));
	&add($C,&DWP(16,$tmp1));

	&mov(&DWP(0,$tmp1),$E);	# update SHA_CTX
	 &add($D,64);		# advance input pointer
	&mov(&DWP(4,$tmp1),$T);
	 &cmp($D,&wparam(2));	# have we reached the end yet?
	&mov(&DWP(8,$tmp1),$A);
	 &mov($E,$C);		# C is last "E" which needs to be "pre-loaded"
	&mov(&DWP(12,$tmp1),$B);
	 &mov($T,$D);		# input pointer
	&mov(&DWP(16,$tmp1),$C);
	&jb(&label("loop"));

	&stack_pop(16);
&function_end("sha1_block_data_order");
&asciz("SHA1 block transform for x86, CRYPTOGAMS by <appro\@openssl.org>");

&asm_finish();