1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
|
/**
* The Whirlpool hashing function.
*
* <P>
* <b>References</b>
*
* <P>
* The Whirlpool algorithm was developed by
* <a href="mailto:pbarreto@scopus.com.br">Paulo S. L. M. Barreto</a> and
* <a href="mailto:vincent.rijmen@cryptomathic.com">Vincent Rijmen</a>.
*
* See
* P.S.L.M. Barreto, V. Rijmen,
* ``The Whirlpool hashing function,''
* NESSIE submission, 2000 (tweaked version, 2001),
* <https://www.cosic.esat.kuleuven.ac.be/nessie/workshop/submissions/whirlpool.zip>
*
* Based on "@version 3.0 (2003.03.12)" by Paulo S.L.M. Barreto and
* Vincent Rijmen. Lookup "reference implementations" on
* <http://planeta.terra.com.br/informatica/paulobarreto/>
*
* =============================================================================
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
/*
* OpenSSL-specific implementation notes.
*
* WHIRLPOOL_Update as well as one-stroke WHIRLPOOL both expect
* number of *bytes* as input length argument. Bit-oriented routine
* as specified by authors is called WHIRLPOOL_BitUpdate[!] and
* does not have one-stroke counterpart.
*
* WHIRLPOOL_BitUpdate implements byte-oriented loop, essentially
* to serve WHIRLPOOL_Update. This is done for performance.
*
* Unlike authors' reference implementation, block processing
* routine whirlpool_block is designed to operate on multi-block
* input. This is done for perfomance.
*/
#include "wp_locl.h"
#include <openssl/crypto.h>
#include <string.h>
fips_md_init(WHIRLPOOL)
{
memset(c, 0, sizeof(*c));
return (1);
}
int WHIRLPOOL_Update(WHIRLPOOL_CTX *c, const void *_inp, size_t bytes)
{
/*
* Well, largest suitable chunk size actually is
* (1<<(sizeof(size_t)*8-3))-64, but below number is large enough for not
* to care about excessive calls to WHIRLPOOL_BitUpdate...
*/
size_t chunk = ((size_t)1) << (sizeof(size_t) * 8 - 4);
const unsigned char *inp = _inp;
while (bytes >= chunk) {
WHIRLPOOL_BitUpdate(c, inp, chunk * 8);
bytes -= chunk;
inp += chunk;
}
if (bytes)
WHIRLPOOL_BitUpdate(c, inp, bytes * 8);
return (1);
}
void WHIRLPOOL_BitUpdate(WHIRLPOOL_CTX *c, const void *_inp, size_t bits)
{
size_t n;
unsigned int bitoff = c->bitoff,
bitrem = bitoff % 8, inpgap = (8 - (unsigned int)bits % 8) & 7;
const unsigned char *inp = _inp;
/*
* This 256-bit increment procedure relies on the size_t being natural
* size of CPU register, so that we don't have to mask the value in order
* to detect overflows.
*/
c->bitlen[0] += bits;
if (c->bitlen[0] < bits) { /* overflow */
n = 1;
do {
c->bitlen[n]++;
} while (c->bitlen[n] == 0
&& ++n < (WHIRLPOOL_COUNTER / sizeof(size_t)));
}
#ifndef OPENSSL_SMALL_FOOTPRINT
reconsider:
if (inpgap == 0 && bitrem == 0) { /* byte-oriented loop */
while (bits) {
if (bitoff == 0 && (n = bits / WHIRLPOOL_BBLOCK)) {
whirlpool_block(c, inp, n);
inp += n * WHIRLPOOL_BBLOCK / 8;
bits %= WHIRLPOOL_BBLOCK;
} else {
unsigned int byteoff = bitoff / 8;
bitrem = WHIRLPOOL_BBLOCK - bitoff; /* re-use bitrem */
if (bits >= bitrem) {
bits -= bitrem;
bitrem /= 8;
memcpy(c->data + byteoff, inp, bitrem);
inp += bitrem;
whirlpool_block(c, c->data, 1);
bitoff = 0;
} else {
memcpy(c->data + byteoff, inp, bits / 8);
bitoff += (unsigned int)bits;
bits = 0;
}
c->bitoff = bitoff;
}
}
} else /* bit-oriented loop */
#endif
{
/*-
inp
|
+-------+-------+-------
|||||||||||||||||||||
+-------+-------+-------
+-------+-------+-------+-------+-------
|||||||||||||| c->data
+-------+-------+-------+-------+-------
|
c->bitoff/8
*/
while (bits) {
unsigned int byteoff = bitoff / 8;
unsigned char b;
#ifndef OPENSSL_SMALL_FOOTPRINT
if (bitrem == inpgap) {
c->data[byteoff++] |= inp[0] & (0xff >> inpgap);
inpgap = 8 - inpgap;
bitoff += inpgap;
bitrem = 0; /* bitoff%8 */
bits -= inpgap;
inpgap = 0; /* bits%8 */
inp++;
if (bitoff == WHIRLPOOL_BBLOCK) {
whirlpool_block(c, c->data, 1);
bitoff = 0;
}
c->bitoff = bitoff;
goto reconsider;
} else
#endif
if (bits >= 8) {
b = ((inp[0] << inpgap) | (inp[1] >> (8 - inpgap)));
b &= 0xff;
if (bitrem)
c->data[byteoff++] |= b >> bitrem;
else
c->data[byteoff++] = b;
bitoff += 8;
bits -= 8;
inp++;
if (bitoff >= WHIRLPOOL_BBLOCK) {
whirlpool_block(c, c->data, 1);
byteoff = 0;
bitoff %= WHIRLPOOL_BBLOCK;
}
if (bitrem)
c->data[byteoff] = b << (8 - bitrem);
} else { /* remaining less than 8 bits */
b = (inp[0] << inpgap) & 0xff;
if (bitrem)
c->data[byteoff++] |= b >> bitrem;
else
c->data[byteoff++] = b;
bitoff += (unsigned int)bits;
if (bitoff == WHIRLPOOL_BBLOCK) {
whirlpool_block(c, c->data, 1);
byteoff = 0;
bitoff %= WHIRLPOOL_BBLOCK;
}
if (bitrem)
c->data[byteoff] = b << (8 - bitrem);
bits = 0;
}
c->bitoff = bitoff;
}
}
}
int WHIRLPOOL_Final(unsigned char *md, WHIRLPOOL_CTX *c)
{
unsigned int bitoff = c->bitoff, byteoff = bitoff / 8;
size_t i, j, v;
unsigned char *p;
bitoff %= 8;
if (bitoff)
c->data[byteoff] |= 0x80 >> bitoff;
else
c->data[byteoff] = 0x80;
byteoff++;
/* pad with zeros */
if (byteoff > (WHIRLPOOL_BBLOCK / 8 - WHIRLPOOL_COUNTER)) {
if (byteoff < WHIRLPOOL_BBLOCK / 8)
memset(&c->data[byteoff], 0, WHIRLPOOL_BBLOCK / 8 - byteoff);
whirlpool_block(c, c->data, 1);
byteoff = 0;
}
if (byteoff < (WHIRLPOOL_BBLOCK / 8 - WHIRLPOOL_COUNTER))
memset(&c->data[byteoff], 0,
(WHIRLPOOL_BBLOCK / 8 - WHIRLPOOL_COUNTER) - byteoff);
/* smash 256-bit c->bitlen in big-endian order */
p = &c->data[WHIRLPOOL_BBLOCK / 8 - 1]; /* last byte in c->data */
for (i = 0; i < WHIRLPOOL_COUNTER / sizeof(size_t); i++)
for (v = c->bitlen[i], j = 0; j < sizeof(size_t); j++, v >>= 8)
*p-- = (unsigned char)(v & 0xff);
whirlpool_block(c, c->data, 1);
if (md) {
memcpy(md, c->H.c, WHIRLPOOL_DIGEST_LENGTH);
memset(c, 0, sizeof(*c));
return (1);
}
return (0);
}
unsigned char *WHIRLPOOL(const void *inp, size_t bytes, unsigned char *md)
{
WHIRLPOOL_CTX ctx;
static unsigned char m[WHIRLPOOL_DIGEST_LENGTH];
if (md == NULL)
md = m;
WHIRLPOOL_Init(&ctx);
WHIRLPOOL_Update(&ctx, inp, bytes);
WHIRLPOOL_Final(md, &ctx);
return (md);
}
|