aboutsummaryrefslogtreecommitdiff
path: root/openssl/demos/jpake/jpakedemo.c
blob: 338a8810d999c82b1cfffd541054773f9e9cd275 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
#include "openssl/bn.h"
#include "openssl/sha.h"
#include <assert.h>
#include <string.h>
#include <stdlib.h>

/* Copyright (C) 2008 Ben Laurie (ben@links.org) */

/*
 * Implement J-PAKE, as described in
 * http://grouper.ieee.org/groups/1363/Research/contributions/hao-ryan-2008.pdf
 * 
 * With hints from http://www.cl.cam.ac.uk/~fh240/software/JPAKE2.java.
 */

static void showbn(const char *name, const BIGNUM *bn)
    {
    fputs(name, stdout);
    fputs(" = ", stdout);
    BN_print_fp(stdout, bn);
    putc('\n', stdout);
    }

typedef struct
    {
    BN_CTX *ctx;  // Perhaps not the best place for this?
    BIGNUM *p;
    BIGNUM *q;
    BIGNUM *g;
    } JPakeParameters;

static void JPakeParametersInit(JPakeParameters *params)
    {
    params->ctx = BN_CTX_new();

    // For now use p, q, g from Java sample code. Later, generate them.
    params->p = NULL;
    BN_hex2bn(&params->p, "fd7f53811d75122952df4a9c2eece4e7f611b7523cef4400c31e3f80b6512669455d402251fb593d8d58fabfc5f5ba30f6cb9b556cd7813b801d346ff26660b76b9950a5a49f9fe8047b1022c24fbba9d7feb7c61bf83b57e7c6a8a6150f04fb83f6d3c51ec3023554135a169132f675f3ae2b61d72aeff22203199dd14801c7");
    params->q = NULL;
    BN_hex2bn(&params->q, "9760508f15230bccb292b982a2eb840bf0581cf5");
    params->g = NULL;
    BN_hex2bn(&params->g, "f7e1a085d69b3ddecbbcab5c36b857b97994afbbfa3aea82f9574c0b3d0782675159578ebad4594fe67107108180b449167123e84c281613b7cf09328cc8a6e13c167a8b547c8d28e0a3ae1e2bb3a675916ea37f0bfa213562f1fb627a01243bcca4f1bea8519089a883dfe15ae59f06928b665e807b552564014c3bfecf492a");

    showbn("p", params->p);
    showbn("q", params->q);
    showbn("g", params->g);
    }

typedef struct
    {
    BIGNUM *gr;  // g^r (r random)
    BIGNUM *b;   // b = r - x*h, h=hash(g, g^r, g^x, name)
    } JPakeZKP;

typedef struct
    {
    BIGNUM *gx;       // g^x
    JPakeZKP zkpx;    // ZKP(x)
    } JPakeStep1;

typedef struct
    {
    BIGNUM *X;        // g^(xa + xc + xd) * xb * s
    JPakeZKP zkpxbs;  // ZKP(xb * s)
    } JPakeStep2;

typedef struct
    {
    const char *name;  // Must be unique
    int base;          // 1 for Alice, 3 for Bob. Only used for printing stuff.
    JPakeStep1 s1c;    // Alice's g^x3, ZKP(x3) or Bob's g^x1, ZKP(x1)
    JPakeStep1 s1d;    // Alice's g^x4, ZKP(x4) or Bob's g^x2, ZKP(x2)
    JPakeStep2 s2;     // Alice's A, ZKP(x2 * s) or Bob's B, ZKP(x4 * s)
    } JPakeUserPublic;

/*
 * The user structure. In the definition, (xa, xb, xc, xd) are Alice's
 * (x1, x2, x3, x4) or Bob's (x3, x4, x1, x2). If you see what I mean.
 */
typedef struct
    {
    JPakeUserPublic p;
    BIGNUM *secret;    // The shared secret
    BIGNUM *key;       // The calculated (shared) key
    BIGNUM *xa;        // Alice's x1 or Bob's x3
    BIGNUM *xb;        // Alice's x2 or Bob's x4
    } JPakeUser;

// Generate each party's random numbers. xa is in [0, q), xb is in [1, q).
static void genrand(JPakeUser *user, const JPakeParameters *params)
    {
    BIGNUM *qm1;

    // xa in [0, q)
    user->xa = BN_new();
    BN_rand_range(user->xa, params->q);

    // q-1
    qm1 = BN_new();
    BN_copy(qm1, params->q);
    BN_sub_word(qm1, 1);

    // ... and xb in [0, q-1)
    user->xb = BN_new();
    BN_rand_range(user->xb, qm1);
    // [1, q)
    BN_add_word(user->xb, 1);

    // cleanup
    BN_free(qm1);

    // Show
    printf("x%d", user->p.base);
    showbn("", user->xa);
    printf("x%d", user->p.base+1);
    showbn("", user->xb);
    }

static void hashlength(SHA_CTX *sha, size_t l)
    {
    unsigned char b[2];

    assert(l <= 0xffff);
    b[0] = l >> 8;
    b[1] = l&0xff;
    SHA1_Update(sha, b, 2);
    }

static void hashstring(SHA_CTX *sha, const char *string)
    {
    size_t l = strlen(string);

    hashlength(sha, l);
    SHA1_Update(sha, string, l);
    }

static void hashbn(SHA_CTX *sha, const BIGNUM *bn)
    {
    size_t l = BN_num_bytes(bn);
    unsigned char *bin = alloca(l);

    hashlength(sha, l);
    BN_bn2bin(bn, bin);
    SHA1_Update(sha, bin, l);
    }

// h=hash(g, g^r, g^x, name)
static void zkpHash(BIGNUM *h, const JPakeZKP *zkp, const BIGNUM *gx,
		    const JPakeUserPublic *from, const JPakeParameters *params)
    {
    unsigned char md[SHA_DIGEST_LENGTH];
    SHA_CTX sha;

    // XXX: hash should not allow moving of the boundaries - Java code
    // is flawed in this respect. Length encoding seems simplest.
    SHA1_Init(&sha);
    hashbn(&sha, params->g);
    hashbn(&sha, zkp->gr);
    hashbn(&sha, gx);
    hashstring(&sha, from->name);
    SHA1_Final(md, &sha);
    BN_bin2bn(md, SHA_DIGEST_LENGTH, h);
    }

// Prove knowledge of x
// Note that we don't send g^x because, as it happens, we've always
// sent it elsewhere. Also note that because of that, we could avoid
// calculating it here, but we don't, for clarity...
static void CreateZKP(JPakeZKP *zkp, const BIGNUM *x, const JPakeUser *us,
		      const BIGNUM *zkpg, const JPakeParameters *params,
		      int n, const char *suffix)
    {
    BIGNUM *r = BN_new();
    BIGNUM *gx = BN_new();
    BIGNUM *h = BN_new();
    BIGNUM *t = BN_new();

    // r in [0,q)
    // XXX: Java chooses r in [0, 2^160) - i.e. distribution not uniform
    BN_rand_range(r, params->q);
    // g^r
    zkp->gr = BN_new();
    BN_mod_exp(zkp->gr, zkpg, r, params->p, params->ctx);
    // g^x
    BN_mod_exp(gx, zkpg, x, params->p, params->ctx);

    // h=hash...
    zkpHash(h, zkp, gx, &us->p, params);
    
    // b = r - x*h
    BN_mod_mul(t, x, h, params->q, params->ctx);
    zkp->b = BN_new();
    BN_mod_sub(zkp->b, r, t, params->q, params->ctx);

    // show
    printf("  ZKP(x%d%s)\n", n, suffix);
    showbn("   zkpg", zkpg);
    showbn("    g^x", gx);
    showbn("    g^r", zkp->gr);
    showbn("      b", zkp->b);

    // cleanup
    BN_free(t);
    BN_free(h);
    BN_free(gx);
    BN_free(r);
    }

static int VerifyZKP(const JPakeZKP *zkp, BIGNUM *gx,
		     const JPakeUserPublic *them, const BIGNUM *zkpg,
		     const JPakeParameters *params, int n, const char *suffix)
    {
    BIGNUM *h = BN_new();
    BIGNUM *t1 = BN_new();
    BIGNUM *t2 = BN_new();
    BIGNUM *t3 = BN_new();
    int ret = 0;

    zkpHash(h, zkp, gx, them, params);

    // t1 = g^b
    BN_mod_exp(t1, zkpg, zkp->b, params->p, params->ctx);
    // t2 = (g^x)^h = g^{hx}
    BN_mod_exp(t2, gx, h, params->p, params->ctx);
    // t3 = t1 * t2 = g^{hx} * g^b = g^{hx+b} = g^r (allegedly)
    BN_mod_mul(t3, t1, t2, params->p, params->ctx);

    printf("  ZKP(x%d%s)\n", n, suffix);
    showbn("    zkpg", zkpg);
    showbn("    g^r'", t3);

    // verify t3 == g^r
    if(BN_cmp(t3, zkp->gr) == 0)
	ret = 1;

    // cleanup
    BN_free(t3);
    BN_free(t2);
    BN_free(t1);
    BN_free(h);

    if(ret)
	puts("    OK");
    else
	puts("    FAIL");

    return ret;
    }    

static void sendstep1_substep(JPakeStep1 *s1, const BIGNUM *x,
			      const JPakeUser *us,
			      const JPakeParameters *params, int n)
    {
    s1->gx = BN_new();
    BN_mod_exp(s1->gx, params->g, x, params->p, params->ctx);
    printf("  g^{x%d}", n);
    showbn("", s1->gx);

    CreateZKP(&s1->zkpx, x, us, params->g, params, n, "");
    }

static void sendstep1(const JPakeUser *us, JPakeUserPublic *them,
		      const JPakeParameters *params)
    {
    printf("\n%s sends %s:\n\n", us->p.name, them->name);

    // from's g^xa (which becomes to's g^xc) and ZKP(xa)
    sendstep1_substep(&them->s1c, us->xa, us, params, us->p.base);
    // from's g^xb (which becomes to's g^xd) and ZKP(xb)
    sendstep1_substep(&them->s1d, us->xb, us, params, us->p.base+1);
    }

static int verifystep1(const JPakeUser *us, const JPakeUserPublic *them,
		       const JPakeParameters *params)
    {
    printf("\n%s verifies %s:\n\n", us->p.name, them->name);

    // verify their ZKP(xc)
    if(!VerifyZKP(&us->p.s1c.zkpx, us->p.s1c.gx, them, params->g, params,
		  them->base, ""))
	return 0;

    // verify their ZKP(xd)
    if(!VerifyZKP(&us->p.s1d.zkpx, us->p.s1d.gx, them, params->g, params,
		  them->base+1, ""))
	return 0;

    // g^xd != 1
    printf("  g^{x%d} != 1: ", them->base+1);
    if(BN_is_one(us->p.s1d.gx))
	{
	puts("FAIL");
	return 0;
	}
    puts("OK");

    return 1;
    }

static void sendstep2(const JPakeUser *us, JPakeUserPublic *them,
		      const JPakeParameters *params)
    {
    BIGNUM *t1 = BN_new();
    BIGNUM *t2 = BN_new();

    printf("\n%s sends %s:\n\n", us->p.name, them->name);

    // X = g^{(xa + xc + xd) * xb * s}
    // t1 = g^xa
    BN_mod_exp(t1, params->g, us->xa, params->p, params->ctx);
    // t2 = t1 * g^{xc} = g^{xa} * g^{xc} = g^{xa + xc}
    BN_mod_mul(t2, t1, us->p.s1c.gx, params->p, params->ctx);
    // t1 = t2 * g^{xd} = g^{xa + xc + xd}
    BN_mod_mul(t1, t2, us->p.s1d.gx, params->p, params->ctx);
    // t2 = xb * s
    BN_mod_mul(t2, us->xb, us->secret, params->q, params->ctx);
    // X = t1^{t2} = t1^{xb * s} = g^{(xa + xc + xd) * xb * s}
    them->s2.X = BN_new();
    BN_mod_exp(them->s2.X, t1, t2, params->p, params->ctx);

    // Show
    printf("  g^{(x%d + x%d + x%d) * x%d * s)", us->p.base, them->base,
	   them->base+1, us->p.base+1);
    showbn("", them->s2.X);

    // ZKP(xb * s)
    // XXX: this is kinda funky, because we're using
    //
    // g' = g^{xa + xc + xd}
    //
    // as the generator, which means X is g'^{xb * s}
    CreateZKP(&them->s2.zkpxbs, t2, us, t1, params, us->p.base+1, " * s");

    // cleanup
    BN_free(t1);
    BN_free(t2);
    }

static int verifystep2(const JPakeUser *us, const JPakeUserPublic *them,
		       const JPakeParameters *params)
    {
    BIGNUM *t1 = BN_new();
    BIGNUM *t2 = BN_new();
    int ret = 0;

    printf("\n%s verifies %s:\n\n", us->p.name, them->name);

    // g' = g^{xc + xa + xb} [from our POV]
    // t1 = xa + xb
    BN_mod_add(t1, us->xa, us->xb, params->q, params->ctx);
    // t2 = g^{t1} = g^{xa+xb}
    BN_mod_exp(t2, params->g, t1, params->p, params->ctx);
    // t1 = g^{xc} * t2 = g^{xc + xa + xb}
    BN_mod_mul(t1, us->p.s1c.gx, t2, params->p, params->ctx);

    if(VerifyZKP(&us->p.s2.zkpxbs, us->p.s2.X, them, t1, params, them->base+1,
		  " * s"))
	ret = 1;

    // cleanup
    BN_free(t2);
    BN_free(t1);

    return ret;
    }

static void computekey(JPakeUser *us, const JPakeParameters *params)
    {
    BIGNUM *t1 = BN_new();
    BIGNUM *t2 = BN_new();
    BIGNUM *t3 = BN_new();

    printf("\n%s calculates the shared key:\n\n", us->p.name);

    // K = (X/g^{xb * xd * s})^{xb}
    //   = (g^{(xc + xa + xb) * xd * s - xb * xd *s})^{xb}
    //   = (g^{(xa + xc) * xd * s})^{xb}
    //   = g^{(xa + xc) * xb * xd * s}
    // [which is the same regardless of who calculates it]

    // t1 = (g^{xd})^{xb} = g^{xb * xd}
    BN_mod_exp(t1, us->p.s1d.gx, us->xb, params->p, params->ctx);
    // t2 = -s = q-s
    BN_sub(t2, params->q, us->secret);
    // t3 = t1^t2 = g^{-xb * xd * s}
    BN_mod_exp(t3, t1, t2, params->p, params->ctx);
    // t1 = X * t3 = X/g^{xb * xd * s}
    BN_mod_mul(t1, us->p.s2.X, t3, params->p, params->ctx);
    // K = t1^{xb}
    us->key = BN_new();
    BN_mod_exp(us->key, t1, us->xb, params->p, params->ctx);

    // show
    showbn("  K", us->key);

    // cleanup
    BN_free(t3);
    BN_free(t2);
    BN_free(t1);
    }

int main(int argc, char **argv)
    {
    JPakeParameters params;
    JPakeUser alice, bob;

    alice.p.name = "Alice";
    alice.p.base = 1;
    bob.p.name = "Bob";
    bob.p.base = 3;

    JPakeParametersInit(&params);

    // Shared secret
    alice.secret = BN_new();
    BN_rand(alice.secret, 32, -1, 0);
    bob.secret = alice.secret;
    showbn("secret", alice.secret);

    assert(BN_cmp(alice.secret, params.q) < 0);

    // Alice's x1, x2
    genrand(&alice, &params);

    // Bob's x3, x4
    genrand(&bob, &params);

    // Now send stuff to each other...
    sendstep1(&alice, &bob.p, &params);
    sendstep1(&bob, &alice.p, &params);

    // And verify what each other sent
    if(!verifystep1(&alice, &bob.p, &params))
	return 1;
    if(!verifystep1(&bob, &alice.p, &params))
	return 2;

    // Second send
    sendstep2(&alice, &bob.p, &params);
    sendstep2(&bob, &alice.p, &params);

    // And second verify
    if(!verifystep2(&alice, &bob.p, &params))
	return 3;
    if(!verifystep2(&bob, &alice.p, &params))
	return 4;

    // Compute common key
    computekey(&alice, &params);
    computekey(&bob, &params);

    // Confirm the common key is identical
    // XXX: if the two secrets are not the same, everything works up
    // to this point, so the only way to detect a failure is by the
    // difference in the calculated keys.
    // Since we're all the same code, just compare them directly. In a
    // real system, Alice sends Bob H(H(K)), Bob checks it, then sends
    // back H(K), which Alice checks, or something equivalent.
    puts("\nAlice and Bob check keys are the same:");
    if(BN_cmp(alice.key, bob.key) == 0)
	puts("  OK");
    else
	{
	puts("  FAIL");
	return 5;
	}

    return 0;
    }