1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
|
=pod
=head1 NAME
bn_mul_words, bn_mul_add_words, bn_sqr_words, bn_div_words,
bn_add_words, bn_sub_words, bn_mul_comba4, bn_mul_comba8,
bn_sqr_comba4, bn_sqr_comba8, bn_cmp_words, bn_mul_normal,
bn_mul_low_normal, bn_mul_recursive, bn_mul_part_recursive,
bn_mul_low_recursive, bn_mul_high, bn_sqr_normal, bn_sqr_recursive,
bn_expand, bn_wexpand, bn_expand2, bn_fix_top, bn_check_top,
bn_print, bn_dump, bn_set_max, bn_set_high, bn_set_low - BIGNUM
library internal functions
=head1 SYNOPSIS
BN_ULONG bn_mul_words(BN_ULONG *rp, BN_ULONG *ap, int num, BN_ULONG w);
BN_ULONG bn_mul_add_words(BN_ULONG *rp, BN_ULONG *ap, int num,
BN_ULONG w);
void bn_sqr_words(BN_ULONG *rp, BN_ULONG *ap, int num);
BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d);
BN_ULONG bn_add_words(BN_ULONG *rp, BN_ULONG *ap, BN_ULONG *bp,
int num);
BN_ULONG bn_sub_words(BN_ULONG *rp, BN_ULONG *ap, BN_ULONG *bp,
int num);
void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b);
void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b);
void bn_sqr_comba4(BN_ULONG *r, BN_ULONG *a);
void bn_sqr_comba8(BN_ULONG *r, BN_ULONG *a);
int bn_cmp_words(BN_ULONG *a, BN_ULONG *b, int n);
void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b,
int nb);
void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n);
void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
int dna,int dnb,BN_ULONG *tmp);
void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b,
int n, int tna,int tnb, BN_ULONG *tmp);
void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b,
int n2, BN_ULONG *tmp);
void bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *l,
int n2, BN_ULONG *tmp);
void bn_sqr_normal(BN_ULONG *r, BN_ULONG *a, int n, BN_ULONG *tmp);
void bn_sqr_recursive(BN_ULONG *r, BN_ULONG *a, int n2, BN_ULONG *tmp);
void mul(BN_ULONG r, BN_ULONG a, BN_ULONG w, BN_ULONG c);
void mul_add(BN_ULONG r, BN_ULONG a, BN_ULONG w, BN_ULONG c);
void sqr(BN_ULONG r0, BN_ULONG r1, BN_ULONG a);
BIGNUM *bn_expand(BIGNUM *a, int bits);
BIGNUM *bn_wexpand(BIGNUM *a, int n);
BIGNUM *bn_expand2(BIGNUM *a, int n);
void bn_fix_top(BIGNUM *a);
void bn_check_top(BIGNUM *a);
void bn_print(BIGNUM *a);
void bn_dump(BN_ULONG *d, int n);
void bn_set_max(BIGNUM *a);
void bn_set_high(BIGNUM *r, BIGNUM *a, int n);
void bn_set_low(BIGNUM *r, BIGNUM *a, int n);
=head1 DESCRIPTION
This page documents the internal functions used by the OpenSSL
B<BIGNUM> implementation. They are described here to facilitate
debugging and extending the library. They are I<not> to be used by
applications.
=head2 The BIGNUM structure
typedef struct bignum_st
{
int top; /* number of words used in d */
BN_ULONG *d; /* pointer to an array containing the integer value */
int max; /* size of the d array */
int neg; /* sign */
} BIGNUM;
The integer value is stored in B<d>, a malloc()ed array of words (B<BN_ULONG>),
least significant word first. A B<BN_ULONG> can be either 16, 32 or 64 bits
in size, depending on the 'number of bits' (B<BITS2>) specified in
C<openssl/bn.h>.
B<max> is the size of the B<d> array that has been allocated. B<top>
is the number of words being used, so for a value of 4, bn.d[0]=4 and
bn.top=1. B<neg> is 1 if the number is negative. When a B<BIGNUM> is
B<0>, the B<d> field can be B<NULL> and B<top> == B<0>.
Various routines in this library require the use of temporary
B<BIGNUM> variables during their execution. Since dynamic memory
allocation to create B<BIGNUM>s is rather expensive when used in
conjunction with repeated subroutine calls, the B<BN_CTX> structure is
used. This structure contains B<BN_CTX_NUM> B<BIGNUM>s, see
L<BN_CTX_start(3)|BN_CTX_start(3)>.
=head2 Low-level arithmetic operations
These functions are implemented in C and for several platforms in
assembly language:
bn_mul_words(B<rp>, B<ap>, B<num>, B<w>) operates on the B<num> word
arrays B<rp> and B<ap>. It computes B<ap> * B<w>, places the result
in B<rp>, and returns the high word (carry).
bn_mul_add_words(B<rp>, B<ap>, B<num>, B<w>) operates on the B<num>
word arrays B<rp> and B<ap>. It computes B<ap> * B<w> + B<rp>, places
the result in B<rp>, and returns the high word (carry).
bn_sqr_words(B<rp>, B<ap>, B<n>) operates on the B<num> word array
B<ap> and the 2*B<num> word array B<ap>. It computes B<ap> * B<ap>
word-wise, and places the low and high bytes of the result in B<rp>.
bn_div_words(B<h>, B<l>, B<d>) divides the two word number (B<h>,B<l>)
by B<d> and returns the result.
bn_add_words(B<rp>, B<ap>, B<bp>, B<num>) operates on the B<num> word
arrays B<ap>, B<bp> and B<rp>. It computes B<ap> + B<bp>, places the
result in B<rp>, and returns the high word (carry).
bn_sub_words(B<rp>, B<ap>, B<bp>, B<num>) operates on the B<num> word
arrays B<ap>, B<bp> and B<rp>. It computes B<ap> - B<bp>, places the
result in B<rp>, and returns the carry (1 if B<bp> E<gt> B<ap>, 0
otherwise).
bn_mul_comba4(B<r>, B<a>, B<b>) operates on the 4 word arrays B<a> and
B<b> and the 8 word array B<r>. It computes B<a>*B<b> and places the
result in B<r>.
bn_mul_comba8(B<r>, B<a>, B<b>) operates on the 8 word arrays B<a> and
B<b> and the 16 word array B<r>. It computes B<a>*B<b> and places the
result in B<r>.
bn_sqr_comba4(B<r>, B<a>, B<b>) operates on the 4 word arrays B<a> and
B<b> and the 8 word array B<r>.
bn_sqr_comba8(B<r>, B<a>, B<b>) operates on the 8 word arrays B<a> and
B<b> and the 16 word array B<r>.
The following functions are implemented in C:
bn_cmp_words(B<a>, B<b>, B<n>) operates on the B<n> word arrays B<a>
and B<b>. It returns 1, 0 and -1 if B<a> is greater than, equal and
less than B<b>.
bn_mul_normal(B<r>, B<a>, B<na>, B<b>, B<nb>) operates on the B<na>
word array B<a>, the B<nb> word array B<b> and the B<na>+B<nb> word
array B<r>. It computes B<a>*B<b> and places the result in B<r>.
bn_mul_low_normal(B<r>, B<a>, B<b>, B<n>) operates on the B<n> word
arrays B<r>, B<a> and B<b>. It computes the B<n> low words of
B<a>*B<b> and places the result in B<r>.
bn_mul_recursive(B<r>, B<a>, B<b>, B<n2>, B<dna>, B<dnb>, B<t>) operates
on the word arrays B<a> and B<b> of length B<n2>+B<dna> and B<n2>+B<dnb>
(B<dna> and B<dnb> are currently allowed to be 0 or negative) and the 2*B<n2>
word arrays B<r> and B<t>. B<n2> must be a power of 2. It computes
B<a>*B<b> and places the result in B<r>.
bn_mul_part_recursive(B<r>, B<a>, B<b>, B<n>, B<tna>, B<tnb>, B<tmp>)
operates on the word arrays B<a> and B<b> of length B<n>+B<tna> and
B<n>+B<tnb> and the 4*B<n> word arrays B<r> and B<tmp>.
bn_mul_low_recursive(B<r>, B<a>, B<b>, B<n2>, B<tmp>) operates on the
B<n2> word arrays B<r> and B<tmp> and the B<n2>/2 word arrays B<a>
and B<b>.
bn_mul_high(B<r>, B<a>, B<b>, B<l>, B<n2>, B<tmp>) operates on the
B<n2> word arrays B<r>, B<a>, B<b> and B<l> (?) and the 3*B<n2> word
array B<tmp>.
BN_mul() calls bn_mul_normal(), or an optimized implementation if the
factors have the same size: bn_mul_comba8() is used if they are 8
words long, bn_mul_recursive() if they are larger than
B<BN_MULL_SIZE_NORMAL> and the size is an exact multiple of the word
size, and bn_mul_part_recursive() for others that are larger than
B<BN_MULL_SIZE_NORMAL>.
bn_sqr_normal(B<r>, B<a>, B<n>, B<tmp>) operates on the B<n> word array
B<a> and the 2*B<n> word arrays B<tmp> and B<r>.
The implementations use the following macros which, depending on the
architecture, may use "long long" C operations or inline assembler.
They are defined in C<bn_lcl.h>.
mul(B<r>, B<a>, B<w>, B<c>) computes B<w>*B<a>+B<c> and places the
low word of the result in B<r> and the high word in B<c>.
mul_add(B<r>, B<a>, B<w>, B<c>) computes B<w>*B<a>+B<r>+B<c> and
places the low word of the result in B<r> and the high word in B<c>.
sqr(B<r0>, B<r1>, B<a>) computes B<a>*B<a> and places the low word
of the result in B<r0> and the high word in B<r1>.
=head2 Size changes
bn_expand() ensures that B<b> has enough space for a B<bits> bit
number. bn_wexpand() ensures that B<b> has enough space for an
B<n> word number. If the number has to be expanded, both macros
call bn_expand2(), which allocates a new B<d> array and copies the
data. They return B<NULL> on error, B<b> otherwise.
The bn_fix_top() macro reduces B<a-E<gt>top> to point to the most
significant non-zero word plus one when B<a> has shrunk.
=head2 Debugging
bn_check_top() verifies that C<((a)-E<gt>top E<gt>= 0 && (a)-E<gt>top
E<lt>= (a)-E<gt>max)>. A violation will cause the program to abort.
bn_print() prints B<a> to stderr. bn_dump() prints B<n> words at B<d>
(in reverse order, i.e. most significant word first) to stderr.
bn_set_max() makes B<a> a static number with a B<max> of its current size.
This is used by bn_set_low() and bn_set_high() to make B<r> a read-only
B<BIGNUM> that contains the B<n> low or high words of B<a>.
If B<BN_DEBUG> is not defined, bn_check_top(), bn_print(), bn_dump()
and bn_set_max() are defined as empty macros.
=head1 SEE ALSO
L<bn(3)|bn(3)>
=cut
|