aboutsummaryrefslogtreecommitdiff
path: root/pixman/test/utils.c
blob: c922ae5d5253e8bd1280651fe853a27ef4209cee (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
#define _GNU_SOURCE

#include "utils.h"
#include <math.h>
#include <signal.h>
#include <stdlib.h>

#ifdef HAVE_GETTIMEOFDAY
#include <sys/time.h>
#else
#include <time.h>
#endif

#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif

#ifdef HAVE_SYS_MMAN_H
#include <sys/mman.h>
#endif

#ifdef HAVE_FENV_H
#include <fenv.h>
#endif

#ifdef HAVE_LIBPNG
#include <png.h>
#endif

/* Random number seed
 */

uint32_t lcg_seed;

/*----------------------------------------------------------------------------*\
 *  CRC-32 version 2.0.0 by Craig Bruce, 2006-04-29.
 *
 *  This program generates the CRC-32 values for the files named in the
 *  command-line arguments.  These are the same CRC-32 values used by GZIP,
 *  PKZIP, and ZMODEM.  The Crc32_ComputeBuf () can also be detached and
 *  used independently.
 *
 *  THIS PROGRAM IS PUBLIC-DOMAIN SOFTWARE.
 *
 *  Based on the byte-oriented implementation "File Verification Using CRC"
 *  by Mark R. Nelson in Dr. Dobb's Journal, May 1992, pp. 64-67.
 *
 *  v1.0.0: original release.
 *  v1.0.1: fixed printf formats.
 *  v1.0.2: fixed something else.
 *  v1.0.3: replaced CRC constant table by generator function.
 *  v1.0.4: reformatted code, made ANSI C.  1994-12-05.
 *  v2.0.0: rewrote to use memory buffer & static table, 2006-04-29.
\*----------------------------------------------------------------------------*/

/*----------------------------------------------------------------------------*\
 *  NAME:
 *     Crc32_ComputeBuf () - computes the CRC-32 value of a memory buffer
 *  DESCRIPTION:
 *     Computes or accumulates the CRC-32 value for a memory buffer.
 *     The 'inCrc32' gives a previously accumulated CRC-32 value to allow
 *     a CRC to be generated for multiple sequential buffer-fuls of data.
 *     The 'inCrc32' for the first buffer must be zero.
 *  ARGUMENTS:
 *     inCrc32 - accumulated CRC-32 value, must be 0 on first call
 *     buf     - buffer to compute CRC-32 value for
 *     bufLen  - number of bytes in buffer
 *  RETURNS:
 *     crc32 - computed CRC-32 value
 *  ERRORS:
 *     (no errors are possible)
\*----------------------------------------------------------------------------*/

uint32_t
compute_crc32 (uint32_t    in_crc32,
	       const void *buf,
	       size_t      buf_len)
{
    static const uint32_t crc_table[256] = {
	0x00000000, 0x77073096, 0xEE0E612C, 0x990951BA, 0x076DC419, 0x706AF48F,
	0xE963A535, 0x9E6495A3, 0x0EDB8832, 0x79DCB8A4, 0xE0D5E91E, 0x97D2D988,
	0x09B64C2B, 0x7EB17CBD,	0xE7B82D07, 0x90BF1D91, 0x1DB71064, 0x6AB020F2,
	0xF3B97148, 0x84BE41DE, 0x1ADAD47D, 0x6DDDE4EB, 0xF4D4B551, 0x83D385C7,
	0x136C9856, 0x646BA8C0, 0xFD62F97A, 0x8A65C9EC,	0x14015C4F, 0x63066CD9,
	0xFA0F3D63, 0x8D080DF5, 0x3B6E20C8, 0x4C69105E, 0xD56041E4, 0xA2677172,
	0x3C03E4D1, 0x4B04D447, 0xD20D85FD, 0xA50AB56B, 0x35B5A8FA, 0x42B2986C,
	0xDBBBC9D6, 0xACBCF940, 0x32D86CE3, 0x45DF5C75, 0xDCD60DCF, 0xABD13D59,
	0x26D930AC, 0x51DE003A, 0xC8D75180, 0xBFD06116, 0x21B4F4B5, 0x56B3C423,
	0xCFBA9599, 0xB8BDA50F, 0x2802B89E, 0x5F058808, 0xC60CD9B2, 0xB10BE924,
	0x2F6F7C87, 0x58684C11, 0xC1611DAB, 0xB6662D3D, 0x76DC4190, 0x01DB7106,
	0x98D220BC, 0xEFD5102A, 0x71B18589, 0x06B6B51F, 0x9FBFE4A5, 0xE8B8D433,
	0x7807C9A2, 0x0F00F934, 0x9609A88E, 0xE10E9818, 0x7F6A0DBB, 0x086D3D2D,
	0x91646C97, 0xE6635C01, 0x6B6B51F4, 0x1C6C6162, 0x856530D8, 0xF262004E,
	0x6C0695ED, 0x1B01A57B, 0x8208F4C1, 0xF50FC457, 0x65B0D9C6, 0x12B7E950,
	0x8BBEB8EA, 0xFCB9887C, 0x62DD1DDF, 0x15DA2D49, 0x8CD37CF3, 0xFBD44C65,
	0x4DB26158, 0x3AB551CE, 0xA3BC0074, 0xD4BB30E2, 0x4ADFA541, 0x3DD895D7,
	0xA4D1C46D, 0xD3D6F4FB, 0x4369E96A, 0x346ED9FC, 0xAD678846, 0xDA60B8D0,
	0x44042D73, 0x33031DE5, 0xAA0A4C5F, 0xDD0D7CC9, 0x5005713C, 0x270241AA,
	0xBE0B1010, 0xC90C2086, 0x5768B525, 0x206F85B3, 0xB966D409, 0xCE61E49F,
	0x5EDEF90E, 0x29D9C998, 0xB0D09822, 0xC7D7A8B4, 0x59B33D17, 0x2EB40D81,
	0xB7BD5C3B, 0xC0BA6CAD, 0xEDB88320, 0x9ABFB3B6, 0x03B6E20C, 0x74B1D29A,
	0xEAD54739, 0x9DD277AF, 0x04DB2615, 0x73DC1683, 0xE3630B12, 0x94643B84,
	0x0D6D6A3E, 0x7A6A5AA8, 0xE40ECF0B, 0x9309FF9D, 0x0A00AE27, 0x7D079EB1,
	0xF00F9344, 0x8708A3D2, 0x1E01F268, 0x6906C2FE, 0xF762575D, 0x806567CB,
	0x196C3671, 0x6E6B06E7, 0xFED41B76, 0x89D32BE0, 0x10DA7A5A, 0x67DD4ACC,
	0xF9B9DF6F, 0x8EBEEFF9, 0x17B7BE43, 0x60B08ED5, 0xD6D6A3E8, 0xA1D1937E,
	0x38D8C2C4, 0x4FDFF252, 0xD1BB67F1, 0xA6BC5767, 0x3FB506DD, 0x48B2364B,
	0xD80D2BDA, 0xAF0A1B4C, 0x36034AF6, 0x41047A60, 0xDF60EFC3, 0xA867DF55,
	0x316E8EEF, 0x4669BE79, 0xCB61B38C, 0xBC66831A, 0x256FD2A0, 0x5268E236,
	0xCC0C7795, 0xBB0B4703, 0x220216B9, 0x5505262F, 0xC5BA3BBE, 0xB2BD0B28,
	0x2BB45A92, 0x5CB36A04, 0xC2D7FFA7, 0xB5D0CF31, 0x2CD99E8B, 0x5BDEAE1D,
	0x9B64C2B0, 0xEC63F226, 0x756AA39C, 0x026D930A, 0x9C0906A9, 0xEB0E363F,
	0x72076785, 0x05005713, 0x95BF4A82, 0xE2B87A14, 0x7BB12BAE, 0x0CB61B38,
	0x92D28E9B, 0xE5D5BE0D, 0x7CDCEFB7, 0x0BDBDF21, 0x86D3D2D4, 0xF1D4E242,
	0x68DDB3F8, 0x1FDA836E, 0x81BE16CD, 0xF6B9265B, 0x6FB077E1, 0x18B74777,
	0x88085AE6, 0xFF0F6A70, 0x66063BCA, 0x11010B5C, 0x8F659EFF, 0xF862AE69,
	0x616BFFD3, 0x166CCF45, 0xA00AE278, 0xD70DD2EE, 0x4E048354, 0x3903B3C2,
	0xA7672661, 0xD06016F7, 0x4969474D, 0x3E6E77DB, 0xAED16A4A, 0xD9D65ADC,
	0x40DF0B66, 0x37D83BF0, 0xA9BCAE53, 0xDEBB9EC5, 0x47B2CF7F, 0x30B5FFE9,
	0xBDBDF21C, 0xCABAC28A, 0x53B39330, 0x24B4A3A6, 0xBAD03605, 0xCDD70693,
	0x54DE5729, 0x23D967BF, 0xB3667A2E, 0xC4614AB8, 0x5D681B02, 0x2A6F2B94,
	0xB40BBE37, 0xC30C8EA1, 0x5A05DF1B, 0x2D02EF8D
    };

    uint32_t              crc32;
    unsigned char *       byte_buf;
    size_t                i;

    /* accumulate crc32 for buffer */
    crc32 = in_crc32 ^ 0xFFFFFFFF;
    byte_buf = (unsigned char*) buf;

    for (i = 0; i < buf_len; i++)
	crc32 = (crc32 >> 8) ^ crc_table[(crc32 ^ byte_buf[i]) & 0xFF];

    return (crc32 ^ 0xFFFFFFFF);
}

static uint32_t
compute_crc32_for_image_internal (uint32_t        crc32,
				  pixman_image_t *img,
				  pixman_bool_t	  remove_alpha,
				  pixman_bool_t	  remove_rgb)
{
    pixman_format_code_t fmt = pixman_image_get_format (img);
    uint32_t *data = pixman_image_get_data (img);
    int stride = pixman_image_get_stride (img);
    int height = pixman_image_get_height (img);
    uint32_t mask = 0xffffffff;
    int i;

    /* mask unused 'x' part */
    if (PIXMAN_FORMAT_BPP (fmt) - PIXMAN_FORMAT_DEPTH (fmt) &&
	PIXMAN_FORMAT_DEPTH (fmt) != 0)
    {
	uint32_t m = (1 << PIXMAN_FORMAT_DEPTH (fmt)) - 1;

	if (PIXMAN_FORMAT_TYPE (fmt) == PIXMAN_TYPE_BGRA ||
	    PIXMAN_FORMAT_TYPE (fmt) == PIXMAN_TYPE_RGBA)
	{
	    m <<= (PIXMAN_FORMAT_BPP (fmt) - PIXMAN_FORMAT_DEPTH (fmt));
	}

	mask &= m;
    }

    /* mask alpha channel */
    if (remove_alpha && PIXMAN_FORMAT_A (fmt))
    {
	uint32_t m;

	if (PIXMAN_FORMAT_BPP (fmt) == 32)
	    m = 0xffffffff;
	else
	    m = (1 << PIXMAN_FORMAT_BPP (fmt)) - 1;

	m >>= PIXMAN_FORMAT_A (fmt);

	if (PIXMAN_FORMAT_TYPE (fmt) == PIXMAN_TYPE_BGRA ||
	    PIXMAN_FORMAT_TYPE (fmt) == PIXMAN_TYPE_RGBA ||
	    PIXMAN_FORMAT_TYPE (fmt) == PIXMAN_TYPE_A)
	{
	    /* Alpha is at the bottom of the pixel */
	    m <<= PIXMAN_FORMAT_A (fmt);
	}

	mask &= m;
    }

    /* mask rgb channels */
    if (remove_rgb && PIXMAN_FORMAT_RGB (fmt))
    {
	uint32_t m = ((uint32_t)~0) >> (32 - PIXMAN_FORMAT_BPP (fmt));
	uint32_t size = PIXMAN_FORMAT_R (fmt) + PIXMAN_FORMAT_G (fmt) + PIXMAN_FORMAT_B (fmt);

	m &= ~((1 << size) - 1);

	if (PIXMAN_FORMAT_TYPE (fmt) == PIXMAN_TYPE_BGRA ||
	    PIXMAN_FORMAT_TYPE (fmt) == PIXMAN_TYPE_RGBA)
	{
	    /* RGB channels are at the top of the pixel */
	    m >>= size;
	}

	mask &= m;
    }

    for (i = 0; i * PIXMAN_FORMAT_BPP (fmt) < 32; i++)
	mask |= mask << (i * PIXMAN_FORMAT_BPP (fmt));

    for (i = 0; i < stride * height / 4; i++)
	data[i] &= mask;

    /* swap endiannes in order to provide identical results on both big
     * and litte endian systems
     */
    image_endian_swap (img);

    return compute_crc32 (crc32, data, stride * height);
}

uint32_t
compute_crc32_for_image (uint32_t        crc32,
			 pixman_image_t *img)
{
    if (img->common.alpha_map)
    {
	crc32 = compute_crc32_for_image_internal (crc32, img, TRUE, FALSE);
	crc32 = compute_crc32_for_image_internal (
	    crc32, (pixman_image_t *)img->common.alpha_map, FALSE, TRUE);
    }
    else
    {
	crc32 = compute_crc32_for_image_internal (crc32, img, FALSE, FALSE);
    }

    return crc32;
}

pixman_bool_t
is_little_endian (void)
{
    volatile uint16_t endian_check_var = 0x1234;

    return (*(volatile uint8_t *)&endian_check_var == 0x34);
}

/* perform endian conversion of pixel data
 */
void
image_endian_swap (pixman_image_t *img)
{
    int stride = pixman_image_get_stride (img);
    uint32_t *data = pixman_image_get_data (img);
    int height = pixman_image_get_height (img);
    int bpp = PIXMAN_FORMAT_BPP (pixman_image_get_format (img));
    int i, j;

    /* swap bytes only on big endian systems */
    if (is_little_endian())
	return;

    if (bpp == 8)
	return;

    for (i = 0; i < height; i++)
    {
	uint8_t *line_data = (uint8_t *)data + stride * i;
	
	switch (bpp)
	{
	case 1:
	    for (j = 0; j < stride; j++)
	    {
		line_data[j] =
		    ((line_data[j] & 0x80) >> 7) |
		    ((line_data[j] & 0x40) >> 5) |
		    ((line_data[j] & 0x20) >> 3) |
		    ((line_data[j] & 0x10) >> 1) |
		    ((line_data[j] & 0x08) << 1) |
		    ((line_data[j] & 0x04) << 3) |
		    ((line_data[j] & 0x02) << 5) |
		    ((line_data[j] & 0x01) << 7);
	    }
	    break;
	case 4:
	    for (j = 0; j < stride; j++)
	    {
		line_data[j] = (line_data[j] >> 4) | (line_data[j] << 4);
	    }
	    break;
	case 16:
	    for (j = 0; j + 2 <= stride; j += 2)
	    {
		char t1 = line_data[j + 0];
		char t2 = line_data[j + 1];

		line_data[j + 1] = t1;
		line_data[j + 0] = t2;
	    }
	    break;
	case 24:
	    for (j = 0; j + 3 <= stride; j += 3)
	    {
		char t1 = line_data[j + 0];
		char t2 = line_data[j + 1];
		char t3 = line_data[j + 2];

		line_data[j + 2] = t1;
		line_data[j + 1] = t2;
		line_data[j + 0] = t3;
	    }
	    break;
	case 32:
	    for (j = 0; j + 4 <= stride; j += 4)
	    {
		char t1 = line_data[j + 0];
		char t2 = line_data[j + 1];
		char t3 = line_data[j + 2];
		char t4 = line_data[j + 3];

		line_data[j + 3] = t1;
		line_data[j + 2] = t2;
		line_data[j + 1] = t3;
		line_data[j + 0] = t4;
	    }
	    break;
	default:
	    assert (FALSE);
	    break;
	}
    }
}

#define N_LEADING_PROTECTED	10
#define N_TRAILING_PROTECTED	10

typedef struct
{
    void *addr;
    uint32_t len;
    uint8_t *trailing;
    int n_bytes;
} info_t;

#if defined(HAVE_MPROTECT) && defined(HAVE_GETPAGESIZE) && defined(HAVE_SYS_MMAN_H) && defined(HAVE_MMAP)

/* This is apparently necessary on at least OS X */
#ifndef MAP_ANONYMOUS
#define MAP_ANONYMOUS MAP_ANON
#endif

void *
fence_malloc (int64_t len)
{
    unsigned long page_size = getpagesize();
    unsigned long page_mask = page_size - 1;
    uint32_t n_payload_bytes = (len + page_mask) & ~page_mask;
    uint32_t n_bytes =
	(page_size * (N_LEADING_PROTECTED + N_TRAILING_PROTECTED + 2) +
	 n_payload_bytes) & ~page_mask;
    uint8_t *initial_page;
    uint8_t *leading_protected;
    uint8_t *trailing_protected;
    uint8_t *payload;
    uint8_t *addr;

    if (len < 0)
	abort();
    
    addr = mmap (NULL, n_bytes, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS,
		 -1, 0);

    if (addr == MAP_FAILED)
    {
	printf ("mmap failed on %lld %u\n", (long long int)len, n_bytes);
	return NULL;
    }

    initial_page = (uint8_t *)(((unsigned long)addr + page_mask) & ~page_mask);
    leading_protected = initial_page + page_size;
    payload = leading_protected + N_LEADING_PROTECTED * page_size;
    trailing_protected = payload + n_payload_bytes;

    ((info_t *)initial_page)->addr = addr;
    ((info_t *)initial_page)->len = len;
    ((info_t *)initial_page)->trailing = trailing_protected;
    ((info_t *)initial_page)->n_bytes = n_bytes;

    if ((mprotect (leading_protected, N_LEADING_PROTECTED * page_size,
		  PROT_NONE) == -1) ||
	(mprotect (trailing_protected, N_TRAILING_PROTECTED * page_size,
		  PROT_NONE) == -1))
    {
	munmap (addr, n_bytes);
	return NULL;
    }

    return payload;
}

void
fence_free (void *data)
{
    uint32_t page_size = getpagesize();
    uint8_t *payload = data;
    uint8_t *leading_protected = payload - N_LEADING_PROTECTED * page_size;
    uint8_t *initial_page = leading_protected - page_size;
    info_t *info = (info_t *)initial_page;

    munmap (info->addr, info->n_bytes);
}

#else

void *
fence_malloc (int64_t len)
{
    return malloc (len);
}

void
fence_free (void *data)
{
    free (data);
}

#endif

uint8_t *
make_random_bytes (int n_bytes)
{
    uint8_t *bytes = fence_malloc (n_bytes);
    int i;

    if (!bytes)
	return NULL;

    for (i = 0; i < n_bytes; ++i)
	bytes[i] = lcg_rand () & 0xff;

    return bytes;
}

void
a8r8g8b8_to_rgba_np (uint32_t *dst, uint32_t *src, int n_pixels)
{
    uint8_t *dst8 = (uint8_t *)dst;
    int i;

    for (i = 0; i < n_pixels; ++i)
    {
	uint32_t p = src[i];
	uint8_t a, r, g, b;

	a = (p & 0xff000000) >> 24;
	r = (p & 0x00ff0000) >> 16;
	g = (p & 0x0000ff00) >> 8;
	b = (p & 0x000000ff) >> 0;

	if (a != 0)
	{
#define DIVIDE(c, a)							\
	    do								\
	    {								\
		int t = ((c) * 255) / a;				\
		(c) = t < 0? 0 : t > 255? 255 : t;			\
	    } while (0)

	    DIVIDE (r, a);
	    DIVIDE (g, a);
	    DIVIDE (b, a);
	}

	*dst8++ = r;
	*dst8++ = g;
	*dst8++ = b;
	*dst8++ = a;
    }
}

#ifdef HAVE_LIBPNG

pixman_bool_t
write_png (pixman_image_t *image, const char *filename)
{
    int width = pixman_image_get_width (image);
    int height = pixman_image_get_height (image);
    int stride = width * 4;
    uint32_t *data = malloc (height * stride);
    pixman_image_t *copy;
    png_struct *write_struct;
    png_info *info_struct;
    pixman_bool_t result = FALSE;
    FILE *f = fopen (filename, "wb");
    png_bytep *row_pointers;
    int i;

    if (!f)
	return FALSE;

    row_pointers = malloc (height * sizeof (png_bytep));

    copy = pixman_image_create_bits (
	PIXMAN_a8r8g8b8, width, height, data, stride);

    pixman_image_composite32 (
	PIXMAN_OP_SRC, image, NULL, copy, 0, 0, 0, 0, 0, 0, width, height);

    a8r8g8b8_to_rgba_np (data, data, height * width);

    for (i = 0; i < height; ++i)
	row_pointers[i] = (png_bytep)(data + i * width);

    if (!(write_struct = png_create_write_struct (
	      PNG_LIBPNG_VER_STRING, NULL, NULL, NULL)))
	goto out1;

    if (!(info_struct = png_create_info_struct (write_struct)))
	goto out2;

    png_init_io (write_struct, f);

    png_set_IHDR (write_struct, info_struct, width, height,
		  8, PNG_COLOR_TYPE_RGB_ALPHA,
		  PNG_INTERLACE_NONE, PNG_COMPRESSION_TYPE_BASE,
		  PNG_FILTER_TYPE_BASE);

    png_write_info (write_struct, info_struct);

    png_write_image (write_struct, row_pointers);

    png_write_end (write_struct, NULL);

    result = TRUE;

out2:
    png_destroy_write_struct (&write_struct, &info_struct);

out1:
    if (fclose (f) != 0)
	result = FALSE;

    pixman_image_unref (copy);
    free (row_pointers);
    free (data);
    return result;
}

#else /* no libpng */

pixman_bool_t
write_png (pixman_image_t *image, const char *filename)
{
    return FALSE;
}

#endif

/*
 * A function, which can be used as a core part of the test programs,
 * intended to detect various problems with the help of fuzzing input
 * to pixman API (according to some templates, aka "smart" fuzzing).
 * Some general information about such testing can be found here:
 * http://en.wikipedia.org/wiki/Fuzz_testing
 *
 * It may help detecting:
 *  - crashes on bad handling of valid or reasonably invalid input to
 *    pixman API.
 *  - deviations from the behavior of older pixman releases.
 *  - deviations from the behavior of the same pixman release, but
 *    configured in a different way (for example with SIMD optimizations
 *    disabled), or running on a different OS or hardware.
 *
 * The test is performed by calling a callback function a huge number
 * of times. The callback function is expected to run some snippet of
 * pixman code with pseudorandom variations to the data feeded to
 * pixman API. A result of running each callback function should be
 * some deterministic value which depends on test number (test number
 * can be used as a seed for PRNG). When 'verbose' argument is nonzero,
 * callback function is expected to print to stdout some information
 * about what it does.
 *
 * Return values from many small tests are accumulated together and
 * used as final checksum, which can be compared to some expected
 * value. Running the tests not individually, but in a batch helps
 * to reduce process start overhead and also allows to parallelize
 * testing and utilize multiple CPU cores.
 *
 * The resulting executable can be run without any arguments. In
 * this case it runs a batch of tests starting from 1 and up to
 * 'default_number_of_iterations'. The resulting checksum is
 * compared with 'expected_checksum' and FAIL or PASS verdict
 * depends on the result of this comparison.
 *
 * If the executable is run with 2 numbers provided as command line
 * arguments, they specify the starting and ending numbers for a test
 * batch.
 *
 * If the executable is run with only one number provided as a command
 * line argument, then this number is used to call the callback function
 * once, and also with verbose flag set.
 */
int
fuzzer_test_main (const char *test_name,
		  int         default_number_of_iterations,
		  uint32_t    expected_checksum,
		  uint32_t    (*test_function)(int testnum, int verbose),
		  int         argc,
		  const char *argv[])
{
    int i, n1 = 1, n2 = 0;
    uint32_t checksum = 0;
    int verbose = getenv ("VERBOSE") != NULL;

    if (argc >= 3)
    {
	n1 = atoi (argv[1]);
	n2 = atoi (argv[2]);
	if (n2 < n1)
	{
	    printf ("invalid test range\n");
	    return 1;
	}
    }
    else if (argc >= 2)
    {
	n2 = atoi (argv[1]);
	checksum = test_function (n2, 1);
	printf ("%d: checksum=%08X\n", n2, checksum);
	return 0;
    }
    else
    {
	n1 = 1;
	n2 = default_number_of_iterations;
    }

#ifdef USE_OPENMP
    #pragma omp parallel for reduction(+:checksum) default(none) \
					shared(n1, n2, test_function, verbose)
#endif
    for (i = n1; i <= n2; i++)
    {
	uint32_t crc = test_function (i, 0);
	if (verbose)
	    printf ("%d: %08X\n", i, crc);
	checksum += crc;
    }

    if (n1 == 1 && n2 == default_number_of_iterations)
    {
	if (checksum == expected_checksum)
	{
	    printf ("%s test passed (checksum=%08X)\n",
		    test_name, checksum);
	}
	else
	{
	    printf ("%s test failed! (checksum=%08X, expected %08X)\n",
		    test_name, checksum, expected_checksum);
	    return 1;
	}
    }
    else
    {
	printf ("%d-%d: checksum=%08X\n", n1, n2, checksum);
    }

    return 0;
}

/* Try to obtain current time in seconds */
double
gettime (void)
{
#ifdef HAVE_GETTIMEOFDAY
    struct timeval tv;

    gettimeofday (&tv, NULL);
    return (double)((int64_t)tv.tv_sec * 1000000 + tv.tv_usec) / 1000000.;
#else
    return (double)clock() / (double)CLOCKS_PER_SEC;
#endif
}

uint32_t
get_random_seed (void)
{
    union { double d; uint32_t u32; } t;
    t.d = gettime();
    lcg_srand (t.u32);

    return lcg_rand_u32 ();
}

static const char *global_msg;

static void
on_alarm (int signo)
{
    printf ("%s\n", global_msg);
    exit (1);
}

void
fail_after (int seconds, const char *msg)
{
#ifdef HAVE_SIGACTION
#ifdef HAVE_ALARM
    struct sigaction action;

    global_msg = msg;

    memset (&action, 0, sizeof (action));
    action.sa_handler = on_alarm;

    alarm (seconds);

    sigaction (SIGALRM, &action, NULL);
#endif
#endif
}

void
enable_fp_exceptions (void)
{
#ifdef HAVE_FENV_H
#ifdef HAVE_FEENABLEEXCEPT
    /* Note: we don't enable the FE_INEXACT trap because
     * that happens quite commonly. It is possible that
     * over- and underflow should similarly be considered
     * okay, but for now the test suite passes with them
     * enabled, and it's useful to know if they start
     * occuring.
     */
    feenableexcept (FE_DIVBYZERO	|
		    FE_INVALID		|
		    FE_OVERFLOW		|
		    FE_UNDERFLOW);
#endif
#endif
}

void *
aligned_malloc (size_t align, size_t size)
{
    void *result;

#ifdef HAVE_POSIX_MEMALIGN
    if (posix_memalign (&result, align, size) != 0)
      result = NULL;
#else
    result = malloc (size);
#endif

    return result;
}

#define CONVERT_15(c, is_rgb)						\
    (is_rgb?								\
     ((((c) >> 3) & 0x001f) |						\
      (((c) >> 6) & 0x03e0) |						\
      (((c) >> 9) & 0x7c00)) :						\
     (((((c) >> 16) & 0xff) * 153 +					\
       (((c) >>  8) & 0xff) * 301 +					\
       (((c)      ) & 0xff) * 58) >> 2))

double
convert_srgb_to_linear (double c)
{
    if (c <= 0.04045)
        return c / 12.92;
    else
        return pow ((c + 0.055) / 1.055, 2.4);
}

double
convert_linear_to_srgb (double c)
{
    if (c <= 0.0031308)
        return c * 12.92;
    else
        return 1.055 * pow (c, 1.0/2.4) - 0.055;
}

void
initialize_palette (pixman_indexed_t *palette, uint32_t depth, int is_rgb)
{
    int i;
    uint32_t mask = (1 << depth) - 1;

    for (i = 0; i < 32768; ++i)
	palette->ent[i] = lcg_rand() & mask;

    memset (palette->rgba, 0, sizeof (palette->rgba));

    for (i = 0; i < mask + 1; ++i)
    {
	uint32_t rgba24;
 	pixman_bool_t retry;
	uint32_t i15;

	/* We filled the rgb->index map with random numbers, but we
	 * do need the ability to round trip, that is if some indexed
	 * color expands to an argb24, then the 15 bit version of that
	 * color must map back to the index. Anything else, we don't
	 * care about too much.
	 */
	do
	{
	    uint32_t old_idx;

	    rgba24 = lcg_rand();
	    i15 = CONVERT_15 (rgba24, is_rgb);

	    old_idx = palette->ent[i15];
	    if (CONVERT_15 (palette->rgba[old_idx], is_rgb) == i15)
		retry = 1;
	    else
		retry = 0;
	} while (retry);

	palette->rgba[i] = rgba24;
	palette->ent[i15] = i;
    }

    for (i = 0; i < mask + 1; ++i)
    {
	assert (palette->ent[CONVERT_15 (palette->rgba[i], is_rgb)] == i);
    }
}

static double
round_channel (double p, int m)
{
    int t;
    double r;

    t = p * ((1 << m));
    t -= t >> m;

    r = t / (double)((1 << m) - 1);

    return r;
}

void
round_color (pixman_format_code_t format, color_t *color)
{
    if (PIXMAN_FORMAT_R (format) == 0)
    {
	color->r = 0.0;
	color->g = 0.0;
	color->b = 0.0;
    }
    else
    {
	color->r = round_channel (color->r, PIXMAN_FORMAT_R (format));
	color->g = round_channel (color->g, PIXMAN_FORMAT_G (format));
	color->b = round_channel (color->b, PIXMAN_FORMAT_B (format));
    }

    if (PIXMAN_FORMAT_A (format) == 0)
	color->a = 1;
    else
	color->a = round_channel (color->a, PIXMAN_FORMAT_A (format));
}

/* Check whether @pixel is a valid quantization of the a, r, g, b
 * parameters. Some slack is permitted.
 */
void
pixel_checker_init (pixel_checker_t *checker, pixman_format_code_t format)
{
    assert (PIXMAN_FORMAT_VIS (format));

    checker->format = format;

    switch (PIXMAN_FORMAT_TYPE (format))
    {
    case PIXMAN_TYPE_A:
	checker->bs = 0;
	checker->gs = 0;
	checker->rs = 0;
	checker->as = 0;
	break;

    case PIXMAN_TYPE_ARGB:
    case PIXMAN_TYPE_ARGB_SRGB:
	checker->bs = 0;
	checker->gs = checker->bs + PIXMAN_FORMAT_B (format);
	checker->rs = checker->gs + PIXMAN_FORMAT_G (format);
	checker->as = checker->rs + PIXMAN_FORMAT_R (format);
	break;

    case PIXMAN_TYPE_ABGR:
	checker->rs = 0;
	checker->gs = checker->rs + PIXMAN_FORMAT_R (format);
	checker->bs = checker->gs + PIXMAN_FORMAT_G (format);
	checker->as = checker->bs + PIXMAN_FORMAT_B (format);
	break;

    case PIXMAN_TYPE_BGRA:
	/* With BGRA formats we start counting at the high end of the pixel */
	checker->bs = PIXMAN_FORMAT_BPP (format) - PIXMAN_FORMAT_B (format);
	checker->gs = checker->bs - PIXMAN_FORMAT_B (format);
	checker->rs = checker->gs - PIXMAN_FORMAT_G (format);
	checker->as = checker->rs - PIXMAN_FORMAT_R (format);
	break;

    case PIXMAN_TYPE_RGBA:
	/* With BGRA formats we start counting at the high end of the pixel */
	checker->rs = PIXMAN_FORMAT_BPP (format) - PIXMAN_FORMAT_R (format);
	checker->gs = checker->rs - PIXMAN_FORMAT_R (format);
	checker->bs = checker->gs - PIXMAN_FORMAT_G (format);
	checker->as = checker->bs - PIXMAN_FORMAT_B (format);
	break;

    default:
	assert (0);
	break;
    }

    checker->am = ((1 << PIXMAN_FORMAT_A (format)) - 1) << checker->as;
    checker->rm = ((1 << PIXMAN_FORMAT_R (format)) - 1) << checker->rs;
    checker->gm = ((1 << PIXMAN_FORMAT_G (format)) - 1) << checker->gs;
    checker->bm = ((1 << PIXMAN_FORMAT_B (format)) - 1) << checker->bs;

    checker->aw = PIXMAN_FORMAT_A (format);
    checker->rw = PIXMAN_FORMAT_R (format);
    checker->gw = PIXMAN_FORMAT_G (format);
    checker->bw = PIXMAN_FORMAT_B (format);
}

void
pixel_checker_split_pixel (const pixel_checker_t *checker, uint32_t pixel,
			   int *a, int *r, int *g, int *b)
{
    *a = (pixel & checker->am) >> checker->as;
    *r = (pixel & checker->rm) >> checker->rs;
    *g = (pixel & checker->gm) >> checker->gs;
    *b = (pixel & checker->bm) >> checker->bs;
}

static int32_t
convert (double v, uint32_t width, uint32_t mask, uint32_t shift, double def)
{
    int32_t r;

    if (!mask)
	v = def;

    r = (v * ((mask >> shift) + 1));
    r -= r >> width;

    return r;
}

static void
get_limits (const pixel_checker_t *checker, double limit,
	    color_t *color,
	    int *ao, int *ro, int *go, int *bo)
{
    color_t tmp;

    if (PIXMAN_FORMAT_TYPE (checker->format) == PIXMAN_TYPE_ARGB_SRGB)
    {
	tmp.a = color->a;
	tmp.r = convert_linear_to_srgb (color->r);
	tmp.g = convert_linear_to_srgb (color->g);
	tmp.b = convert_linear_to_srgb (color->b);

	color = &tmp;
    }
    
    *ao = convert (color->a + limit, checker->aw, checker->am, checker->as, 1.0);
    *ro = convert (color->r + limit, checker->rw, checker->rm, checker->rs, 0.0);
    *go = convert (color->g + limit, checker->gw, checker->gm, checker->gs, 0.0);
    *bo = convert (color->b + limit, checker->bw, checker->bm, checker->bs, 0.0);
}

/* The acceptable deviation in units of [0.0, 1.0]
 */
#define DEVIATION (0.004)

void
pixel_checker_get_max (const pixel_checker_t *checker, color_t *color,
		       int *am, int *rm, int *gm, int *bm)
{
    get_limits (checker, DEVIATION, color, am, rm, gm, bm);
}

void
pixel_checker_get_min (const pixel_checker_t *checker, color_t *color,
		       int *am, int *rm, int *gm, int *bm)
{
    get_limits (checker, - DEVIATION, color, am, rm, gm, bm);
}

pixman_bool_t
pixel_checker_check (const pixel_checker_t *checker, uint32_t pixel,
		     color_t *color)
{
    int32_t a_lo, a_hi, r_lo, r_hi, g_lo, g_hi, b_lo, b_hi;
    int32_t ai, ri, gi, bi;
    pixman_bool_t result;

    pixel_checker_get_min (checker, color, &a_lo, &r_lo, &g_lo, &b_lo);
    pixel_checker_get_max (checker, color, &a_hi, &r_hi, &g_hi, &b_hi);
    pixel_checker_split_pixel (checker, pixel, &ai, &ri, &gi, &bi);

    result =
	a_lo <= ai && ai <= a_hi	&&
	r_lo <= ri && ri <= r_hi	&&
	g_lo <= gi && gi <= g_hi	&&
	b_lo <= bi && bi <= b_hi;

    return result;
}