aboutsummaryrefslogtreecommitdiff
path: root/tools/plink/sshrand.c
blob: 57ccc1393ab155a8303fa525684cbf25fe233a17 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
/*
 * cryptographic random number generator for PuTTY's ssh client
 */

#include "putty.h"
#include "ssh.h"

/* Collect environmental noise every 5 minutes */
#define NOISE_REGULAR_INTERVAL (5*60*TICKSPERSEC)

void noise_get_heavy(void (*func) (void *, int));
void noise_get_light(void (*func) (void *, int));

/*
 * `pool' itself is a pool of random data which we actually use: we
 * return bytes from `pool', at position `poolpos', until `poolpos'
 * reaches the end of the pool. At this point we generate more
 * random data, by adding noise, stirring well, and resetting
 * `poolpos' to point to just past the beginning of the pool (not
 * _the_ beginning, since otherwise we'd give away the whole
 * contents of our pool, and attackers would just have to guess the
 * next lot of noise).
 *
 * `incomingb' buffers acquired noise data, until it gets full, at
 * which point the acquired noise is SHA'ed into `incoming' and
 * `incomingb' is cleared. The noise in `incoming' is used as part
 * of the noise for each stirring of the pool, in addition to local
 * time, process listings, and other such stuff.
 */

#define HASHINPUT 64		       /* 64 bytes SHA input */
#define HASHSIZE 20		       /* 160 bits SHA output */
#define POOLSIZE 1200		       /* size of random pool */

struct RandPool {
    unsigned char pool[POOLSIZE];
    int poolpos;

    unsigned char incoming[HASHSIZE];

    unsigned char incomingb[HASHINPUT];
    int incomingpos;

    int stir_pending;
};

static struct RandPool pool;
int random_active = 0;
long next_noise_collection;

static void random_stir(void)
{
    word32 block[HASHINPUT / sizeof(word32)];
    word32 digest[HASHSIZE / sizeof(word32)];
    int i, j, k;

    /*
     * noise_get_light will call random_add_noise, which may call
     * back to here. Prevent recursive stirs.
     */
    if (pool.stir_pending)
	return;
    pool.stir_pending = TRUE;

    noise_get_light(random_add_noise);

    SHATransform((word32 *) pool.incoming, (word32 *) pool.incomingb);
    pool.incomingpos = 0;

    /*
     * Chunks of this code are blatantly endianness-dependent, but
     * as it's all random bits anyway, WHO CARES?
     */
    memcpy(digest, pool.incoming, sizeof(digest));

    /*
     * Make two passes over the pool.
     */
    for (i = 0; i < 2; i++) {

	/*
	 * We operate SHA in CFB mode, repeatedly adding the same
	 * block of data to the digest. But we're also fiddling
	 * with the digest-so-far, so this shouldn't be Bad or
	 * anything.
	 */
	memcpy(block, pool.pool, sizeof(block));

	/*
	 * Each pass processes the pool backwards in blocks of
	 * HASHSIZE, just so that in general we get the output of
	 * SHA before the corresponding input, in the hope that
	 * things will be that much less predictable that way
	 * round, when we subsequently return bytes ...
	 */
	for (j = POOLSIZE; (j -= HASHSIZE) >= 0;) {
	    /*
	     * XOR the bit of the pool we're processing into the
	     * digest.
	     */

	    for (k = 0; k < sizeof(digest) / sizeof(*digest); k++)
		digest[k] ^= ((word32 *) (pool.pool + j))[k];

	    /*
	     * Munge our unrevealed first block of the pool into
	     * it.
	     */
	    SHATransform(digest, block);

	    /*
	     * Stick the result back into the pool.
	     */

	    for (k = 0; k < sizeof(digest) / sizeof(*digest); k++)
		((word32 *) (pool.pool + j))[k] = digest[k];
	}
    }

    /*
     * Might as well save this value back into `incoming', just so
     * there'll be some extra bizarreness there.
     */
    SHATransform(digest, block);
    memcpy(pool.incoming, digest, sizeof(digest));

    pool.poolpos = sizeof(pool.incoming);

    pool.stir_pending = FALSE;
}

void random_add_noise(void *noise, int length)
{
    unsigned char *p = noise;
    int i;

    if (!random_active)
	return;

    /*
     * This function processes HASHINPUT bytes into only HASHSIZE
     * bytes, so _if_ we were getting incredibly high entropy
     * sources then we would be throwing away valuable stuff.
     */
    while (length >= (HASHINPUT - pool.incomingpos)) {
	memcpy(pool.incomingb + pool.incomingpos, p,
	       HASHINPUT - pool.incomingpos);
	p += HASHINPUT - pool.incomingpos;
	length -= HASHINPUT - pool.incomingpos;
	SHATransform((word32 *) pool.incoming, (word32 *) pool.incomingb);
	for (i = 0; i < HASHSIZE; i++) {
	    pool.pool[pool.poolpos++] ^= pool.incomingb[i];
	    if (pool.poolpos >= POOLSIZE)
		pool.poolpos = 0;
	}
	if (pool.poolpos < HASHSIZE)
	    random_stir();

	pool.incomingpos = 0;
    }

    memcpy(pool.incomingb + pool.incomingpos, p, length);
    pool.incomingpos += length;
}

void random_add_heavynoise(void *noise, int length)
{
    unsigned char *p = noise;
    int i;

    while (length >= POOLSIZE) {
	for (i = 0; i < POOLSIZE; i++)
	    pool.pool[i] ^= *p++;
	random_stir();
	length -= POOLSIZE;
    }

    for (i = 0; i < length; i++)
	pool.pool[i] ^= *p++;
    random_stir();
}

static void random_add_heavynoise_bitbybit(void *noise, int length)
{
    unsigned char *p = noise;
    int i;

    while (length >= POOLSIZE - pool.poolpos) {
	for (i = 0; i < POOLSIZE - pool.poolpos; i++)
	    pool.pool[pool.poolpos + i] ^= *p++;
	random_stir();
	length -= POOLSIZE - pool.poolpos;
	pool.poolpos = 0;
    }

    for (i = 0; i < length; i++)
	pool.pool[i] ^= *p++;
    pool.poolpos = i;
}

static void random_timer(void *ctx, long now)
{
    if (random_active > 0 && now - next_noise_collection >= 0) {
	noise_regular();
	next_noise_collection =
	    schedule_timer(NOISE_REGULAR_INTERVAL, random_timer, &pool);
    }
}

void random_ref(void)
{
    if (!random_active) {
	memset(&pool, 0, sizeof(pool));    /* just to start with */

	noise_get_heavy(random_add_heavynoise_bitbybit);
	random_stir();

	next_noise_collection =
	    schedule_timer(NOISE_REGULAR_INTERVAL, random_timer, &pool);
    }

    random_active++;
}

void random_unref(void)
{
    random_active--;
}

int random_byte(void)
{
    if (pool.poolpos >= POOLSIZE)
	random_stir();

    return pool.pool[pool.poolpos++];
}

void random_get_savedata(void **data, int *len)
{
    void *buf = snewn(POOLSIZE / 2, char);
    random_stir();
    memcpy(buf, pool.pool + pool.poolpos, POOLSIZE / 2);
    *len = POOLSIZE / 2;
    *data = buf;
    random_stir();
}