aboutsummaryrefslogtreecommitdiff
path: root/tools/plink/sshsha.c
blob: a5b3a60c8465493578b08c9b1c74b5e3c1e27287 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
/*
 * SHA1 hash algorithm. Used in SSH-2 as a MAC, and the transform is
 * also used as a `stirring' function for the PuTTY random number
 * pool. Implemented directly from the specification by Simon
 * Tatham.
 */

#include "ssh.h"

/* ----------------------------------------------------------------------
 * Core SHA algorithm: processes 16-word blocks into a message digest.
 */

#define rol(x,y) ( ((x) << (y)) | (((uint32)x) >> (32-y)) )

static void SHA_Core_Init(uint32 h[5])
{
    h[0] = 0x67452301;
    h[1] = 0xefcdab89;
    h[2] = 0x98badcfe;
    h[3] = 0x10325476;
    h[4] = 0xc3d2e1f0;
}

void SHATransform(word32 * digest, word32 * block)
{
    word32 w[80];
    word32 a, b, c, d, e;
    int t;

#ifdef RANDOM_DIAGNOSTICS
    {
        extern int random_diagnostics;
        if (random_diagnostics) {
            int i;
            printf("SHATransform:");
            for (i = 0; i < 5; i++)
                printf(" %08x", digest[i]);
            printf(" +");
            for (i = 0; i < 16; i++)
                printf(" %08x", block[i]);
        }
    }
#endif

    for (t = 0; t < 16; t++)
	w[t] = block[t];

    for (t = 16; t < 80; t++) {
	word32 tmp = w[t - 3] ^ w[t - 8] ^ w[t - 14] ^ w[t - 16];
	w[t] = rol(tmp, 1);
    }

    a = digest[0];
    b = digest[1];
    c = digest[2];
    d = digest[3];
    e = digest[4];

    for (t = 0; t < 20; t++) {
	word32 tmp =
	    rol(a, 5) + ((b & c) | (d & ~b)) + e + w[t] + 0x5a827999;
	e = d;
	d = c;
	c = rol(b, 30);
	b = a;
	a = tmp;
    }
    for (t = 20; t < 40; t++) {
	word32 tmp = rol(a, 5) + (b ^ c ^ d) + e + w[t] + 0x6ed9eba1;
	e = d;
	d = c;
	c = rol(b, 30);
	b = a;
	a = tmp;
    }
    for (t = 40; t < 60; t++) {
	word32 tmp = rol(a,
			 5) + ((b & c) | (b & d) | (c & d)) + e + w[t] +
	    0x8f1bbcdc;
	e = d;
	d = c;
	c = rol(b, 30);
	b = a;
	a = tmp;
    }
    for (t = 60; t < 80; t++) {
	word32 tmp = rol(a, 5) + (b ^ c ^ d) + e + w[t] + 0xca62c1d6;
	e = d;
	d = c;
	c = rol(b, 30);
	b = a;
	a = tmp;
    }

    digest[0] += a;
    digest[1] += b;
    digest[2] += c;
    digest[3] += d;
    digest[4] += e;

#ifdef RANDOM_DIAGNOSTICS
    {
        extern int random_diagnostics;
        if (random_diagnostics) {
            int i;
            printf(" =");
            for (i = 0; i < 5; i++)
                printf(" %08x", digest[i]);
            printf("\n");
        }
    }
#endif
}

/* ----------------------------------------------------------------------
 * Outer SHA algorithm: take an arbitrary length byte string,
 * convert it into 16-word blocks with the prescribed padding at
 * the end, and pass those blocks to the core SHA algorithm.
 */

void SHA_Init(SHA_State * s)
{
    SHA_Core_Init(s->h);
    s->blkused = 0;
    s->lenhi = s->lenlo = 0;
}

void SHA_Bytes(SHA_State * s, const void *p, int len)
{
    const unsigned char *q = (const unsigned char *) p;
    uint32 wordblock[16];
    uint32 lenw = len;
    int i;

    /*
     * Update the length field.
     */
    s->lenlo += lenw;
    s->lenhi += (s->lenlo < lenw);

    if (s->blkused && s->blkused + len < 64) {
	/*
	 * Trivial case: just add to the block.
	 */
	memcpy(s->block + s->blkused, q, len);
	s->blkused += len;
    } else {
	/*
	 * We must complete and process at least one block.
	 */
	while (s->blkused + len >= 64) {
	    memcpy(s->block + s->blkused, q, 64 - s->blkused);
	    q += 64 - s->blkused;
	    len -= 64 - s->blkused;
	    /* Now process the block. Gather bytes big-endian into words */
	    for (i = 0; i < 16; i++) {
		wordblock[i] =
		    (((uint32) s->block[i * 4 + 0]) << 24) |
		    (((uint32) s->block[i * 4 + 1]) << 16) |
		    (((uint32) s->block[i * 4 + 2]) << 8) |
		    (((uint32) s->block[i * 4 + 3]) << 0);
	    }
	    SHATransform(s->h, wordblock);
	    s->blkused = 0;
	}
	memcpy(s->block, q, len);
	s->blkused = len;
    }
}

void SHA_Final(SHA_State * s, unsigned char *output)
{
    int i;
    int pad;
    unsigned char c[64];
    uint32 lenhi, lenlo;

    if (s->blkused >= 56)
	pad = 56 + 64 - s->blkused;
    else
	pad = 56 - s->blkused;

    lenhi = (s->lenhi << 3) | (s->lenlo >> (32 - 3));
    lenlo = (s->lenlo << 3);

    memset(c, 0, pad);
    c[0] = 0x80;
    SHA_Bytes(s, &c, pad);

    c[0] = (lenhi >> 24) & 0xFF;
    c[1] = (lenhi >> 16) & 0xFF;
    c[2] = (lenhi >> 8) & 0xFF;
    c[3] = (lenhi >> 0) & 0xFF;
    c[4] = (lenlo >> 24) & 0xFF;
    c[5] = (lenlo >> 16) & 0xFF;
    c[6] = (lenlo >> 8) & 0xFF;
    c[7] = (lenlo >> 0) & 0xFF;

    SHA_Bytes(s, &c, 8);

    for (i = 0; i < 5; i++) {
	output[i * 4] = (s->h[i] >> 24) & 0xFF;
	output[i * 4 + 1] = (s->h[i] >> 16) & 0xFF;
	output[i * 4 + 2] = (s->h[i] >> 8) & 0xFF;
	output[i * 4 + 3] = (s->h[i]) & 0xFF;
    }
}

void SHA_Simple(const void *p, int len, unsigned char *output)
{
    SHA_State s;

    SHA_Init(&s);
    SHA_Bytes(&s, p, len);
    SHA_Final(&s, output);
}

/*
 * Thin abstraction for things where hashes are pluggable.
 */

static void *sha1_init(void)
{
    SHA_State *s;

    s = snew(SHA_State);
    SHA_Init(s);
    return s;
}

static void sha1_bytes(void *handle, void *p, int len)
{
    SHA_State *s = handle;

    SHA_Bytes(s, p, len);
}

static void sha1_final(void *handle, unsigned char *output)
{
    SHA_State *s = handle;

    SHA_Final(s, output);
    sfree(s);
}

const struct ssh_hash ssh_sha1 = {
    sha1_init, sha1_bytes, sha1_final, 20, "SHA-1"
};

/* ----------------------------------------------------------------------
 * The above is the SHA-1 algorithm itself. Now we implement the
 * HMAC wrapper on it.
 */

static void *sha1_make_context(void)
{
    return snewn(3, SHA_State);
}

static void sha1_free_context(void *handle)
{
    sfree(handle);
}

static void sha1_key_internal(void *handle, unsigned char *key, int len)
{
    SHA_State *keys = (SHA_State *)handle;
    unsigned char foo[64];
    int i;

    memset(foo, 0x36, 64);
    for (i = 0; i < len && i < 64; i++)
	foo[i] ^= key[i];
    SHA_Init(&keys[0]);
    SHA_Bytes(&keys[0], foo, 64);

    memset(foo, 0x5C, 64);
    for (i = 0; i < len && i < 64; i++)
	foo[i] ^= key[i];
    SHA_Init(&keys[1]);
    SHA_Bytes(&keys[1], foo, 64);

    smemclr(foo, 64);		       /* burn the evidence */
}

static void sha1_key(void *handle, unsigned char *key)
{
    sha1_key_internal(handle, key, 20);
}

static void sha1_key_buggy(void *handle, unsigned char *key)
{
    sha1_key_internal(handle, key, 16);
}

static void hmacsha1_start(void *handle)
{
    SHA_State *keys = (SHA_State *)handle;

    keys[2] = keys[0];		      /* structure copy */
}

static void hmacsha1_bytes(void *handle, unsigned char const *blk, int len)
{
    SHA_State *keys = (SHA_State *)handle;
    SHA_Bytes(&keys[2], (void *)blk, len);
}

static void hmacsha1_genresult(void *handle, unsigned char *hmac)
{
    SHA_State *keys = (SHA_State *)handle;
    SHA_State s;
    unsigned char intermediate[20];

    s = keys[2];		       /* structure copy */
    SHA_Final(&s, intermediate);
    s = keys[1];		       /* structure copy */
    SHA_Bytes(&s, intermediate, 20);
    SHA_Final(&s, hmac);
}

static void sha1_do_hmac(void *handle, unsigned char *blk, int len,
			 unsigned long seq, unsigned char *hmac)
{
    unsigned char seqbuf[4];

    PUT_32BIT_MSB_FIRST(seqbuf, seq);
    hmacsha1_start(handle);
    hmacsha1_bytes(handle, seqbuf, 4);
    hmacsha1_bytes(handle, blk, len);
    hmacsha1_genresult(handle, hmac);
}

static void sha1_generate(void *handle, unsigned char *blk, int len,
			  unsigned long seq)
{
    sha1_do_hmac(handle, blk, len, seq, blk + len);
}

static int hmacsha1_verresult(void *handle, unsigned char const *hmac)
{
    unsigned char correct[20];
    hmacsha1_genresult(handle, correct);
    return !memcmp(correct, hmac, 20);
}

static int sha1_verify(void *handle, unsigned char *blk, int len,
		       unsigned long seq)
{
    unsigned char correct[20];
    sha1_do_hmac(handle, blk, len, seq, correct);
    return !memcmp(correct, blk + len, 20);
}

static void hmacsha1_96_genresult(void *handle, unsigned char *hmac)
{
    unsigned char full[20];
    hmacsha1_genresult(handle, full);
    memcpy(hmac, full, 12);
}

static void sha1_96_generate(void *handle, unsigned char *blk, int len,
			     unsigned long seq)
{
    unsigned char full[20];
    sha1_do_hmac(handle, blk, len, seq, full);
    memcpy(blk + len, full, 12);
}

static int hmacsha1_96_verresult(void *handle, unsigned char const *hmac)
{
    unsigned char correct[20];
    hmacsha1_genresult(handle, correct);
    return !memcmp(correct, hmac, 12);
}

static int sha1_96_verify(void *handle, unsigned char *blk, int len,
		       unsigned long seq)
{
    unsigned char correct[20];
    sha1_do_hmac(handle, blk, len, seq, correct);
    return !memcmp(correct, blk + len, 12);
}

void hmac_sha1_simple(void *key, int keylen, void *data, int datalen,
		      unsigned char *output) {
    SHA_State states[2];
    unsigned char intermediate[20];

    sha1_key_internal(states, key, keylen);
    SHA_Bytes(&states[0], data, datalen);
    SHA_Final(&states[0], intermediate);

    SHA_Bytes(&states[1], intermediate, 20);
    SHA_Final(&states[1], output);
}

const struct ssh_mac ssh_hmac_sha1 = {
    sha1_make_context, sha1_free_context, sha1_key,
    sha1_generate, sha1_verify,
    hmacsha1_start, hmacsha1_bytes, hmacsha1_genresult, hmacsha1_verresult,
    "hmac-sha1",
    20,
    "HMAC-SHA1"
};

const struct ssh_mac ssh_hmac_sha1_96 = {
    sha1_make_context, sha1_free_context, sha1_key,
    sha1_96_generate, sha1_96_verify,
    hmacsha1_start, hmacsha1_bytes,
    hmacsha1_96_genresult, hmacsha1_96_verresult,
    "hmac-sha1-96",
    12,
    "HMAC-SHA1-96"
};

const struct ssh_mac ssh_hmac_sha1_buggy = {
    sha1_make_context, sha1_free_context, sha1_key_buggy,
    sha1_generate, sha1_verify,
    hmacsha1_start, hmacsha1_bytes, hmacsha1_genresult, hmacsha1_verresult,
    "hmac-sha1",
    20,
    "bug-compatible HMAC-SHA1"
};

const struct ssh_mac ssh_hmac_sha1_96_buggy = {
    sha1_make_context, sha1_free_context, sha1_key_buggy,
    sha1_96_generate, sha1_96_verify,
    hmacsha1_start, hmacsha1_bytes,
    hmacsha1_96_genresult, hmacsha1_96_verresult,
    "hmac-sha1-96",
    12,
    "bug-compatible HMAC-SHA1-96"
};