aboutsummaryrefslogtreecommitdiff
path: root/mesalib/src/glsl
diff options
context:
space:
mode:
authormarha <marha@users.sourceforge.net>2011-01-26 08:22:59 +0000
committermarha <marha@users.sourceforge.net>2011-01-26 08:22:59 +0000
commit048e4ee930453823c4123abe846b63315283e297 (patch)
treec5e5506ff35408284dbc87a1e8a1b66f103b99ab /mesalib/src/glsl
parent9ad7416b909d358cb254a48eaccd7888d684fcb6 (diff)
parent1e1e2c35b405bbb537a6bbe35d9f0831111e272f (diff)
downloadvcxsrv-048e4ee930453823c4123abe846b63315283e297.tar.gz
vcxsrv-048e4ee930453823c4123abe846b63315283e297.tar.bz2
vcxsrv-048e4ee930453823c4123abe846b63315283e297.zip
svn merge ^/branches/released .
Diffstat (limited to 'mesalib/src/glsl')
-rw-r--r--mesalib/src/glsl/ir_reader.cpp1995
-rw-r--r--mesalib/src/glsl/link_functions.cpp528
-rw-r--r--mesalib/src/glsl/linker.cpp3348
3 files changed, 2941 insertions, 2930 deletions
diff --git a/mesalib/src/glsl/ir_reader.cpp b/mesalib/src/glsl/ir_reader.cpp
index 5b1eccb46..b78aa051b 100644
--- a/mesalib/src/glsl/ir_reader.cpp
+++ b/mesalib/src/glsl/ir_reader.cpp
@@ -1,996 +1,999 @@
-/*
- * Copyright © 2010 Intel Corporation
- *
- * Permission is hereby granted, free of charge, to any person obtaining a
- * copy of this software and associated documentation files (the "Software"),
- * to deal in the Software without restriction, including without limitation
- * the rights to use, copy, modify, merge, publish, distribute, sublicense,
- * and/or sell copies of the Software, and to permit persons to whom the
- * Software is furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice (including the next
- * paragraph) shall be included in all copies or substantial portions of the
- * Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
- * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
- * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
- * DEALINGS IN THE SOFTWARE.
- */
-
-#include "ir_reader.h"
-#include "glsl_parser_extras.h"
-#include "glsl_types.h"
-#include "s_expression.h"
-
-const static bool debug = false;
-
-class ir_reader {
-public:
- ir_reader(_mesa_glsl_parse_state *);
-
- void read(exec_list *instructions, const char *src, bool scan_for_protos);
-
-private:
- void *mem_ctx;
- _mesa_glsl_parse_state *state;
-
- void ir_read_error(s_expression *, const char *fmt, ...);
-
- const glsl_type *read_type(s_expression *);
-
- void scan_for_prototypes(exec_list *, s_expression *);
- ir_function *read_function(s_expression *, bool skip_body);
- void read_function_sig(ir_function *, s_expression *, bool skip_body);
-
- void read_instructions(exec_list *, s_expression *, ir_loop *);
- ir_instruction *read_instruction(s_expression *, ir_loop *);
- ir_variable *read_declaration(s_expression *);
- ir_if *read_if(s_expression *, ir_loop *);
- ir_loop *read_loop(s_expression *);
- ir_return *read_return(s_expression *);
- ir_rvalue *read_rvalue(s_expression *);
- ir_assignment *read_assignment(s_expression *);
- ir_expression *read_expression(s_expression *);
- ir_call *read_call(s_expression *);
- ir_swizzle *read_swizzle(s_expression *);
- ir_constant *read_constant(s_expression *);
- ir_texture *read_texture(s_expression *);
-
- ir_dereference *read_dereference(s_expression *);
-};
-
-ir_reader::ir_reader(_mesa_glsl_parse_state *state) : state(state)
-{
- this->mem_ctx = state;
-}
-
-void
-_mesa_glsl_read_ir(_mesa_glsl_parse_state *state, exec_list *instructions,
- const char *src, bool scan_for_protos)
-{
- ir_reader r(state);
- r.read(instructions, src, scan_for_protos);
-}
-
-void
-ir_reader::read(exec_list *instructions, const char *src, bool scan_for_protos)
-{
- s_expression *expr = s_expression::read_expression(mem_ctx, src);
- if (expr == NULL) {
- ir_read_error(NULL, "couldn't parse S-Expression.");
- return;
- }
-
- if (scan_for_protos) {
- scan_for_prototypes(instructions, expr);
- if (state->error)
- return;
- }
-
- read_instructions(instructions, expr, NULL);
- talloc_free(expr);
-
- if (debug)
- validate_ir_tree(instructions);
-}
-
-void
-ir_reader::ir_read_error(s_expression *expr, const char *fmt, ...)
-{
- va_list ap;
-
- state->error = true;
-
- if (state->current_function != NULL)
- state->info_log = talloc_asprintf_append(state->info_log,
- "In function %s:\n",
- state->current_function->function_name());
- state->info_log = talloc_strdup_append(state->info_log, "error: ");
-
- va_start(ap, fmt);
- state->info_log = talloc_vasprintf_append(state->info_log, fmt, ap);
- va_end(ap);
- state->info_log = talloc_strdup_append(state->info_log, "\n");
-
- if (expr != NULL) {
- state->info_log = talloc_strdup_append(state->info_log,
- "...in this context:\n ");
- expr->print();
- state->info_log = talloc_strdup_append(state->info_log, "\n\n");
- }
-}
-
-const glsl_type *
-ir_reader::read_type(s_expression *expr)
-{
- s_expression *s_base_type;
- s_int *s_size;
-
- s_pattern pat[] = { "array", s_base_type, s_size };
- if (MATCH(expr, pat)) {
- const glsl_type *base_type = read_type(s_base_type);
- if (base_type == NULL) {
- ir_read_error(NULL, "when reading base type of array type");
- return NULL;
- }
-
- return glsl_type::get_array_instance(base_type, s_size->value());
- }
-
- s_symbol *type_sym = SX_AS_SYMBOL(expr);
- if (type_sym == NULL) {
- ir_read_error(expr, "expected <type>");
- return NULL;
- }
-
- const glsl_type *type = state->symbols->get_type(type_sym->value());
- if (type == NULL)
- ir_read_error(expr, "invalid type: %s", type_sym->value());
-
- return type;
-}
-
-
-void
-ir_reader::scan_for_prototypes(exec_list *instructions, s_expression *expr)
-{
- s_list *list = SX_AS_LIST(expr);
- if (list == NULL) {
- ir_read_error(expr, "Expected (<instruction> ...); found an atom.");
- return;
- }
-
- foreach_iter(exec_list_iterator, it, list->subexpressions) {
- s_list *sub = SX_AS_LIST(it.get());
- if (sub == NULL)
- continue; // not a (function ...); ignore it.
-
- s_symbol *tag = SX_AS_SYMBOL(sub->subexpressions.get_head());
- if (tag == NULL || strcmp(tag->value(), "function") != 0)
- continue; // not a (function ...); ignore it.
-
- ir_function *f = read_function(sub, true);
- if (f == NULL)
- return;
- instructions->push_tail(f);
- }
-}
-
-ir_function *
-ir_reader::read_function(s_expression *expr, bool skip_body)
-{
- bool added = false;
- s_symbol *name;
-
- s_pattern pat[] = { "function", name };
- if (!PARTIAL_MATCH(expr, pat)) {
- ir_read_error(expr, "Expected (function <name> (signature ...) ...)");
- return NULL;
- }
-
- ir_function *f = state->symbols->get_function(name->value());
- if (f == NULL) {
- f = new(mem_ctx) ir_function(name->value());
- added = state->symbols->add_function(f);
- assert(added);
- }
-
- exec_list_iterator it = ((s_list *) expr)->subexpressions.iterator();
- it.next(); // skip "function" tag
- it.next(); // skip function name
- for (/* nothing */; it.has_next(); it.next()) {
- s_expression *s_sig = (s_expression *) it.get();
- read_function_sig(f, s_sig, skip_body);
- }
- return added ? f : NULL;
-}
-
-void
-ir_reader::read_function_sig(ir_function *f, s_expression *expr, bool skip_body)
-{
- s_expression *type_expr;
- s_list *paramlist;
- s_list *body_list;
-
- s_pattern pat[] = { "signature", type_expr, paramlist, body_list };
- if (!MATCH(expr, pat)) {
- ir_read_error(expr, "Expected (signature <type> (parameters ...) "
- "(<instruction> ...))");
- return;
- }
-
- const glsl_type *return_type = read_type(type_expr);
- if (return_type == NULL)
- return;
-
- s_symbol *paramtag = SX_AS_SYMBOL(paramlist->subexpressions.get_head());
- if (paramtag == NULL || strcmp(paramtag->value(), "parameters") != 0) {
- ir_read_error(paramlist, "Expected (parameters ...)");
- return;
- }
-
- // Read the parameters list into a temporary place.
- exec_list hir_parameters;
- state->symbols->push_scope();
-
- exec_list_iterator it = paramlist->subexpressions.iterator();
- for (it.next() /* skip "parameters" */; it.has_next(); it.next()) {
- ir_variable *var = read_declaration((s_expression *) it.get());
- if (var == NULL)
- return;
-
- hir_parameters.push_tail(var);
- }
-
- ir_function_signature *sig = f->exact_matching_signature(&hir_parameters);
- if (sig == NULL && skip_body) {
- /* If scanning for prototypes, generate a new signature. */
- sig = new(mem_ctx) ir_function_signature(return_type);
- sig->is_builtin = true;
- f->add_signature(sig);
- } else if (sig != NULL) {
- const char *badvar = sig->qualifiers_match(&hir_parameters);
- if (badvar != NULL) {
- ir_read_error(expr, "function `%s' parameter `%s' qualifiers "
- "don't match prototype", f->name, badvar);
- return;
- }
-
- if (sig->return_type != return_type) {
- ir_read_error(expr, "function `%s' return type doesn't "
- "match prototype", f->name);
- return;
- }
- } else {
- /* No prototype for this body exists - skip it. */
- state->symbols->pop_scope();
- return;
- }
- assert(sig != NULL);
-
- sig->replace_parameters(&hir_parameters);
-
- if (!skip_body && !body_list->subexpressions.is_empty()) {
- if (sig->is_defined) {
- ir_read_error(expr, "function %s redefined", f->name);
- return;
- }
- state->current_function = sig;
- read_instructions(&sig->body, body_list, NULL);
- state->current_function = NULL;
- sig->is_defined = true;
- }
-
- state->symbols->pop_scope();
-}
-
-void
-ir_reader::read_instructions(exec_list *instructions, s_expression *expr,
- ir_loop *loop_ctx)
-{
- // Read in a list of instructions
- s_list *list = SX_AS_LIST(expr);
- if (list == NULL) {
- ir_read_error(expr, "Expected (<instruction> ...); found an atom.");
- return;
- }
-
- foreach_iter(exec_list_iterator, it, list->subexpressions) {
- s_expression *sub = (s_expression*) it.get();
- ir_instruction *ir = read_instruction(sub, loop_ctx);
- if (ir != NULL) {
- /* Global variable declarations should be moved to the top, before
- * any functions that might use them. Functions are added to the
- * instruction stream when scanning for prototypes, so without this
- * hack, they always appear before variable declarations.
- */
- if (state->current_function == NULL && ir->as_variable() != NULL)
- instructions->push_head(ir);
- else
- instructions->push_tail(ir);
- }
- }
-}
-
-
-ir_instruction *
-ir_reader::read_instruction(s_expression *expr, ir_loop *loop_ctx)
-{
- s_symbol *symbol = SX_AS_SYMBOL(expr);
- if (symbol != NULL) {
- if (strcmp(symbol->value(), "break") == 0 && loop_ctx != NULL)
- return new(mem_ctx) ir_loop_jump(ir_loop_jump::jump_break);
- if (strcmp(symbol->value(), "continue") == 0 && loop_ctx != NULL)
- return new(mem_ctx) ir_loop_jump(ir_loop_jump::jump_continue);
- }
-
- s_list *list = SX_AS_LIST(expr);
- if (list == NULL || list->subexpressions.is_empty()) {
- ir_read_error(expr, "Invalid instruction.\n");
- return NULL;
- }
-
- s_symbol *tag = SX_AS_SYMBOL(list->subexpressions.get_head());
- if (tag == NULL) {
- ir_read_error(expr, "expected instruction tag");
- return NULL;
- }
-
- ir_instruction *inst = NULL;
- if (strcmp(tag->value(), "declare") == 0) {
- inst = read_declaration(list);
- } else if (strcmp(tag->value(), "assign") == 0) {
- inst = read_assignment(list);
- } else if (strcmp(tag->value(), "if") == 0) {
- inst = read_if(list, loop_ctx);
- } else if (strcmp(tag->value(), "loop") == 0) {
- inst = read_loop(list);
- } else if (strcmp(tag->value(), "return") == 0) {
- inst = read_return(list);
- } else if (strcmp(tag->value(), "function") == 0) {
- inst = read_function(list, false);
- } else {
- inst = read_rvalue(list);
- if (inst == NULL)
- ir_read_error(NULL, "when reading instruction");
- }
- return inst;
-}
-
-ir_variable *
-ir_reader::read_declaration(s_expression *expr)
-{
- s_list *s_quals;
- s_expression *s_type;
- s_symbol *s_name;
-
- s_pattern pat[] = { "declare", s_quals, s_type, s_name };
- if (!MATCH(expr, pat)) {
- ir_read_error(expr, "expected (declare (<qualifiers>) <type> <name>)");
- return NULL;
- }
-
- const glsl_type *type = read_type(s_type);
- if (type == NULL)
- return NULL;
-
- ir_variable *var = new(mem_ctx) ir_variable(type, s_name->value(),
- ir_var_auto);
-
- foreach_iter(exec_list_iterator, it, s_quals->subexpressions) {
- s_symbol *qualifier = SX_AS_SYMBOL(it.get());
- if (qualifier == NULL) {
- ir_read_error(expr, "qualifier list must contain only symbols");
- return NULL;
- }
-
- // FINISHME: Check for duplicate/conflicting qualifiers.
- if (strcmp(qualifier->value(), "centroid") == 0) {
- var->centroid = 1;
- } else if (strcmp(qualifier->value(), "invariant") == 0) {
- var->invariant = 1;
- } else if (strcmp(qualifier->value(), "uniform") == 0) {
- var->mode = ir_var_uniform;
- } else if (strcmp(qualifier->value(), "auto") == 0) {
- var->mode = ir_var_auto;
- } else if (strcmp(qualifier->value(), "in") == 0) {
- var->mode = ir_var_in;
- } else if (strcmp(qualifier->value(), "out") == 0) {
- var->mode = ir_var_out;
- } else if (strcmp(qualifier->value(), "inout") == 0) {
- var->mode = ir_var_inout;
- } else if (strcmp(qualifier->value(), "smooth") == 0) {
- var->interpolation = ir_var_smooth;
- } else if (strcmp(qualifier->value(), "flat") == 0) {
- var->interpolation = ir_var_flat;
- } else if (strcmp(qualifier->value(), "noperspective") == 0) {
- var->interpolation = ir_var_noperspective;
- } else {
- ir_read_error(expr, "unknown qualifier: %s", qualifier->value());
- return NULL;
- }
- }
-
- // Add the variable to the symbol table
- state->symbols->add_variable(var);
-
- return var;
-}
-
-
-ir_if *
-ir_reader::read_if(s_expression *expr, ir_loop *loop_ctx)
-{
- s_expression *s_cond;
- s_expression *s_then;
- s_expression *s_else;
-
- s_pattern pat[] = { "if", s_cond, s_then, s_else };
- if (!MATCH(expr, pat)) {
- ir_read_error(expr, "expected (if <condition> (<then>...) (<else>...))");
- return NULL;
- }
-
- ir_rvalue *condition = read_rvalue(s_cond);
- if (condition == NULL) {
- ir_read_error(NULL, "when reading condition of (if ...)");
- return NULL;
- }
-
- ir_if *iff = new(mem_ctx) ir_if(condition);
-
- read_instructions(&iff->then_instructions, s_then, loop_ctx);
- read_instructions(&iff->else_instructions, s_else, loop_ctx);
- if (state->error) {
- delete iff;
- iff = NULL;
- }
- return iff;
-}
-
-
-ir_loop *
-ir_reader::read_loop(s_expression *expr)
-{
- s_expression *s_counter, *s_from, *s_to, *s_inc, *s_body;
-
- s_pattern pat[] = { "loop", s_counter, s_from, s_to, s_inc, s_body };
- if (!MATCH(expr, pat)) {
- ir_read_error(expr, "expected (loop <counter> <from> <to> "
- "<increment> <body>)");
- return NULL;
- }
-
- // FINISHME: actually read the count/from/to fields.
-
- ir_loop *loop = new(mem_ctx) ir_loop;
- read_instructions(&loop->body_instructions, s_body, loop);
- if (state->error) {
- delete loop;
- loop = NULL;
- }
- return loop;
-}
-
-
-ir_return *
-ir_reader::read_return(s_expression *expr)
-{
- s_expression *s_retval;
-
- s_pattern pat[] = { "return", s_retval};
- if (!MATCH(expr, pat)) {
- ir_read_error(expr, "expected (return <rvalue>)");
- return NULL;
- }
-
- ir_rvalue *retval = read_rvalue(s_retval);
- if (retval == NULL) {
- ir_read_error(NULL, "when reading return value");
- return NULL;
- }
-
- return new(mem_ctx) ir_return(retval);
-}
-
-
-ir_rvalue *
-ir_reader::read_rvalue(s_expression *expr)
-{
- s_list *list = SX_AS_LIST(expr);
- if (list == NULL || list->subexpressions.is_empty())
- return NULL;
-
- s_symbol *tag = SX_AS_SYMBOL(list->subexpressions.get_head());
- if (tag == NULL) {
- ir_read_error(expr, "expected rvalue tag");
- return NULL;
- }
-
- ir_rvalue *rvalue = read_dereference(list);
- if (rvalue != NULL || state->error)
- return rvalue;
- else if (strcmp(tag->value(), "swiz") == 0) {
- rvalue = read_swizzle(list);
- } else if (strcmp(tag->value(), "expression") == 0) {
- rvalue = read_expression(list);
- } else if (strcmp(tag->value(), "call") == 0) {
- rvalue = read_call(list);
- } else if (strcmp(tag->value(), "constant") == 0) {
- rvalue = read_constant(list);
- } else {
- rvalue = read_texture(list);
- if (rvalue == NULL && !state->error)
- ir_read_error(expr, "unrecognized rvalue tag: %s", tag->value());
- }
-
- return rvalue;
-}
-
-ir_assignment *
-ir_reader::read_assignment(s_expression *expr)
-{
- s_expression *cond_expr = NULL;
- s_expression *lhs_expr, *rhs_expr;
- s_list *mask_list;
-
- s_pattern pat4[] = { "assign", mask_list, lhs_expr, rhs_expr };
- s_pattern pat5[] = { "assign", cond_expr, mask_list, lhs_expr, rhs_expr };
- if (!MATCH(expr, pat4) && !MATCH(expr, pat5)) {
- ir_read_error(expr, "expected (assign [<condition>] (<write mask>) "
- "<lhs> <rhs>)");
- return NULL;
- }
-
- ir_rvalue *condition = NULL;
- if (cond_expr != NULL) {
- condition = read_rvalue(cond_expr);
- if (condition == NULL) {
- ir_read_error(NULL, "when reading condition of assignment");
- return NULL;
- }
- }
-
- unsigned mask = 0;
-
- s_symbol *mask_symbol;
- s_pattern mask_pat[] = { mask_symbol };
- if (MATCH(mask_list, mask_pat)) {
- const char *mask_str = mask_symbol->value();
- unsigned mask_length = strlen(mask_str);
- if (mask_length > 4) {
- ir_read_error(expr, "invalid write mask: %s", mask_str);
- return NULL;
- }
-
- const unsigned idx_map[] = { 3, 0, 1, 2 }; /* w=bit 3, x=0, y=1, z=2 */
-
- for (unsigned i = 0; i < mask_length; i++) {
- if (mask_str[i] < 'w' || mask_str[i] > 'z') {
- ir_read_error(expr, "write mask contains invalid character: %c",
- mask_str[i]);
- return NULL;
- }
- mask |= 1 << idx_map[mask_str[i] - 'w'];
- }
- } else if (!mask_list->subexpressions.is_empty()) {
- ir_read_error(mask_list, "expected () or (<write mask>)");
- return NULL;
- }
-
- ir_dereference *lhs = read_dereference(lhs_expr);
- if (lhs == NULL) {
- ir_read_error(NULL, "when reading left-hand side of assignment");
- return NULL;
- }
-
- ir_rvalue *rhs = read_rvalue(rhs_expr);
- if (rhs == NULL) {
- ir_read_error(NULL, "when reading right-hand side of assignment");
- return NULL;
- }
-
- if (mask == 0 && (lhs->type->is_vector() || lhs->type->is_scalar())) {
- ir_read_error(expr, "non-zero write mask required.");
- return NULL;
- }
-
- return new(mem_ctx) ir_assignment(lhs, rhs, condition, mask);
-}
-
-ir_call *
-ir_reader::read_call(s_expression *expr)
-{
- s_symbol *name;
- s_list *params;
-
- s_pattern pat[] = { "call", name, params };
- if (!MATCH(expr, pat)) {
- ir_read_error(expr, "expected (call <name> (<param> ...))");
- return NULL;
- }
-
- exec_list parameters;
-
- foreach_iter(exec_list_iterator, it, params->subexpressions) {
- s_expression *expr = (s_expression*) it.get();
- ir_rvalue *param = read_rvalue(expr);
- if (param == NULL) {
- ir_read_error(expr, "when reading parameter to function call");
- return NULL;
- }
- parameters.push_tail(param);
- }
-
- ir_function *f = state->symbols->get_function(name->value());
- if (f == NULL) {
- ir_read_error(expr, "found call to undefined function %s",
- name->value());
- return NULL;
- }
-
- ir_function_signature *callee = f->matching_signature(&parameters);
- if (callee == NULL) {
- ir_read_error(expr, "couldn't find matching signature for function "
- "%s", name->value());
- return NULL;
- }
-
- return new(mem_ctx) ir_call(callee, &parameters);
-}
-
-ir_expression *
-ir_reader::read_expression(s_expression *expr)
-{
- s_expression *s_type;
- s_symbol *s_op;
- s_expression *s_arg1;
-
- s_pattern pat[] = { "expression", s_type, s_op, s_arg1 };
- if (!PARTIAL_MATCH(expr, pat)) {
- ir_read_error(expr, "expected (expression <type> <operator> "
- "<operand> [<operand>])");
- return NULL;
- }
- s_expression *s_arg2 = (s_expression *) s_arg1->next; // may be tail sentinel
-
- const glsl_type *type = read_type(s_type);
- if (type == NULL)
- return NULL;
-
- /* Read the operator */
- ir_expression_operation op = ir_expression::get_operator(s_op->value());
- if (op == (ir_expression_operation) -1) {
- ir_read_error(expr, "invalid operator: %s", s_op->value());
- return NULL;
- }
-
- unsigned num_operands = ir_expression::get_num_operands(op);
- if (num_operands == 1 && !s_arg1->next->is_tail_sentinel()) {
- ir_read_error(expr, "expected (expression <type> %s <operand>)",
- s_op->value());
- return NULL;
- }
-
- ir_rvalue *arg1 = read_rvalue(s_arg1);
- ir_rvalue *arg2 = NULL;
- if (arg1 == NULL) {
- ir_read_error(NULL, "when reading first operand of %s", s_op->value());
- return NULL;
- }
-
- if (num_operands == 2) {
- if (s_arg2->is_tail_sentinel() || !s_arg2->next->is_tail_sentinel()) {
- ir_read_error(expr, "expected (expression <type> %s <operand> "
- "<operand>)", s_op->value());
- return NULL;
- }
- arg2 = read_rvalue(s_arg2);
- if (arg2 == NULL) {
- ir_read_error(NULL, "when reading second operand of %s",
- s_op->value());
- return NULL;
- }
- }
-
- return new(mem_ctx) ir_expression(op, type, arg1, arg2);
-}
-
-ir_swizzle *
-ir_reader::read_swizzle(s_expression *expr)
-{
- s_symbol *swiz;
- s_expression *sub;
-
- s_pattern pat[] = { "swiz", swiz, sub };
- if (!MATCH(expr, pat)) {
- ir_read_error(expr, "expected (swiz <swizzle> <rvalue>)");
- return NULL;
- }
-
- if (strlen(swiz->value()) > 4) {
- ir_read_error(expr, "expected a valid swizzle; found %s", swiz->value());
- return NULL;
- }
-
- ir_rvalue *rvalue = read_rvalue(sub);
- if (rvalue == NULL)
- return NULL;
-
- ir_swizzle *ir = ir_swizzle::create(rvalue, swiz->value(),
- rvalue->type->vector_elements);
- if (ir == NULL)
- ir_read_error(expr, "invalid swizzle");
-
- return ir;
-}
-
-ir_constant *
-ir_reader::read_constant(s_expression *expr)
-{
- s_expression *type_expr;
- s_list *values;
-
- s_pattern pat[] = { "constant", type_expr, values };
- if (!MATCH(expr, pat)) {
- ir_read_error(expr, "expected (constant <type> (...))");
- return NULL;
- }
-
- const glsl_type *type = read_type(type_expr);
- if (type == NULL)
- return NULL;
-
- if (values == NULL) {
- ir_read_error(expr, "expected (constant <type> (...))");
- return NULL;
- }
-
- if (type->is_array()) {
- unsigned elements_supplied = 0;
- exec_list elements;
- foreach_iter(exec_list_iterator, it, values->subexpressions) {
- s_expression *elt = (s_expression *) it.get();
- ir_constant *ir_elt = read_constant(elt);
- if (ir_elt == NULL)
- return NULL;
- elements.push_tail(ir_elt);
- elements_supplied++;
- }
-
- if (elements_supplied != type->length) {
- ir_read_error(values, "expected exactly %u array elements, "
- "given %u", type->length, elements_supplied);
- return NULL;
- }
- return new(mem_ctx) ir_constant(type, &elements);
- }
-
- const glsl_type *const base_type = type->get_base_type();
-
- ir_constant_data data = { { 0 } };
-
- // Read in list of values (at most 16).
- int k = 0;
- foreach_iter(exec_list_iterator, it, values->subexpressions) {
- if (k >= 16) {
- ir_read_error(values, "expected at most 16 numbers");
- return NULL;
- }
-
- s_expression *expr = (s_expression*) it.get();
-
- if (base_type->base_type == GLSL_TYPE_FLOAT) {
- s_number *value = SX_AS_NUMBER(expr);
- if (value == NULL) {
- ir_read_error(values, "expected numbers");
- return NULL;
- }
- data.f[k] = value->fvalue();
- } else {
- s_int *value = SX_AS_INT(expr);
- if (value == NULL) {
- ir_read_error(values, "expected integers");
- return NULL;
- }
-
- switch (base_type->base_type) {
- case GLSL_TYPE_UINT: {
- data.u[k] = value->value();
- break;
- }
- case GLSL_TYPE_INT: {
- data.i[k] = value->value();
- break;
- }
- case GLSL_TYPE_BOOL: {
- data.b[k] = value->value();
- break;
- }
- default:
- ir_read_error(values, "unsupported constant type");
- return NULL;
- }
- }
- ++k;
- }
-
- return new(mem_ctx) ir_constant(type, &data);
-}
-
-ir_dereference *
-ir_reader::read_dereference(s_expression *expr)
-{
- s_symbol *s_var;
- s_expression *s_subject;
- s_expression *s_index;
- s_symbol *s_field;
-
- s_pattern var_pat[] = { "var_ref", s_var };
- s_pattern array_pat[] = { "array_ref", s_subject, s_index };
- s_pattern record_pat[] = { "record_ref", s_subject, s_field };
-
- if (MATCH(expr, var_pat)) {
- ir_variable *var = state->symbols->get_variable(s_var->value());
- if (var == NULL) {
- ir_read_error(expr, "undeclared variable: %s", s_var->value());
- return NULL;
- }
- return new(mem_ctx) ir_dereference_variable(var);
- } else if (MATCH(expr, array_pat)) {
- ir_rvalue *subject = read_rvalue(s_subject);
- if (subject == NULL) {
- ir_read_error(NULL, "when reading the subject of an array_ref");
- return NULL;
- }
-
- ir_rvalue *idx = read_rvalue(s_index);
- if (subject == NULL) {
- ir_read_error(NULL, "when reading the index of an array_ref");
- return NULL;
- }
- return new(mem_ctx) ir_dereference_array(subject, idx);
- } else if (MATCH(expr, record_pat)) {
- ir_rvalue *subject = read_rvalue(s_subject);
- if (subject == NULL) {
- ir_read_error(NULL, "when reading the subject of a record_ref");
- return NULL;
- }
- return new(mem_ctx) ir_dereference_record(subject, s_field->value());
- }
- return NULL;
-}
-
-ir_texture *
-ir_reader::read_texture(s_expression *expr)
-{
- s_symbol *tag = NULL;
- s_expression *s_sampler = NULL;
- s_expression *s_coord = NULL;
- s_list *s_offset = NULL;
- s_expression *s_proj = NULL;
- s_list *s_shadow = NULL;
- s_expression *s_lod = NULL;
-
- ir_texture_opcode op;
-
- s_pattern tex_pattern[] =
- { "tex", s_sampler, s_coord, s_offset, s_proj, s_shadow };
- s_pattern txf_pattern[] =
- { "txf", s_sampler, s_coord, s_offset, s_lod };
- s_pattern other_pattern[] =
- { tag, s_sampler, s_coord, s_offset, s_proj, s_shadow, s_lod };
-
- if (MATCH(expr, tex_pattern)) {
- op = ir_tex;
- } else if (MATCH(expr, txf_pattern)) {
- op = ir_txf;
- } else if (MATCH(expr, other_pattern)) {
- op = ir_texture::get_opcode(tag->value());
- if (op == -1)
- return NULL;
- }
-
- ir_texture *tex = new(mem_ctx) ir_texture(op);
-
- // Read sampler (must be a deref)
- ir_dereference *sampler = read_dereference(s_sampler);
- if (sampler == NULL) {
- ir_read_error(NULL, "when reading sampler in (%s ...)",
- tex->opcode_string());
- return NULL;
- }
- tex->set_sampler(sampler);
-
- // Read coordinate (any rvalue)
- tex->coordinate = read_rvalue(s_coord);
- if (tex->coordinate == NULL) {
- ir_read_error(NULL, "when reading coordinate in (%s ...)",
- tex->opcode_string());
- return NULL;
- }
-
- // Read texel offset, i.e. (0 0 0)
- s_int *offset_x;
- s_int *offset_y;
- s_int *offset_z;
- s_pattern offset_pat[] = { offset_x, offset_y, offset_z };
- if (!MATCH(s_offset, offset_pat)) {
- ir_read_error(s_offset, "expected (<int> <int> <int>)");
- return NULL;
- }
- tex->offsets[0] = offset_x->value();
- tex->offsets[1] = offset_y->value();
- tex->offsets[2] = offset_z->value();
-
- if (op != ir_txf) {
- s_int *proj_as_int = SX_AS_INT(s_proj);
- if (proj_as_int && proj_as_int->value() == 1) {
- tex->projector = NULL;
- } else {
- tex->projector = read_rvalue(s_proj);
- if (tex->projector == NULL) {
- ir_read_error(NULL, "when reading projective divide in (%s ..)",
- tex->opcode_string());
- return NULL;
- }
- }
-
- if (s_shadow->subexpressions.is_empty()) {
- tex->shadow_comparitor = NULL;
- } else {
- tex->shadow_comparitor = read_rvalue(s_shadow);
- if (tex->shadow_comparitor == NULL) {
- ir_read_error(NULL, "when reading shadow comparitor in (%s ..)",
- tex->opcode_string());
- return NULL;
- }
- }
- }
-
- switch (op) {
- case ir_txb:
- tex->lod_info.bias = read_rvalue(s_lod);
- if (tex->lod_info.bias == NULL) {
- ir_read_error(NULL, "when reading LOD bias in (txb ...)");
- return NULL;
- }
- break;
- case ir_txl:
- case ir_txf:
- tex->lod_info.lod = read_rvalue(s_lod);
- if (tex->lod_info.lod == NULL) {
- ir_read_error(NULL, "when reading LOD in (%s ...)",
- tex->opcode_string());
- return NULL;
- }
- break;
- case ir_txd: {
- s_expression *s_dx, *s_dy;
- s_pattern dxdy_pat[] = { s_dx, s_dy };
- if (!MATCH(s_lod, dxdy_pat)) {
- ir_read_error(s_lod, "expected (dPdx dPdy) in (txd ...)");
- return NULL;
- }
- tex->lod_info.grad.dPdx = read_rvalue(s_dx);
- if (tex->lod_info.grad.dPdx == NULL) {
- ir_read_error(NULL, "when reading dPdx in (txd ...)");
- return NULL;
- }
- tex->lod_info.grad.dPdy = read_rvalue(s_dy);
- if (tex->lod_info.grad.dPdy == NULL) {
- ir_read_error(NULL, "when reading dPdy in (txd ...)");
- return NULL;
- }
- break;
- }
- default:
- // tex doesn't have any extra parameters.
- break;
- };
- return tex;
-}
+/*
+ * Copyright © 2010 Intel Corporation
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice (including the next
+ * paragraph) shall be included in all copies or substantial portions of the
+ * Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+ * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
+ * DEALINGS IN THE SOFTWARE.
+ */
+
+#include "ir_reader.h"
+#include "glsl_parser_extras.h"
+#include "glsl_types.h"
+#include "s_expression.h"
+
+const static bool debug = false;
+
+class ir_reader {
+public:
+ ir_reader(_mesa_glsl_parse_state *);
+
+ void read(exec_list *instructions, const char *src, bool scan_for_protos);
+
+private:
+ void *mem_ctx;
+ _mesa_glsl_parse_state *state;
+
+ void ir_read_error(s_expression *, const char *fmt, ...);
+
+ const glsl_type *read_type(s_expression *);
+
+ void scan_for_prototypes(exec_list *, s_expression *);
+ ir_function *read_function(s_expression *, bool skip_body);
+ void read_function_sig(ir_function *, s_expression *, bool skip_body);
+
+ void read_instructions(exec_list *, s_expression *, ir_loop *);
+ ir_instruction *read_instruction(s_expression *, ir_loop *);
+ ir_variable *read_declaration(s_expression *);
+ ir_if *read_if(s_expression *, ir_loop *);
+ ir_loop *read_loop(s_expression *);
+ ir_return *read_return(s_expression *);
+ ir_rvalue *read_rvalue(s_expression *);
+ ir_assignment *read_assignment(s_expression *);
+ ir_expression *read_expression(s_expression *);
+ ir_call *read_call(s_expression *);
+ ir_swizzle *read_swizzle(s_expression *);
+ ir_constant *read_constant(s_expression *);
+ ir_texture *read_texture(s_expression *);
+
+ ir_dereference *read_dereference(s_expression *);
+};
+
+ir_reader::ir_reader(_mesa_glsl_parse_state *state) : state(state)
+{
+ this->mem_ctx = state;
+}
+
+void
+_mesa_glsl_read_ir(_mesa_glsl_parse_state *state, exec_list *instructions,
+ const char *src, bool scan_for_protos)
+{
+ ir_reader r(state);
+ r.read(instructions, src, scan_for_protos);
+}
+
+void
+ir_reader::read(exec_list *instructions, const char *src, bool scan_for_protos)
+{
+ s_expression *expr = s_expression::read_expression(mem_ctx, src);
+ if (expr == NULL) {
+ ir_read_error(NULL, "couldn't parse S-Expression.");
+ return;
+ }
+
+ if (scan_for_protos) {
+ scan_for_prototypes(instructions, expr);
+ if (state->error)
+ return;
+ }
+
+ read_instructions(instructions, expr, NULL);
+ talloc_free(expr);
+
+ if (debug)
+ validate_ir_tree(instructions);
+}
+
+void
+ir_reader::ir_read_error(s_expression *expr, const char *fmt, ...)
+{
+ va_list ap;
+
+ state->error = true;
+
+ if (state->current_function != NULL)
+ state->info_log = talloc_asprintf_append(state->info_log,
+ "In function %s:\n",
+ state->current_function->function_name());
+ state->info_log = talloc_strdup_append(state->info_log, "error: ");
+
+ va_start(ap, fmt);
+ state->info_log = talloc_vasprintf_append(state->info_log, fmt, ap);
+ va_end(ap);
+ state->info_log = talloc_strdup_append(state->info_log, "\n");
+
+ if (expr != NULL) {
+ state->info_log = talloc_strdup_append(state->info_log,
+ "...in this context:\n ");
+ expr->print();
+ state->info_log = talloc_strdup_append(state->info_log, "\n\n");
+ }
+}
+
+const glsl_type *
+ir_reader::read_type(s_expression *expr)
+{
+ s_expression *s_base_type;
+ s_int *s_size;
+
+ s_pattern pat[] = { "array", s_base_type, s_size };
+ if (MATCH(expr, pat)) {
+ const glsl_type *base_type = read_type(s_base_type);
+ if (base_type == NULL) {
+ ir_read_error(NULL, "when reading base type of array type");
+ return NULL;
+ }
+
+ return glsl_type::get_array_instance(base_type, s_size->value());
+ }
+
+ s_symbol *type_sym = SX_AS_SYMBOL(expr);
+ if (type_sym == NULL) {
+ ir_read_error(expr, "expected <type>");
+ return NULL;
+ }
+
+ const glsl_type *type = state->symbols->get_type(type_sym->value());
+ if (type == NULL)
+ ir_read_error(expr, "invalid type: %s", type_sym->value());
+
+ return type;
+}
+
+
+void
+ir_reader::scan_for_prototypes(exec_list *instructions, s_expression *expr)
+{
+ s_list *list = SX_AS_LIST(expr);
+ if (list == NULL) {
+ ir_read_error(expr, "Expected (<instruction> ...); found an atom.");
+ return;
+ }
+
+ foreach_iter(exec_list_iterator, it, list->subexpressions) {
+ s_list *sub = SX_AS_LIST(it.get());
+ if (sub == NULL)
+ continue; // not a (function ...); ignore it.
+
+ s_symbol *tag = SX_AS_SYMBOL(sub->subexpressions.get_head());
+ if (tag == NULL || strcmp(tag->value(), "function") != 0)
+ continue; // not a (function ...); ignore it.
+
+ ir_function *f = read_function(sub, true);
+ if (f == NULL)
+ return;
+ instructions->push_tail(f);
+ }
+}
+
+ir_function *
+ir_reader::read_function(s_expression *expr, bool skip_body)
+{
+ bool added = false;
+ s_symbol *name;
+
+ s_pattern pat[] = { "function", name };
+ if (!PARTIAL_MATCH(expr, pat)) {
+ ir_read_error(expr, "Expected (function <name> (signature ...) ...)");
+ return NULL;
+ }
+
+ ir_function *f = state->symbols->get_function(name->value());
+ if (f == NULL) {
+ f = new(mem_ctx) ir_function(name->value());
+ added = state->symbols->add_function(f);
+ assert(added);
+ }
+
+ exec_list_iterator it = ((s_list *) expr)->subexpressions.iterator();
+ it.next(); // skip "function" tag
+ it.next(); // skip function name
+ for (/* nothing */; it.has_next(); it.next()) {
+ s_expression *s_sig = (s_expression *) it.get();
+ read_function_sig(f, s_sig, skip_body);
+ }
+ return added ? f : NULL;
+}
+
+void
+ir_reader::read_function_sig(ir_function *f, s_expression *expr, bool skip_body)
+{
+ s_expression *type_expr;
+ s_list *paramlist;
+ s_list *body_list;
+
+ s_pattern pat[] = { "signature", type_expr, paramlist, body_list };
+ if (!MATCH(expr, pat)) {
+ ir_read_error(expr, "Expected (signature <type> (parameters ...) "
+ "(<instruction> ...))");
+ return;
+ }
+
+ const glsl_type *return_type = read_type(type_expr);
+ if (return_type == NULL)
+ return;
+
+ s_symbol *paramtag = SX_AS_SYMBOL(paramlist->subexpressions.get_head());
+ if (paramtag == NULL || strcmp(paramtag->value(), "parameters") != 0) {
+ ir_read_error(paramlist, "Expected (parameters ...)");
+ return;
+ }
+
+ // Read the parameters list into a temporary place.
+ exec_list hir_parameters;
+ state->symbols->push_scope();
+
+ exec_list_iterator it = paramlist->subexpressions.iterator();
+ for (it.next() /* skip "parameters" */; it.has_next(); it.next()) {
+ ir_variable *var = read_declaration((s_expression *) it.get());
+ if (var == NULL)
+ return;
+
+ hir_parameters.push_tail(var);
+ }
+
+ ir_function_signature *sig = f->exact_matching_signature(&hir_parameters);
+ if (sig == NULL && skip_body) {
+ /* If scanning for prototypes, generate a new signature. */
+ sig = new(mem_ctx) ir_function_signature(return_type);
+ sig->is_builtin = true;
+ f->add_signature(sig);
+ } else if (sig != NULL) {
+ const char *badvar = sig->qualifiers_match(&hir_parameters);
+ if (badvar != NULL) {
+ ir_read_error(expr, "function `%s' parameter `%s' qualifiers "
+ "don't match prototype", f->name, badvar);
+ return;
+ }
+
+ if (sig->return_type != return_type) {
+ ir_read_error(expr, "function `%s' return type doesn't "
+ "match prototype", f->name);
+ return;
+ }
+ } else {
+ /* No prototype for this body exists - skip it. */
+ state->symbols->pop_scope();
+ return;
+ }
+ assert(sig != NULL);
+
+ sig->replace_parameters(&hir_parameters);
+
+ if (!skip_body && !body_list->subexpressions.is_empty()) {
+ if (sig->is_defined) {
+ ir_read_error(expr, "function %s redefined", f->name);
+ return;
+ }
+ state->current_function = sig;
+ read_instructions(&sig->body, body_list, NULL);
+ state->current_function = NULL;
+ sig->is_defined = true;
+ }
+
+ state->symbols->pop_scope();
+}
+
+void
+ir_reader::read_instructions(exec_list *instructions, s_expression *expr,
+ ir_loop *loop_ctx)
+{
+ // Read in a list of instructions
+ s_list *list = SX_AS_LIST(expr);
+ if (list == NULL) {
+ ir_read_error(expr, "Expected (<instruction> ...); found an atom.");
+ return;
+ }
+
+ foreach_iter(exec_list_iterator, it, list->subexpressions) {
+ s_expression *sub = (s_expression*) it.get();
+ ir_instruction *ir = read_instruction(sub, loop_ctx);
+ if (ir != NULL) {
+ /* Global variable declarations should be moved to the top, before
+ * any functions that might use them. Functions are added to the
+ * instruction stream when scanning for prototypes, so without this
+ * hack, they always appear before variable declarations.
+ */
+ if (state->current_function == NULL && ir->as_variable() != NULL)
+ instructions->push_head(ir);
+ else
+ instructions->push_tail(ir);
+ }
+ }
+}
+
+
+ir_instruction *
+ir_reader::read_instruction(s_expression *expr, ir_loop *loop_ctx)
+{
+ s_symbol *symbol = SX_AS_SYMBOL(expr);
+ if (symbol != NULL) {
+ if (strcmp(symbol->value(), "break") == 0 && loop_ctx != NULL)
+ return new(mem_ctx) ir_loop_jump(ir_loop_jump::jump_break);
+ if (strcmp(symbol->value(), "continue") == 0 && loop_ctx != NULL)
+ return new(mem_ctx) ir_loop_jump(ir_loop_jump::jump_continue);
+ }
+
+ s_list *list = SX_AS_LIST(expr);
+ if (list == NULL || list->subexpressions.is_empty()) {
+ ir_read_error(expr, "Invalid instruction.\n");
+ return NULL;
+ }
+
+ s_symbol *tag = SX_AS_SYMBOL(list->subexpressions.get_head());
+ if (tag == NULL) {
+ ir_read_error(expr, "expected instruction tag");
+ return NULL;
+ }
+
+ ir_instruction *inst = NULL;
+ if (strcmp(tag->value(), "declare") == 0) {
+ inst = read_declaration(list);
+ } else if (strcmp(tag->value(), "assign") == 0) {
+ inst = read_assignment(list);
+ } else if (strcmp(tag->value(), "if") == 0) {
+ inst = read_if(list, loop_ctx);
+ } else if (strcmp(tag->value(), "loop") == 0) {
+ inst = read_loop(list);
+ } else if (strcmp(tag->value(), "return") == 0) {
+ inst = read_return(list);
+ } else if (strcmp(tag->value(), "function") == 0) {
+ inst = read_function(list, false);
+ } else {
+ inst = read_rvalue(list);
+ if (inst == NULL)
+ ir_read_error(NULL, "when reading instruction");
+ }
+ return inst;
+}
+
+ir_variable *
+ir_reader::read_declaration(s_expression *expr)
+{
+ s_list *s_quals;
+ s_expression *s_type;
+ s_symbol *s_name;
+
+ s_pattern pat[] = { "declare", s_quals, s_type, s_name };
+ if (!MATCH(expr, pat)) {
+ ir_read_error(expr, "expected (declare (<qualifiers>) <type> <name>)");
+ return NULL;
+ }
+
+ const glsl_type *type = read_type(s_type);
+ if (type == NULL)
+ return NULL;
+
+ ir_variable *var = new(mem_ctx) ir_variable(type, s_name->value(),
+ ir_var_auto);
+
+ foreach_iter(exec_list_iterator, it, s_quals->subexpressions) {
+ s_symbol *qualifier = SX_AS_SYMBOL(it.get());
+ if (qualifier == NULL) {
+ ir_read_error(expr, "qualifier list must contain only symbols");
+ return NULL;
+ }
+
+ // FINISHME: Check for duplicate/conflicting qualifiers.
+ if (strcmp(qualifier->value(), "centroid") == 0) {
+ var->centroid = 1;
+ } else if (strcmp(qualifier->value(), "invariant") == 0) {
+ var->invariant = 1;
+ } else if (strcmp(qualifier->value(), "uniform") == 0) {
+ var->mode = ir_var_uniform;
+ } else if (strcmp(qualifier->value(), "auto") == 0) {
+ var->mode = ir_var_auto;
+ } else if (strcmp(qualifier->value(), "in") == 0) {
+ var->mode = ir_var_in;
+ } else if (strcmp(qualifier->value(), "out") == 0) {
+ var->mode = ir_var_out;
+ } else if (strcmp(qualifier->value(), "inout") == 0) {
+ var->mode = ir_var_inout;
+ } else if (strcmp(qualifier->value(), "smooth") == 0) {
+ var->interpolation = ir_var_smooth;
+ } else if (strcmp(qualifier->value(), "flat") == 0) {
+ var->interpolation = ir_var_flat;
+ } else if (strcmp(qualifier->value(), "noperspective") == 0) {
+ var->interpolation = ir_var_noperspective;
+ } else {
+ ir_read_error(expr, "unknown qualifier: %s", qualifier->value());
+ return NULL;
+ }
+ }
+
+ // Add the variable to the symbol table
+ state->symbols->add_variable(var);
+
+ return var;
+}
+
+
+ir_if *
+ir_reader::read_if(s_expression *expr, ir_loop *loop_ctx)
+{
+ s_expression *s_cond;
+ s_expression *s_then;
+ s_expression *s_else;
+
+ s_pattern pat[] = { "if", s_cond, s_then, s_else };
+ if (!MATCH(expr, pat)) {
+ ir_read_error(expr, "expected (if <condition> (<then>...) (<else>...))");
+ return NULL;
+ }
+
+ ir_rvalue *condition = read_rvalue(s_cond);
+ if (condition == NULL) {
+ ir_read_error(NULL, "when reading condition of (if ...)");
+ return NULL;
+ }
+
+ ir_if *iff = new(mem_ctx) ir_if(condition);
+
+ read_instructions(&iff->then_instructions, s_then, loop_ctx);
+ read_instructions(&iff->else_instructions, s_else, loop_ctx);
+ if (state->error) {
+ delete iff;
+ iff = NULL;
+ }
+ return iff;
+}
+
+
+ir_loop *
+ir_reader::read_loop(s_expression *expr)
+{
+ s_expression *s_counter, *s_from, *s_to, *s_inc, *s_body;
+
+ s_pattern pat[] = { "loop", s_counter, s_from, s_to, s_inc, s_body };
+ if (!MATCH(expr, pat)) {
+ ir_read_error(expr, "expected (loop <counter> <from> <to> "
+ "<increment> <body>)");
+ return NULL;
+ }
+
+ // FINISHME: actually read the count/from/to fields.
+
+ ir_loop *loop = new(mem_ctx) ir_loop;
+ read_instructions(&loop->body_instructions, s_body, loop);
+ if (state->error) {
+ delete loop;
+ loop = NULL;
+ }
+ return loop;
+}
+
+
+ir_return *
+ir_reader::read_return(s_expression *expr)
+{
+ s_expression *s_retval;
+
+ s_pattern pat[] = { "return", s_retval};
+ if (!MATCH(expr, pat)) {
+ ir_read_error(expr, "expected (return <rvalue>)");
+ return NULL;
+ }
+
+ ir_rvalue *retval = read_rvalue(s_retval);
+ if (retval == NULL) {
+ ir_read_error(NULL, "when reading return value");
+ return NULL;
+ }
+
+ return new(mem_ctx) ir_return(retval);
+}
+
+
+ir_rvalue *
+ir_reader::read_rvalue(s_expression *expr)
+{
+ s_list *list = SX_AS_LIST(expr);
+ if (list == NULL || list->subexpressions.is_empty())
+ return NULL;
+
+ s_symbol *tag = SX_AS_SYMBOL(list->subexpressions.get_head());
+ if (tag == NULL) {
+ ir_read_error(expr, "expected rvalue tag");
+ return NULL;
+ }
+
+ ir_rvalue *rvalue = read_dereference(list);
+ if (rvalue != NULL || state->error)
+ return rvalue;
+ else if (strcmp(tag->value(), "swiz") == 0) {
+ rvalue = read_swizzle(list);
+ } else if (strcmp(tag->value(), "expression") == 0) {
+ rvalue = read_expression(list);
+ } else if (strcmp(tag->value(), "call") == 0) {
+ rvalue = read_call(list);
+ } else if (strcmp(tag->value(), "constant") == 0) {
+ rvalue = read_constant(list);
+ } else {
+ rvalue = read_texture(list);
+ if (rvalue == NULL && !state->error)
+ ir_read_error(expr, "unrecognized rvalue tag: %s", tag->value());
+ }
+
+ return rvalue;
+}
+
+ir_assignment *
+ir_reader::read_assignment(s_expression *expr)
+{
+ s_expression *cond_expr = NULL;
+ s_expression *lhs_expr, *rhs_expr;
+ s_list *mask_list;
+
+ s_pattern pat4[] = { "assign", mask_list, lhs_expr, rhs_expr };
+ s_pattern pat5[] = { "assign", cond_expr, mask_list, lhs_expr, rhs_expr };
+ if (!MATCH(expr, pat4) && !MATCH(expr, pat5)) {
+ ir_read_error(expr, "expected (assign [<condition>] (<write mask>) "
+ "<lhs> <rhs>)");
+ return NULL;
+ }
+
+ ir_rvalue *condition = NULL;
+ if (cond_expr != NULL) {
+ condition = read_rvalue(cond_expr);
+ if (condition == NULL) {
+ ir_read_error(NULL, "when reading condition of assignment");
+ return NULL;
+ }
+ }
+
+ unsigned mask = 0;
+
+ s_symbol *mask_symbol;
+ s_pattern mask_pat[] = { mask_symbol };
+ if (MATCH(mask_list, mask_pat)) {
+ const char *mask_str = mask_symbol->value();
+ unsigned mask_length = strlen(mask_str);
+ if (mask_length > 4) {
+ ir_read_error(expr, "invalid write mask: %s", mask_str);
+ return NULL;
+ }
+
+ const unsigned idx_map[] = { 3, 0, 1, 2 }; /* w=bit 3, x=0, y=1, z=2 */
+
+ for (unsigned i = 0; i < mask_length; i++) {
+ if (mask_str[i] < 'w' || mask_str[i] > 'z') {
+ ir_read_error(expr, "write mask contains invalid character: %c",
+ mask_str[i]);
+ return NULL;
+ }
+ mask |= 1 << idx_map[mask_str[i] - 'w'];
+ }
+ } else if (!mask_list->subexpressions.is_empty()) {
+ ir_read_error(mask_list, "expected () or (<write mask>)");
+ return NULL;
+ }
+
+ ir_dereference *lhs = read_dereference(lhs_expr);
+ if (lhs == NULL) {
+ ir_read_error(NULL, "when reading left-hand side of assignment");
+ return NULL;
+ }
+
+ ir_rvalue *rhs = read_rvalue(rhs_expr);
+ if (rhs == NULL) {
+ ir_read_error(NULL, "when reading right-hand side of assignment");
+ return NULL;
+ }
+
+ if (mask == 0 && (lhs->type->is_vector() || lhs->type->is_scalar())) {
+ ir_read_error(expr, "non-zero write mask required.");
+ return NULL;
+ }
+
+ return new(mem_ctx) ir_assignment(lhs, rhs, condition, mask);
+}
+
+ir_call *
+ir_reader::read_call(s_expression *expr)
+{
+ s_symbol *name;
+ s_list *params;
+
+ s_pattern pat[] = { "call", name, params };
+ if (!MATCH(expr, pat)) {
+ ir_read_error(expr, "expected (call <name> (<param> ...))");
+ return NULL;
+ }
+
+ exec_list parameters;
+
+ foreach_iter(exec_list_iterator, it, params->subexpressions) {
+ s_expression *expr = (s_expression*) it.get();
+ ir_rvalue *param = read_rvalue(expr);
+ if (param == NULL) {
+ ir_read_error(expr, "when reading parameter to function call");
+ return NULL;
+ }
+ parameters.push_tail(param);
+ }
+
+ ir_function *f = state->symbols->get_function(name->value());
+ if (f == NULL) {
+ ir_read_error(expr, "found call to undefined function %s",
+ name->value());
+ return NULL;
+ }
+
+ ir_function_signature *callee = f->matching_signature(&parameters);
+ if (callee == NULL) {
+ ir_read_error(expr, "couldn't find matching signature for function "
+ "%s", name->value());
+ return NULL;
+ }
+
+ return new(mem_ctx) ir_call(callee, &parameters);
+}
+
+ir_expression *
+ir_reader::read_expression(s_expression *expr)
+{
+ s_expression *s_type;
+ s_symbol *s_op;
+ s_expression *s_arg1;
+
+ s_pattern pat[] = { "expression", s_type, s_op, s_arg1 };
+ if (!PARTIAL_MATCH(expr, pat)) {
+ ir_read_error(expr, "expected (expression <type> <operator> "
+ "<operand> [<operand>])");
+ return NULL;
+ }
+ s_expression *s_arg2 = (s_expression *) s_arg1->next; // may be tail sentinel
+
+ const glsl_type *type = read_type(s_type);
+ if (type == NULL)
+ return NULL;
+
+ /* Read the operator */
+ ir_expression_operation op = ir_expression::get_operator(s_op->value());
+ if (op == (ir_expression_operation) -1) {
+ ir_read_error(expr, "invalid operator: %s", s_op->value());
+ return NULL;
+ }
+
+ unsigned num_operands = ir_expression::get_num_operands(op);
+ if (num_operands == 1 && !s_arg1->next->is_tail_sentinel()) {
+ ir_read_error(expr, "expected (expression <type> %s <operand>)",
+ s_op->value());
+ return NULL;
+ }
+
+ ir_rvalue *arg1 = read_rvalue(s_arg1);
+ ir_rvalue *arg2 = NULL;
+ if (arg1 == NULL) {
+ ir_read_error(NULL, "when reading first operand of %s", s_op->value());
+ return NULL;
+ }
+
+ if (num_operands == 2) {
+ if (s_arg2->is_tail_sentinel() || !s_arg2->next->is_tail_sentinel()) {
+ ir_read_error(expr, "expected (expression <type> %s <operand> "
+ "<operand>)", s_op->value());
+ return NULL;
+ }
+ arg2 = read_rvalue(s_arg2);
+ if (arg2 == NULL) {
+ ir_read_error(NULL, "when reading second operand of %s",
+ s_op->value());
+ return NULL;
+ }
+ }
+
+ return new(mem_ctx) ir_expression(op, type, arg1, arg2);
+}
+
+ir_swizzle *
+ir_reader::read_swizzle(s_expression *expr)
+{
+ s_symbol *swiz;
+ s_expression *sub;
+
+ s_pattern pat[] = { "swiz", swiz, sub };
+ if (!MATCH(expr, pat)) {
+ ir_read_error(expr, "expected (swiz <swizzle> <rvalue>)");
+ return NULL;
+ }
+
+ if (strlen(swiz->value()) > 4) {
+ ir_read_error(expr, "expected a valid swizzle; found %s", swiz->value());
+ return NULL;
+ }
+
+ ir_rvalue *rvalue = read_rvalue(sub);
+ if (rvalue == NULL)
+ return NULL;
+
+ ir_swizzle *ir = ir_swizzle::create(rvalue, swiz->value(),
+ rvalue->type->vector_elements);
+ if (ir == NULL)
+ ir_read_error(expr, "invalid swizzle");
+
+ return ir;
+}
+
+ir_constant *
+ir_reader::read_constant(s_expression *expr)
+{
+ s_expression *type_expr;
+ s_list *values;
+
+ s_pattern pat[] = { "constant", type_expr, values };
+ if (!MATCH(expr, pat)) {
+ ir_read_error(expr, "expected (constant <type> (...))");
+ return NULL;
+ }
+
+ const glsl_type *type = read_type(type_expr);
+ if (type == NULL)
+ return NULL;
+
+ if (values == NULL) {
+ ir_read_error(expr, "expected (constant <type> (...))");
+ return NULL;
+ }
+
+ if (type->is_array()) {
+ unsigned elements_supplied = 0;
+ exec_list elements;
+ foreach_iter(exec_list_iterator, it, values->subexpressions) {
+ s_expression *elt = (s_expression *) it.get();
+ ir_constant *ir_elt = read_constant(elt);
+ if (ir_elt == NULL)
+ return NULL;
+ elements.push_tail(ir_elt);
+ elements_supplied++;
+ }
+
+ if (elements_supplied != type->length) {
+ ir_read_error(values, "expected exactly %u array elements, "
+ "given %u", type->length, elements_supplied);
+ return NULL;
+ }
+ return new(mem_ctx) ir_constant(type, &elements);
+ }
+
+ const glsl_type *const base_type = type->get_base_type();
+
+ ir_constant_data data = { { 0 } };
+
+ // Read in list of values (at most 16).
+ int k = 0;
+ foreach_iter(exec_list_iterator, it, values->subexpressions) {
+ if (k >= 16) {
+ ir_read_error(values, "expected at most 16 numbers");
+ return NULL;
+ }
+
+ s_expression *expr = (s_expression*) it.get();
+
+ if (base_type->base_type == GLSL_TYPE_FLOAT) {
+ s_number *value = SX_AS_NUMBER(expr);
+ if (value == NULL) {
+ ir_read_error(values, "expected numbers");
+ return NULL;
+ }
+ data.f[k] = value->fvalue();
+ } else {
+ s_int *value = SX_AS_INT(expr);
+ if (value == NULL) {
+ ir_read_error(values, "expected integers");
+ return NULL;
+ }
+
+ switch (base_type->base_type) {
+ case GLSL_TYPE_UINT: {
+ data.u[k] = value->value();
+ break;
+ }
+ case GLSL_TYPE_INT: {
+ data.i[k] = value->value();
+ break;
+ }
+ case GLSL_TYPE_BOOL: {
+ data.b[k] = value->value();
+ break;
+ }
+ default:
+ ir_read_error(values, "unsupported constant type");
+ return NULL;
+ }
+ }
+ ++k;
+ }
+
+ return new(mem_ctx) ir_constant(type, &data);
+}
+
+ir_dereference *
+ir_reader::read_dereference(s_expression *expr)
+{
+ s_symbol *s_var;
+ s_expression *s_subject;
+ s_expression *s_index;
+ s_symbol *s_field;
+
+ s_pattern var_pat[] = { "var_ref", s_var };
+ s_pattern array_pat[] = { "array_ref", s_subject, s_index };
+ s_pattern record_pat[] = { "record_ref", s_subject, s_field };
+
+ if (MATCH(expr, var_pat)) {
+ ir_variable *var = state->symbols->get_variable(s_var->value());
+ if (var == NULL) {
+ ir_read_error(expr, "undeclared variable: %s", s_var->value());
+ return NULL;
+ }
+ return new(mem_ctx) ir_dereference_variable(var);
+ } else if (MATCH(expr, array_pat)) {
+ ir_rvalue *subject = read_rvalue(s_subject);
+ if (subject == NULL) {
+ ir_read_error(NULL, "when reading the subject of an array_ref");
+ return NULL;
+ }
+
+ ir_rvalue *idx = read_rvalue(s_index);
+ if (subject == NULL) {
+ ir_read_error(NULL, "when reading the index of an array_ref");
+ return NULL;
+ }
+ return new(mem_ctx) ir_dereference_array(subject, idx);
+ } else if (MATCH(expr, record_pat)) {
+ ir_rvalue *subject = read_rvalue(s_subject);
+ if (subject == NULL) {
+ ir_read_error(NULL, "when reading the subject of a record_ref");
+ return NULL;
+ }
+ return new(mem_ctx) ir_dereference_record(subject, s_field->value());
+ }
+ return NULL;
+}
+
+ir_texture *
+ir_reader::read_texture(s_expression *expr)
+{
+ s_symbol *tag = NULL;
+ s_expression *s_sampler = NULL;
+ s_expression *s_coord = NULL;
+ s_list *s_offset = NULL;
+ s_expression *s_proj = NULL;
+ s_list *s_shadow = NULL;
+ s_expression *s_lod = NULL;
+
+ ir_texture_opcode op = ir_tex; /* silence warning */
+
+ s_pattern tex_pattern[] =
+ { "tex", s_sampler, s_coord, s_offset, s_proj, s_shadow };
+ s_pattern txf_pattern[] =
+ { "txf", s_sampler, s_coord, s_offset, s_lod };
+ s_pattern other_pattern[] =
+ { tag, s_sampler, s_coord, s_offset, s_proj, s_shadow, s_lod };
+
+ if (MATCH(expr, tex_pattern)) {
+ op = ir_tex;
+ } else if (MATCH(expr, txf_pattern)) {
+ op = ir_txf;
+ } else if (MATCH(expr, other_pattern)) {
+ op = ir_texture::get_opcode(tag->value());
+ if (op == -1)
+ return NULL;
+ } else {
+ ir_read_error(NULL, "unexpected texture pattern");
+ return NULL;
+ }
+
+ ir_texture *tex = new(mem_ctx) ir_texture(op);
+
+ // Read sampler (must be a deref)
+ ir_dereference *sampler = read_dereference(s_sampler);
+ if (sampler == NULL) {
+ ir_read_error(NULL, "when reading sampler in (%s ...)",
+ tex->opcode_string());
+ return NULL;
+ }
+ tex->set_sampler(sampler);
+
+ // Read coordinate (any rvalue)
+ tex->coordinate = read_rvalue(s_coord);
+ if (tex->coordinate == NULL) {
+ ir_read_error(NULL, "when reading coordinate in (%s ...)",
+ tex->opcode_string());
+ return NULL;
+ }
+
+ // Read texel offset, i.e. (0 0 0)
+ s_int *offset_x;
+ s_int *offset_y;
+ s_int *offset_z;
+ s_pattern offset_pat[] = { offset_x, offset_y, offset_z };
+ if (!MATCH(s_offset, offset_pat)) {
+ ir_read_error(s_offset, "expected (<int> <int> <int>)");
+ return NULL;
+ }
+ tex->offsets[0] = offset_x->value();
+ tex->offsets[1] = offset_y->value();
+ tex->offsets[2] = offset_z->value();
+
+ if (op != ir_txf) {
+ s_int *proj_as_int = SX_AS_INT(s_proj);
+ if (proj_as_int && proj_as_int->value() == 1) {
+ tex->projector = NULL;
+ } else {
+ tex->projector = read_rvalue(s_proj);
+ if (tex->projector == NULL) {
+ ir_read_error(NULL, "when reading projective divide in (%s ..)",
+ tex->opcode_string());
+ return NULL;
+ }
+ }
+
+ if (s_shadow->subexpressions.is_empty()) {
+ tex->shadow_comparitor = NULL;
+ } else {
+ tex->shadow_comparitor = read_rvalue(s_shadow);
+ if (tex->shadow_comparitor == NULL) {
+ ir_read_error(NULL, "when reading shadow comparitor in (%s ..)",
+ tex->opcode_string());
+ return NULL;
+ }
+ }
+ }
+
+ switch (op) {
+ case ir_txb:
+ tex->lod_info.bias = read_rvalue(s_lod);
+ if (tex->lod_info.bias == NULL) {
+ ir_read_error(NULL, "when reading LOD bias in (txb ...)");
+ return NULL;
+ }
+ break;
+ case ir_txl:
+ case ir_txf:
+ tex->lod_info.lod = read_rvalue(s_lod);
+ if (tex->lod_info.lod == NULL) {
+ ir_read_error(NULL, "when reading LOD in (%s ...)",
+ tex->opcode_string());
+ return NULL;
+ }
+ break;
+ case ir_txd: {
+ s_expression *s_dx, *s_dy;
+ s_pattern dxdy_pat[] = { s_dx, s_dy };
+ if (!MATCH(s_lod, dxdy_pat)) {
+ ir_read_error(s_lod, "expected (dPdx dPdy) in (txd ...)");
+ return NULL;
+ }
+ tex->lod_info.grad.dPdx = read_rvalue(s_dx);
+ if (tex->lod_info.grad.dPdx == NULL) {
+ ir_read_error(NULL, "when reading dPdx in (txd ...)");
+ return NULL;
+ }
+ tex->lod_info.grad.dPdy = read_rvalue(s_dy);
+ if (tex->lod_info.grad.dPdy == NULL) {
+ ir_read_error(NULL, "when reading dPdy in (txd ...)");
+ return NULL;
+ }
+ break;
+ }
+ default:
+ // tex doesn't have any extra parameters.
+ break;
+ };
+ return tex;
+}
diff --git a/mesalib/src/glsl/link_functions.cpp b/mesalib/src/glsl/link_functions.cpp
index ea9129fe3..861fa39b5 100644
--- a/mesalib/src/glsl/link_functions.cpp
+++ b/mesalib/src/glsl/link_functions.cpp
@@ -1,258 +1,270 @@
-/*
- * Copyright © 2010 Intel Corporation
- *
- * Permission is hereby granted, free of charge, to any person obtaining a
- * copy of this software and associated documentation files (the "Software"),
- * to deal in the Software without restriction, including without limitation
- * the rights to use, copy, modify, merge, publish, distribute, sublicense,
- * and/or sell copies of the Software, and to permit persons to whom the
- * Software is furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice (including the next
- * paragraph) shall be included in all copies or substantial portions of the
- * Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
- * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
- * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
- * DEALINGS IN THE SOFTWARE.
- */
-
-#include <cstdlib>
-#include <cstdio>
-#include <cstdarg>
-
-#include "main/core.h"
-#include "glsl_symbol_table.h"
-#include "glsl_parser_extras.h"
-#include "ir.h"
-#include "program.h"
-#include "program/hash_table.h"
-#include "linker.h"
-
-static ir_function_signature *
-find_matching_signature(const char *name, const exec_list *actual_parameters,
- gl_shader **shader_list, unsigned num_shaders);
-
-class call_link_visitor : public ir_hierarchical_visitor {
-public:
- call_link_visitor(gl_shader_program *prog, gl_shader *linked,
- gl_shader **shader_list, unsigned num_shaders)
- {
- this->prog = prog;
- this->shader_list = shader_list;
- this->num_shaders = num_shaders;
- this->success = true;
- this->linked = linked;
-
- this->locals = hash_table_ctor(0, hash_table_pointer_hash,
- hash_table_pointer_compare);
- }
-
- ~call_link_visitor()
- {
- hash_table_dtor(this->locals);
- }
-
- virtual ir_visitor_status visit(ir_variable *ir)
- {
- hash_table_insert(locals, ir, ir);
- return visit_continue;
- }
-
- virtual ir_visitor_status visit_enter(ir_call *ir)
- {
- /* If ir is an ir_call from a function that was imported from another
- * shader callee will point to an ir_function_signature in the original
- * shader. In this case the function signature MUST NOT BE MODIFIED.
- * Doing so will modify the original shader. This may prevent that
- * shader from being linkable in other programs.
- */
- const ir_function_signature *const callee = ir->get_callee();
- assert(callee != NULL);
- const char *const name = callee->function_name();
-
- /* Determine if the requested function signature already exists in the
- * final linked shader. If it does, use it as the target of the call.
- */
- ir_function_signature *sig =
- find_matching_signature(name, &callee->parameters, &linked, 1);
- if (sig != NULL) {
- ir->set_callee(sig);
- return visit_continue;
- }
-
- /* Try to find the signature in one of the other shaders that is being
- * linked. If it's not found there, return an error.
- */
- sig = find_matching_signature(name, &ir->actual_parameters, shader_list,
- num_shaders);
- if (sig == NULL) {
- /* FINISHME: Log the full signature of unresolved function.
- */
- linker_error_printf(this->prog, "unresolved reference to function "
- "`%s'\n", name);
- this->success = false;
- return visit_stop;
- }
-
- /* Find the prototype information in the linked shader. Generate any
- * details that may be missing.
- */
- ir_function *f = linked->symbols->get_function(name);
- if (f == NULL)
- f = new(linked) ir_function(name);
-
- ir_function_signature *linked_sig =
- f->exact_matching_signature(&callee->parameters);
- if (linked_sig == NULL) {
- linked_sig = new(linked) ir_function_signature(callee->return_type);
- f->add_signature(linked_sig);
- }
-
- /* At this point linked_sig and called may be the same. If ir is an
- * ir_call from linked then linked_sig and callee will be
- * ir_function_signatures that have no definitions (is_defined is false).
- */
- assert(!linked_sig->is_defined);
- assert(linked_sig->body.is_empty());
-
- /* Create an in-place clone of the function definition. This multistep
- * process introduces some complexity here, but it has some advantages.
- * The parameter list and the and function body are cloned separately.
- * The clone of the parameter list is used to prime the hashtable used
- * to replace variable references in the cloned body.
- *
- * The big advantage is that the ir_function_signature does not change.
- * This means that we don't have to process the rest of the IR tree to
- * patch ir_call nodes. In addition, there is no way to remove or
- * replace signature stored in a function. One could easily be added,
- * but this avoids the need.
- */
- struct hash_table *ht = hash_table_ctor(0, hash_table_pointer_hash,
- hash_table_pointer_compare);
- exec_list formal_parameters;
- foreach_list_const(node, &sig->parameters) {
- const ir_instruction *const original = (ir_instruction *) node;
- assert(const_cast<ir_instruction *>(original)->as_variable());
-
- ir_instruction *copy = original->clone(linked, ht);
- formal_parameters.push_tail(copy);
- }
-
- linked_sig->replace_parameters(&formal_parameters);
-
- foreach_list_const(node, &sig->body) {
- const ir_instruction *const original = (ir_instruction *) node;
-
- ir_instruction *copy = original->clone(linked, ht);
- linked_sig->body.push_tail(copy);
- }
-
- linked_sig->is_defined = true;
- hash_table_dtor(ht);
-
- /* Patch references inside the function to things outside the function
- * (i.e., function calls and global variables).
- */
- linked_sig->accept(this);
-
- ir->set_callee(linked_sig);
-
- return visit_continue;
- }
-
- virtual ir_visitor_status visit(ir_dereference_variable *ir)
- {
- if (hash_table_find(locals, ir->var) == NULL) {
- /* The non-function variable must be a global, so try to find the
- * variable in the shader's symbol table. If the variable is not
- * found, then it's a global that *MUST* be defined in the original
- * shader.
- */
- ir_variable *var = linked->symbols->get_variable(ir->var->name);
- if (var == NULL) {
- /* Clone the ir_variable that the dereference already has and add
- * it to the linked shader.
- */
- var = ir->var->clone(linked, NULL);
- linked->symbols->add_variable(var);
- linked->ir->push_head(var);
- }
-
- ir->var = var;
- }
-
- return visit_continue;
- }
-
- /** Was function linking successful? */
- bool success;
-
-private:
- /**
- * Shader program being linked
- *
- * This is only used for logging error messages.
- */
- gl_shader_program *prog;
-
- /** List of shaders available for linking. */
- gl_shader **shader_list;
-
- /** Number of shaders available for linking. */
- unsigned num_shaders;
-
- /**
- * Final linked shader
- *
- * This is used two ways. It is used to find global variables in the
- * linked shader that are accessed by the function. It is also used to add
- * global variables from the shader where the function originated.
- */
- gl_shader *linked;
-
- /**
- * Table of variables local to the function.
- */
- hash_table *locals;
-};
-
-
-/**
- * Searches a list of shaders for a particular function definition
- */
-ir_function_signature *
-find_matching_signature(const char *name, const exec_list *actual_parameters,
- gl_shader **shader_list, unsigned num_shaders)
-{
- for (unsigned i = 0; i < num_shaders; i++) {
- ir_function *const f = shader_list[i]->symbols->get_function(name);
-
- if (f == NULL)
- continue;
-
- ir_function_signature *sig = f->matching_signature(actual_parameters);
-
- if ((sig == NULL) || !sig->is_defined)
- continue;
-
- return sig;
- }
-
- return NULL;
-}
-
-
-bool
-link_function_calls(gl_shader_program *prog, gl_shader *main,
- gl_shader **shader_list, unsigned num_shaders)
-{
- call_link_visitor v(prog, main, shader_list, num_shaders);
-
- v.run(main->ir);
- return v.success;
-}
+/*
+ * Copyright © 2010 Intel Corporation
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice (including the next
+ * paragraph) shall be included in all copies or substantial portions of the
+ * Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+ * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
+ * DEALINGS IN THE SOFTWARE.
+ */
+
+#include <cstdlib>
+#include <cstdio>
+#include <cstdarg>
+
+#include "main/core.h"
+#include "glsl_symbol_table.h"
+#include "glsl_parser_extras.h"
+#include "ir.h"
+#include "program.h"
+#include "program/hash_table.h"
+#include "linker.h"
+
+static ir_function_signature *
+find_matching_signature(const char *name, const exec_list *actual_parameters,
+ gl_shader **shader_list, unsigned num_shaders);
+
+class call_link_visitor : public ir_hierarchical_visitor {
+public:
+ call_link_visitor(gl_shader_program *prog, gl_shader *linked,
+ gl_shader **shader_list, unsigned num_shaders)
+ {
+ this->prog = prog;
+ this->shader_list = shader_list;
+ this->num_shaders = num_shaders;
+ this->success = true;
+ this->linked = linked;
+
+ this->locals = hash_table_ctor(0, hash_table_pointer_hash,
+ hash_table_pointer_compare);
+ }
+
+ ~call_link_visitor()
+ {
+ hash_table_dtor(this->locals);
+ }
+
+ virtual ir_visitor_status visit(ir_variable *ir)
+ {
+ hash_table_insert(locals, ir, ir);
+ return visit_continue;
+ }
+
+ virtual ir_visitor_status visit_enter(ir_call *ir)
+ {
+ /* If ir is an ir_call from a function that was imported from another
+ * shader callee will point to an ir_function_signature in the original
+ * shader. In this case the function signature MUST NOT BE MODIFIED.
+ * Doing so will modify the original shader. This may prevent that
+ * shader from being linkable in other programs.
+ */
+ const ir_function_signature *const callee = ir->get_callee();
+ assert(callee != NULL);
+ const char *const name = callee->function_name();
+
+ /* Determine if the requested function signature already exists in the
+ * final linked shader. If it does, use it as the target of the call.
+ */
+ ir_function_signature *sig =
+ find_matching_signature(name, &callee->parameters, &linked, 1);
+ if (sig != NULL) {
+ ir->set_callee(sig);
+ return visit_continue;
+ }
+
+ /* Try to find the signature in one of the other shaders that is being
+ * linked. If it's not found there, return an error.
+ */
+ sig = find_matching_signature(name, &ir->actual_parameters, shader_list,
+ num_shaders);
+ if (sig == NULL) {
+ /* FINISHME: Log the full signature of unresolved function.
+ */
+ linker_error_printf(this->prog, "unresolved reference to function "
+ "`%s'\n", name);
+ this->success = false;
+ return visit_stop;
+ }
+
+ /* Find the prototype information in the linked shader. Generate any
+ * details that may be missing.
+ */
+ ir_function *f = linked->symbols->get_function(name);
+ if (f == NULL)
+ f = new(linked) ir_function(name);
+
+ ir_function_signature *linked_sig =
+ f->exact_matching_signature(&callee->parameters);
+ if (linked_sig == NULL) {
+ linked_sig = new(linked) ir_function_signature(callee->return_type);
+ f->add_signature(linked_sig);
+ }
+
+ /* At this point linked_sig and called may be the same. If ir is an
+ * ir_call from linked then linked_sig and callee will be
+ * ir_function_signatures that have no definitions (is_defined is false).
+ */
+ assert(!linked_sig->is_defined);
+ assert(linked_sig->body.is_empty());
+
+ /* Create an in-place clone of the function definition. This multistep
+ * process introduces some complexity here, but it has some advantages.
+ * The parameter list and the and function body are cloned separately.
+ * The clone of the parameter list is used to prime the hashtable used
+ * to replace variable references in the cloned body.
+ *
+ * The big advantage is that the ir_function_signature does not change.
+ * This means that we don't have to process the rest of the IR tree to
+ * patch ir_call nodes. In addition, there is no way to remove or
+ * replace signature stored in a function. One could easily be added,
+ * but this avoids the need.
+ */
+ struct hash_table *ht = hash_table_ctor(0, hash_table_pointer_hash,
+ hash_table_pointer_compare);
+ exec_list formal_parameters;
+ foreach_list_const(node, &sig->parameters) {
+ const ir_instruction *const original = (ir_instruction *) node;
+ assert(const_cast<ir_instruction *>(original)->as_variable());
+
+ ir_instruction *copy = original->clone(linked, ht);
+ formal_parameters.push_tail(copy);
+ }
+
+ linked_sig->replace_parameters(&formal_parameters);
+
+ foreach_list_const(node, &sig->body) {
+ const ir_instruction *const original = (ir_instruction *) node;
+
+ ir_instruction *copy = original->clone(linked, ht);
+ linked_sig->body.push_tail(copy);
+ }
+
+ linked_sig->is_defined = true;
+ hash_table_dtor(ht);
+
+ /* Patch references inside the function to things outside the function
+ * (i.e., function calls and global variables).
+ */
+ linked_sig->accept(this);
+
+ ir->set_callee(linked_sig);
+
+ return visit_continue;
+ }
+
+ virtual ir_visitor_status visit(ir_dereference_variable *ir)
+ {
+ if (hash_table_find(locals, ir->var) == NULL) {
+ /* The non-function variable must be a global, so try to find the
+ * variable in the shader's symbol table. If the variable is not
+ * found, then it's a global that *MUST* be defined in the original
+ * shader.
+ */
+ ir_variable *var = linked->symbols->get_variable(ir->var->name);
+ if (var == NULL) {
+ /* Clone the ir_variable that the dereference already has and add
+ * it to the linked shader.
+ */
+ var = ir->var->clone(linked, NULL);
+ linked->symbols->add_variable(var);
+ linked->ir->push_head(var);
+ } else if (var->type->is_array()) {
+ /* It is possible to have a global array declared in multiple
+ * shaders without a size. The array is implicitly sized by the
+ * maximal access to it in *any* shader. Because of this, we
+ * need to track the maximal access to the array as linking pulls
+ * more functions in that access the array.
+ */
+ var->max_array_access =
+ MAX2(var->max_array_access, ir->var->max_array_access);
+
+ if (var->type->length == 0 && ir->var->type->length != 0)
+ var->type = ir->var->type;
+ }
+
+ ir->var = var;
+ }
+
+ return visit_continue;
+ }
+
+ /** Was function linking successful? */
+ bool success;
+
+private:
+ /**
+ * Shader program being linked
+ *
+ * This is only used for logging error messages.
+ */
+ gl_shader_program *prog;
+
+ /** List of shaders available for linking. */
+ gl_shader **shader_list;
+
+ /** Number of shaders available for linking. */
+ unsigned num_shaders;
+
+ /**
+ * Final linked shader
+ *
+ * This is used two ways. It is used to find global variables in the
+ * linked shader that are accessed by the function. It is also used to add
+ * global variables from the shader where the function originated.
+ */
+ gl_shader *linked;
+
+ /**
+ * Table of variables local to the function.
+ */
+ hash_table *locals;
+};
+
+
+/**
+ * Searches a list of shaders for a particular function definition
+ */
+ir_function_signature *
+find_matching_signature(const char *name, const exec_list *actual_parameters,
+ gl_shader **shader_list, unsigned num_shaders)
+{
+ for (unsigned i = 0; i < num_shaders; i++) {
+ ir_function *const f = shader_list[i]->symbols->get_function(name);
+
+ if (f == NULL)
+ continue;
+
+ ir_function_signature *sig = f->matching_signature(actual_parameters);
+
+ if ((sig == NULL) || !sig->is_defined)
+ continue;
+
+ return sig;
+ }
+
+ return NULL;
+}
+
+
+bool
+link_function_calls(gl_shader_program *prog, gl_shader *main,
+ gl_shader **shader_list, unsigned num_shaders)
+{
+ call_link_visitor v(prog, main, shader_list, num_shaders);
+
+ v.run(main->ir);
+ return v.success;
+}
diff --git a/mesalib/src/glsl/linker.cpp b/mesalib/src/glsl/linker.cpp
index 9f4b4149c..bf7a56353 100644
--- a/mesalib/src/glsl/linker.cpp
+++ b/mesalib/src/glsl/linker.cpp
@@ -1,1676 +1,1672 @@
-/*
- * Copyright © 2010 Intel Corporation
- *
- * Permission is hereby granted, free of charge, to any person obtaining a
- * copy of this software and associated documentation files (the "Software"),
- * to deal in the Software without restriction, including without limitation
- * the rights to use, copy, modify, merge, publish, distribute, sublicense,
- * and/or sell copies of the Software, and to permit persons to whom the
- * Software is furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice (including the next
- * paragraph) shall be included in all copies or substantial portions of the
- * Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
- * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
- * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
- * DEALINGS IN THE SOFTWARE.
- */
-
-/**
- * \file linker.cpp
- * GLSL linker implementation
- *
- * Given a set of shaders that are to be linked to generate a final program,
- * there are three distinct stages.
- *
- * In the first stage shaders are partitioned into groups based on the shader
- * type. All shaders of a particular type (e.g., vertex shaders) are linked
- * together.
- *
- * - Undefined references in each shader are resolve to definitions in
- * another shader.
- * - Types and qualifiers of uniforms, outputs, and global variables defined
- * in multiple shaders with the same name are verified to be the same.
- * - Initializers for uniforms and global variables defined
- * in multiple shaders with the same name are verified to be the same.
- *
- * The result, in the terminology of the GLSL spec, is a set of shader
- * executables for each processing unit.
- *
- * After the first stage is complete, a series of semantic checks are performed
- * on each of the shader executables.
- *
- * - Each shader executable must define a \c main function.
- * - Each vertex shader executable must write to \c gl_Position.
- * - Each fragment shader executable must write to either \c gl_FragData or
- * \c gl_FragColor.
- *
- * In the final stage individual shader executables are linked to create a
- * complete exectuable.
- *
- * - Types of uniforms defined in multiple shader stages with the same name
- * are verified to be the same.
- * - Initializers for uniforms defined in multiple shader stages with the
- * same name are verified to be the same.
- * - Types and qualifiers of outputs defined in one stage are verified to
- * be the same as the types and qualifiers of inputs defined with the same
- * name in a later stage.
- *
- * \author Ian Romanick <ian.d.romanick@intel.com>
- */
-#include <cstdlib>
-#include <cstdio>
-#include <cstdarg>
-#include <climits>
-
-#include "main/core.h"
-#include "glsl_symbol_table.h"
-#include "ir.h"
-#include "program.h"
-#include "program/hash_table.h"
-#include "linker.h"
-#include "ir_optimization.h"
-
-extern "C" {
-#include "main/shaderobj.h"
-}
-
-/**
- * Visitor that determines whether or not a variable is ever written.
- */
-class find_assignment_visitor : public ir_hierarchical_visitor {
-public:
- find_assignment_visitor(const char *name)
- : name(name), found(false)
- {
- /* empty */
- }
-
- virtual ir_visitor_status visit_enter(ir_assignment *ir)
- {
- ir_variable *const var = ir->lhs->variable_referenced();
-
- if (strcmp(name, var->name) == 0) {
- found = true;
- return visit_stop;
- }
-
- return visit_continue_with_parent;
- }
-
- virtual ir_visitor_status visit_enter(ir_call *ir)
- {
- exec_list_iterator sig_iter = ir->get_callee()->parameters.iterator();
- foreach_iter(exec_list_iterator, iter, *ir) {
- ir_rvalue *param_rval = (ir_rvalue *)iter.get();
- ir_variable *sig_param = (ir_variable *)sig_iter.get();
-
- if (sig_param->mode == ir_var_out ||
- sig_param->mode == ir_var_inout) {
- ir_variable *var = param_rval->variable_referenced();
- if (var && strcmp(name, var->name) == 0) {
- found = true;
- return visit_stop;
- }
- }
- sig_iter.next();
- }
-
- return visit_continue_with_parent;
- }
-
- bool variable_found()
- {
- return found;
- }
-
-private:
- const char *name; /**< Find writes to a variable with this name. */
- bool found; /**< Was a write to the variable found? */
-};
-
-
-/**
- * Visitor that determines whether or not a variable is ever read.
- */
-class find_deref_visitor : public ir_hierarchical_visitor {
-public:
- find_deref_visitor(const char *name)
- : name(name), found(false)
- {
- /* empty */
- }
-
- virtual ir_visitor_status visit(ir_dereference_variable *ir)
- {
- if (strcmp(this->name, ir->var->name) == 0) {
- this->found = true;
- return visit_stop;
- }
-
- return visit_continue;
- }
-
- bool variable_found() const
- {
- return this->found;
- }
-
-private:
- const char *name; /**< Find writes to a variable with this name. */
- bool found; /**< Was a write to the variable found? */
-};
-
-
-void
-linker_error_printf(gl_shader_program *prog, const char *fmt, ...)
-{
- va_list ap;
-
- prog->InfoLog = talloc_strdup_append(prog->InfoLog, "error: ");
- va_start(ap, fmt);
- prog->InfoLog = talloc_vasprintf_append(prog->InfoLog, fmt, ap);
- va_end(ap);
-}
-
-
-void
-invalidate_variable_locations(gl_shader *sh, enum ir_variable_mode mode,
- int generic_base)
-{
- foreach_list(node, sh->ir) {
- ir_variable *const var = ((ir_instruction *) node)->as_variable();
-
- if ((var == NULL) || (var->mode != (unsigned) mode))
- continue;
-
- /* Only assign locations for generic attributes / varyings / etc.
- */
- if ((var->location >= generic_base) && !var->explicit_location)
- var->location = -1;
- }
-}
-
-
-/**
- * Determine the number of attribute slots required for a particular type
- *
- * This code is here because it implements the language rules of a specific
- * GLSL version. Since it's a property of the language and not a property of
- * types in general, it doesn't really belong in glsl_type.
- */
-unsigned
-count_attribute_slots(const glsl_type *t)
-{
- /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
- *
- * "A scalar input counts the same amount against this limit as a vec4,
- * so applications may want to consider packing groups of four
- * unrelated float inputs together into a vector to better utilize the
- * capabilities of the underlying hardware. A matrix input will use up
- * multiple locations. The number of locations used will equal the
- * number of columns in the matrix."
- *
- * The spec does not explicitly say how arrays are counted. However, it
- * should be safe to assume the total number of slots consumed by an array
- * is the number of entries in the array multiplied by the number of slots
- * consumed by a single element of the array.
- */
-
- if (t->is_array())
- return t->array_size() * count_attribute_slots(t->element_type());
-
- if (t->is_matrix())
- return t->matrix_columns;
-
- return 1;
-}
-
-
-/**
- * Verify that a vertex shader executable meets all semantic requirements
- *
- * \param shader Vertex shader executable to be verified
- */
-bool
-validate_vertex_shader_executable(struct gl_shader_program *prog,
- struct gl_shader *shader)
-{
- if (shader == NULL)
- return true;
-
- find_assignment_visitor find("gl_Position");
- find.run(shader->ir);
- if (!find.variable_found()) {
- linker_error_printf(prog,
- "vertex shader does not write to `gl_Position'\n");
- return false;
- }
-
- return true;
-}
-
-
-/**
- * Verify that a fragment shader executable meets all semantic requirements
- *
- * \param shader Fragment shader executable to be verified
- */
-bool
-validate_fragment_shader_executable(struct gl_shader_program *prog,
- struct gl_shader *shader)
-{
- if (shader == NULL)
- return true;
-
- find_assignment_visitor frag_color("gl_FragColor");
- find_assignment_visitor frag_data("gl_FragData");
-
- frag_color.run(shader->ir);
- frag_data.run(shader->ir);
-
- if (frag_color.variable_found() && frag_data.variable_found()) {
- linker_error_printf(prog, "fragment shader writes to both "
- "`gl_FragColor' and `gl_FragData'\n");
- return false;
- }
-
- return true;
-}
-
-
-/**
- * Generate a string describing the mode of a variable
- */
-static const char *
-mode_string(const ir_variable *var)
-{
- switch (var->mode) {
- case ir_var_auto:
- return (var->read_only) ? "global constant" : "global variable";
-
- case ir_var_uniform: return "uniform";
- case ir_var_in: return "shader input";
- case ir_var_out: return "shader output";
- case ir_var_inout: return "shader inout";
-
- case ir_var_temporary:
- default:
- assert(!"Should not get here.");
- return "invalid variable";
- }
-}
-
-
-/**
- * Perform validation of global variables used across multiple shaders
- */
-bool
-cross_validate_globals(struct gl_shader_program *prog,
- struct gl_shader **shader_list,
- unsigned num_shaders,
- bool uniforms_only)
-{
- /* Examine all of the uniforms in all of the shaders and cross validate
- * them.
- */
- glsl_symbol_table variables;
- for (unsigned i = 0; i < num_shaders; i++) {
- if (shader_list[i] == NULL)
- continue;
-
- foreach_list(node, shader_list[i]->ir) {
- ir_variable *const var = ((ir_instruction *) node)->as_variable();
-
- if (var == NULL)
- continue;
-
- if (uniforms_only && (var->mode != ir_var_uniform))
- continue;
-
- /* Don't cross validate temporaries that are at global scope. These
- * will eventually get pulled into the shaders 'main'.
- */
- if (var->mode == ir_var_temporary)
- continue;
-
- /* If a global with this name has already been seen, verify that the
- * new instance has the same type. In addition, if the globals have
- * initializers, the values of the initializers must be the same.
- */
- ir_variable *const existing = variables.get_variable(var->name);
- if (existing != NULL) {
- if (var->type != existing->type) {
- /* Consider the types to be "the same" if both types are arrays
- * of the same type and one of the arrays is implicitly sized.
- * In addition, set the type of the linked variable to the
- * explicitly sized array.
- */
- if (var->type->is_array()
- && existing->type->is_array()
- && (var->type->fields.array == existing->type->fields.array)
- && ((var->type->length == 0)
- || (existing->type->length == 0))) {
- if (existing->type->length == 0) {
- existing->type = var->type;
- existing->max_array_access =
- MAX2(existing->max_array_access,
- var->max_array_access);
- }
- } else {
- linker_error_printf(prog, "%s `%s' declared as type "
- "`%s' and type `%s'\n",
- mode_string(var),
- var->name, var->type->name,
- existing->type->name);
- return false;
- }
- }
-
- if (var->explicit_location) {
- if (existing->explicit_location
- && (var->location != existing->location)) {
- linker_error_printf(prog, "explicit locations for %s "
- "`%s' have differing values\n",
- mode_string(var), var->name);
- return false;
- }
-
- existing->location = var->location;
- existing->explicit_location = true;
- }
-
- /* FINISHME: Handle non-constant initializers.
- */
- if (var->constant_value != NULL) {
- if (existing->constant_value != NULL) {
- if (!var->constant_value->has_value(existing->constant_value)) {
- linker_error_printf(prog, "initializers for %s "
- "`%s' have differing values\n",
- mode_string(var), var->name);
- return false;
- }
- } else
- /* If the first-seen instance of a particular uniform did not
- * have an initializer but a later instance does, copy the
- * initializer to the version stored in the symbol table.
- */
- /* FINISHME: This is wrong. The constant_value field should
- * FINISHME: not be modified! Imagine a case where a shader
- * FINISHME: without an initializer is linked in two different
- * FINISHME: programs with shaders that have differing
- * FINISHME: initializers. Linking with the first will
- * FINISHME: modify the shader, and linking with the second
- * FINISHME: will fail.
- */
- existing->constant_value =
- var->constant_value->clone(talloc_parent(existing), NULL);
- }
-
- if (existing->invariant != var->invariant) {
- linker_error_printf(prog, "declarations for %s `%s' have "
- "mismatching invariant qualifiers\n",
- mode_string(var), var->name);
- return false;
- }
- if (existing->centroid != var->centroid) {
- linker_error_printf(prog, "declarations for %s `%s' have "
- "mismatching centroid qualifiers\n",
- mode_string(var), var->name);
- return false;
- }
- } else
- variables.add_variable(var);
- }
- }
-
- return true;
-}
-
-
-/**
- * Perform validation of uniforms used across multiple shader stages
- */
-bool
-cross_validate_uniforms(struct gl_shader_program *prog)
-{
- return cross_validate_globals(prog, prog->_LinkedShaders,
- MESA_SHADER_TYPES, true);
-}
-
-
-/**
- * Validate that outputs from one stage match inputs of another
- */
-bool
-cross_validate_outputs_to_inputs(struct gl_shader_program *prog,
- gl_shader *producer, gl_shader *consumer)
-{
- glsl_symbol_table parameters;
- /* FINISHME: Figure these out dynamically. */
- const char *const producer_stage = "vertex";
- const char *const consumer_stage = "fragment";
-
- /* Find all shader outputs in the "producer" stage.
- */
- foreach_list(node, producer->ir) {
- ir_variable *const var = ((ir_instruction *) node)->as_variable();
-
- /* FINISHME: For geometry shaders, this should also look for inout
- * FINISHME: variables.
- */
- if ((var == NULL) || (var->mode != ir_var_out))
- continue;
-
- parameters.add_variable(var);
- }
-
-
- /* Find all shader inputs in the "consumer" stage. Any variables that have
- * matching outputs already in the symbol table must have the same type and
- * qualifiers.
- */
- foreach_list(node, consumer->ir) {
- ir_variable *const input = ((ir_instruction *) node)->as_variable();
-
- /* FINISHME: For geometry shaders, this should also look for inout
- * FINISHME: variables.
- */
- if ((input == NULL) || (input->mode != ir_var_in))
- continue;
-
- ir_variable *const output = parameters.get_variable(input->name);
- if (output != NULL) {
- /* Check that the types match between stages.
- */
- if (input->type != output->type) {
- /* There is a bit of a special case for gl_TexCoord. This
- * built-in is unsized by default. Appliations that variable
- * access it must redeclare it with a size. There is some
- * language in the GLSL spec that implies the fragment shader
- * and vertex shader do not have to agree on this size. Other
- * driver behave this way, and one or two applications seem to
- * rely on it.
- *
- * Neither declaration needs to be modified here because the array
- * sizes are fixed later when update_array_sizes is called.
- *
- * From page 48 (page 54 of the PDF) of the GLSL 1.10 spec:
- *
- * "Unlike user-defined varying variables, the built-in
- * varying variables don't have a strict one-to-one
- * correspondence between the vertex language and the
- * fragment language."
- */
- if (!output->type->is_array()
- || (strncmp("gl_", output->name, 3) != 0)) {
- linker_error_printf(prog,
- "%s shader output `%s' declared as "
- "type `%s', but %s shader input declared "
- "as type `%s'\n",
- producer_stage, output->name,
- output->type->name,
- consumer_stage, input->type->name);
- return false;
- }
- }
-
- /* Check that all of the qualifiers match between stages.
- */
- if (input->centroid != output->centroid) {
- linker_error_printf(prog,
- "%s shader output `%s' %s centroid qualifier, "
- "but %s shader input %s centroid qualifier\n",
- producer_stage,
- output->name,
- (output->centroid) ? "has" : "lacks",
- consumer_stage,
- (input->centroid) ? "has" : "lacks");
- return false;
- }
-
- if (input->invariant != output->invariant) {
- linker_error_printf(prog,
- "%s shader output `%s' %s invariant qualifier, "
- "but %s shader input %s invariant qualifier\n",
- producer_stage,
- output->name,
- (output->invariant) ? "has" : "lacks",
- consumer_stage,
- (input->invariant) ? "has" : "lacks");
- return false;
- }
-
- if (input->interpolation != output->interpolation) {
- linker_error_printf(prog,
- "%s shader output `%s' specifies %s "
- "interpolation qualifier, "
- "but %s shader input specifies %s "
- "interpolation qualifier\n",
- producer_stage,
- output->name,
- output->interpolation_string(),
- consumer_stage,
- input->interpolation_string());
- return false;
- }
- }
- }
-
- return true;
-}
-
-
-/**
- * Populates a shaders symbol table with all global declarations
- */
-static void
-populate_symbol_table(gl_shader *sh)
-{
- sh->symbols = new(sh) glsl_symbol_table;
-
- foreach_list(node, sh->ir) {
- ir_instruction *const inst = (ir_instruction *) node;
- ir_variable *var;
- ir_function *func;
-
- if ((func = inst->as_function()) != NULL) {
- sh->symbols->add_function(func);
- } else if ((var = inst->as_variable()) != NULL) {
- sh->symbols->add_variable(var);
- }
- }
-}
-
-
-/**
- * Remap variables referenced in an instruction tree
- *
- * This is used when instruction trees are cloned from one shader and placed in
- * another. These trees will contain references to \c ir_variable nodes that
- * do not exist in the target shader. This function finds these \c ir_variable
- * references and replaces the references with matching variables in the target
- * shader.
- *
- * If there is no matching variable in the target shader, a clone of the
- * \c ir_variable is made and added to the target shader. The new variable is
- * added to \b both the instruction stream and the symbol table.
- *
- * \param inst IR tree that is to be processed.
- * \param symbols Symbol table containing global scope symbols in the
- * linked shader.
- * \param instructions Instruction stream where new variable declarations
- * should be added.
- */
-void
-remap_variables(ir_instruction *inst, struct gl_shader *target,
- hash_table *temps)
-{
- class remap_visitor : public ir_hierarchical_visitor {
- public:
- remap_visitor(struct gl_shader *target,
- hash_table *temps)
- {
- this->target = target;
- this->symbols = target->symbols;
- this->instructions = target->ir;
- this->temps = temps;
- }
-
- virtual ir_visitor_status visit(ir_dereference_variable *ir)
- {
- if (ir->var->mode == ir_var_temporary) {
- ir_variable *var = (ir_variable *) hash_table_find(temps, ir->var);
-
- assert(var != NULL);
- ir->var = var;
- return visit_continue;
- }
-
- ir_variable *const existing =
- this->symbols->get_variable(ir->var->name);
- if (existing != NULL)
- ir->var = existing;
- else {
- ir_variable *copy = ir->var->clone(this->target, NULL);
-
- this->symbols->add_variable(copy);
- this->instructions->push_head(copy);
- ir->var = copy;
- }
-
- return visit_continue;
- }
-
- private:
- struct gl_shader *target;
- glsl_symbol_table *symbols;
- exec_list *instructions;
- hash_table *temps;
- };
-
- remap_visitor v(target, temps);
-
- inst->accept(&v);
-}
-
-
-/**
- * Move non-declarations from one instruction stream to another
- *
- * The intended usage pattern of this function is to pass the pointer to the
- * head sentinel of a list (i.e., a pointer to the list cast to an \c exec_node
- * pointer) for \c last and \c false for \c make_copies on the first
- * call. Successive calls pass the return value of the previous call for
- * \c last and \c true for \c make_copies.
- *
- * \param instructions Source instruction stream
- * \param last Instruction after which new instructions should be
- * inserted in the target instruction stream
- * \param make_copies Flag selecting whether instructions in \c instructions
- * should be copied (via \c ir_instruction::clone) into the
- * target list or moved.
- *
- * \return
- * The new "last" instruction in the target instruction stream. This pointer
- * is suitable for use as the \c last parameter of a later call to this
- * function.
- */
-exec_node *
-move_non_declarations(exec_list *instructions, exec_node *last,
- bool make_copies, gl_shader *target)
-{
- hash_table *temps = NULL;
-
- if (make_copies)
- temps = hash_table_ctor(0, hash_table_pointer_hash,
- hash_table_pointer_compare);
-
- foreach_list_safe(node, instructions) {
- ir_instruction *inst = (ir_instruction *) node;
-
- if (inst->as_function())
- continue;
-
- ir_variable *var = inst->as_variable();
- if ((var != NULL) && (var->mode != ir_var_temporary))
- continue;
-
- assert(inst->as_assignment()
- || ((var != NULL) && (var->mode == ir_var_temporary)));
-
- if (make_copies) {
- inst = inst->clone(target, NULL);
-
- if (var != NULL)
- hash_table_insert(temps, inst, var);
- else
- remap_variables(inst, target, temps);
- } else {
- inst->remove();
- }
-
- last->insert_after(inst);
- last = inst;
- }
-
- if (make_copies)
- hash_table_dtor(temps);
-
- return last;
-}
-
-/**
- * Get the function signature for main from a shader
- */
-static ir_function_signature *
-get_main_function_signature(gl_shader *sh)
-{
- ir_function *const f = sh->symbols->get_function("main");
- if (f != NULL) {
- exec_list void_parameters;
-
- /* Look for the 'void main()' signature and ensure that it's defined.
- * This keeps the linker from accidentally pick a shader that just
- * contains a prototype for main.
- *
- * We don't have to check for multiple definitions of main (in multiple
- * shaders) because that would have already been caught above.
- */
- ir_function_signature *sig = f->matching_signature(&void_parameters);
- if ((sig != NULL) && sig->is_defined) {
- return sig;
- }
- }
-
- return NULL;
-}
-
-
-/**
- * Combine a group of shaders for a single stage to generate a linked shader
- *
- * \note
- * If this function is supplied a single shader, it is cloned, and the new
- * shader is returned.
- */
-static struct gl_shader *
-link_intrastage_shaders(void *mem_ctx,
- struct gl_context *ctx,
- struct gl_shader_program *prog,
- struct gl_shader **shader_list,
- unsigned num_shaders)
-{
- /* Check that global variables defined in multiple shaders are consistent.
- */
- if (!cross_validate_globals(prog, shader_list, num_shaders, false))
- return NULL;
-
- /* Check that there is only a single definition of each function signature
- * across all shaders.
- */
- for (unsigned i = 0; i < (num_shaders - 1); i++) {
- foreach_list(node, shader_list[i]->ir) {
- ir_function *const f = ((ir_instruction *) node)->as_function();
-
- if (f == NULL)
- continue;
-
- for (unsigned j = i + 1; j < num_shaders; j++) {
- ir_function *const other =
- shader_list[j]->symbols->get_function(f->name);
-
- /* If the other shader has no function (and therefore no function
- * signatures) with the same name, skip to the next shader.
- */
- if (other == NULL)
- continue;
-
- foreach_iter (exec_list_iterator, iter, *f) {
- ir_function_signature *sig =
- (ir_function_signature *) iter.get();
-
- if (!sig->is_defined || sig->is_builtin)
- continue;
-
- ir_function_signature *other_sig =
- other->exact_matching_signature(& sig->parameters);
-
- if ((other_sig != NULL) && other_sig->is_defined
- && !other_sig->is_builtin) {
- linker_error_printf(prog,
- "function `%s' is multiply defined",
- f->name);
- return NULL;
- }
- }
- }
- }
- }
-
- /* Find the shader that defines main, and make a clone of it.
- *
- * Starting with the clone, search for undefined references. If one is
- * found, find the shader that defines it. Clone the reference and add
- * it to the shader. Repeat until there are no undefined references or
- * until a reference cannot be resolved.
- */
- gl_shader *main = NULL;
- for (unsigned i = 0; i < num_shaders; i++) {
- if (get_main_function_signature(shader_list[i]) != NULL) {
- main = shader_list[i];
- break;
- }
- }
-
- if (main == NULL) {
- linker_error_printf(prog, "%s shader lacks `main'\n",
- (shader_list[0]->Type == GL_VERTEX_SHADER)
- ? "vertex" : "fragment");
- return NULL;
- }
-
- gl_shader *linked = ctx->Driver.NewShader(NULL, 0, main->Type);
- linked->ir = new(linked) exec_list;
- clone_ir_list(mem_ctx, linked->ir, main->ir);
-
- populate_symbol_table(linked);
-
- /* The a pointer to the main function in the final linked shader (i.e., the
- * copy of the original shader that contained the main function).
- */
- ir_function_signature *const main_sig = get_main_function_signature(linked);
-
- /* Move any instructions other than variable declarations or function
- * declarations into main.
- */
- exec_node *insertion_point =
- move_non_declarations(linked->ir, (exec_node *) &main_sig->body, false,
- linked);
-
- for (unsigned i = 0; i < num_shaders; i++) {
- if (shader_list[i] == main)
- continue;
-
- insertion_point = move_non_declarations(shader_list[i]->ir,
- insertion_point, true, linked);
- }
-
- /* Resolve initializers for global variables in the linked shader.
- */
- unsigned num_linking_shaders = num_shaders;
- for (unsigned i = 0; i < num_shaders; i++)
- num_linking_shaders += shader_list[i]->num_builtins_to_link;
-
- gl_shader **linking_shaders =
- (gl_shader **) calloc(num_linking_shaders, sizeof(gl_shader *));
-
- memcpy(linking_shaders, shader_list,
- sizeof(linking_shaders[0]) * num_shaders);
-
- unsigned idx = num_shaders;
- for (unsigned i = 0; i < num_shaders; i++) {
- memcpy(&linking_shaders[idx], shader_list[i]->builtins_to_link,
- sizeof(linking_shaders[0]) * shader_list[i]->num_builtins_to_link);
- idx += shader_list[i]->num_builtins_to_link;
- }
-
- assert(idx == num_linking_shaders);
-
- if (!link_function_calls(prog, linked, linking_shaders,
- num_linking_shaders)) {
- ctx->Driver.DeleteShader(ctx, linked);
- linked = NULL;
- }
-
- free(linking_shaders);
-
- /* Make a pass over all global variables to ensure that arrays with
- * unspecified sizes have a size specified. The size is inferred from the
- * max_array_access field.
- */
- if (linked != NULL) {
- foreach_list(node, linked->ir) {
- ir_variable *const var = ((ir_instruction *) node)->as_variable();
-
- if (var == NULL)
- continue;
-
- if ((var->mode != ir_var_auto) && (var->mode != ir_var_temporary))
- continue;
-
- if (!var->type->is_array() || (var->type->length != 0))
- continue;
-
- const glsl_type *type =
- glsl_type::get_array_instance(var->type->fields.array,
- var->max_array_access);
-
- assert(type != NULL);
- var->type = type;
- }
- }
-
- return linked;
-}
-
-
-struct uniform_node {
- exec_node link;
- struct gl_uniform *u;
- unsigned slots;
-};
-
-/**
- * Update the sizes of linked shader uniform arrays to the maximum
- * array index used.
- *
- * From page 81 (page 95 of the PDF) of the OpenGL 2.1 spec:
- *
- * If one or more elements of an array are active,
- * GetActiveUniform will return the name of the array in name,
- * subject to the restrictions listed above. The type of the array
- * is returned in type. The size parameter contains the highest
- * array element index used, plus one. The compiler or linker
- * determines the highest index used. There will be only one
- * active uniform reported by the GL per uniform array.
-
- */
-static void
-update_array_sizes(struct gl_shader_program *prog)
-{
- for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
- if (prog->_LinkedShaders[i] == NULL)
- continue;
-
- foreach_list(node, prog->_LinkedShaders[i]->ir) {
- ir_variable *const var = ((ir_instruction *) node)->as_variable();
-
- if ((var == NULL) || (var->mode != ir_var_uniform &&
- var->mode != ir_var_in &&
- var->mode != ir_var_out) ||
- !var->type->is_array())
- continue;
-
- unsigned int size = var->max_array_access;
- for (unsigned j = 0; j < MESA_SHADER_TYPES; j++) {
- if (prog->_LinkedShaders[j] == NULL)
- continue;
-
- foreach_list(node2, prog->_LinkedShaders[j]->ir) {
- ir_variable *other_var = ((ir_instruction *) node2)->as_variable();
- if (!other_var)
- continue;
-
- if (strcmp(var->name, other_var->name) == 0 &&
- other_var->max_array_access > size) {
- size = other_var->max_array_access;
- }
- }
- }
-
- if (size + 1 != var->type->fields.array->length) {
- var->type = glsl_type::get_array_instance(var->type->fields.array,
- size + 1);
- /* FINISHME: We should update the types of array
- * dereferences of this variable now.
- */
- }
- }
- }
-}
-
-static void
-add_uniform(void *mem_ctx, exec_list *uniforms, struct hash_table *ht,
- const char *name, const glsl_type *type, GLenum shader_type,
- unsigned *next_shader_pos, unsigned *total_uniforms)
-{
- if (type->is_record()) {
- for (unsigned int i = 0; i < type->length; i++) {
- const glsl_type *field_type = type->fields.structure[i].type;
- char *field_name = talloc_asprintf(mem_ctx, "%s.%s", name,
- type->fields.structure[i].name);
-
- add_uniform(mem_ctx, uniforms, ht, field_name, field_type,
- shader_type, next_shader_pos, total_uniforms);
- }
- } else {
- uniform_node *n = (uniform_node *) hash_table_find(ht, name);
- unsigned int vec4_slots;
- const glsl_type *array_elem_type = NULL;
-
- if (type->is_array()) {
- array_elem_type = type->fields.array;
- /* Array of structures. */
- if (array_elem_type->is_record()) {
- for (unsigned int i = 0; i < type->length; i++) {
- char *elem_name = talloc_asprintf(mem_ctx, "%s[%d]", name, i);
- add_uniform(mem_ctx, uniforms, ht, elem_name, array_elem_type,
- shader_type, next_shader_pos, total_uniforms);
- }
- return;
- }
- }
-
- /* Fix the storage size of samplers at 1 vec4 each. Be sure to pad out
- * vectors to vec4 slots.
- */
- if (type->is_array()) {
- if (array_elem_type->is_sampler())
- vec4_slots = type->length;
- else
- vec4_slots = type->length * array_elem_type->matrix_columns;
- } else if (type->is_sampler()) {
- vec4_slots = 1;
- } else {
- vec4_slots = type->matrix_columns;
- }
-
- if (n == NULL) {
- n = (uniform_node *) calloc(1, sizeof(struct uniform_node));
- n->u = (gl_uniform *) calloc(1, sizeof(struct gl_uniform));
- n->slots = vec4_slots;
-
- n->u->Name = strdup(name);
- n->u->Type = type;
- n->u->VertPos = -1;
- n->u->FragPos = -1;
- n->u->GeomPos = -1;
- (*total_uniforms)++;
-
- hash_table_insert(ht, n, name);
- uniforms->push_tail(& n->link);
- }
-
- switch (shader_type) {
- case GL_VERTEX_SHADER:
- n->u->VertPos = *next_shader_pos;
- break;
- case GL_FRAGMENT_SHADER:
- n->u->FragPos = *next_shader_pos;
- break;
- case GL_GEOMETRY_SHADER:
- n->u->GeomPos = *next_shader_pos;
- break;
- }
-
- (*next_shader_pos) += vec4_slots;
- }
-}
-
-void
-assign_uniform_locations(struct gl_shader_program *prog)
-{
- /* */
- exec_list uniforms;
- unsigned total_uniforms = 0;
- hash_table *ht = hash_table_ctor(32, hash_table_string_hash,
- hash_table_string_compare);
- void *mem_ctx = talloc_new(NULL);
-
- for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
- if (prog->_LinkedShaders[i] == NULL)
- continue;
-
- unsigned next_position = 0;
-
- foreach_list(node, prog->_LinkedShaders[i]->ir) {
- ir_variable *const var = ((ir_instruction *) node)->as_variable();
-
- if ((var == NULL) || (var->mode != ir_var_uniform))
- continue;
-
- if (strncmp(var->name, "gl_", 3) == 0) {
- /* At the moment, we don't allocate uniform locations for
- * builtin uniforms. It's permitted by spec, and we'll
- * likely switch to doing that at some point, but not yet.
- */
- continue;
- }
-
- var->location = next_position;
- add_uniform(mem_ctx, &uniforms, ht, var->name, var->type,
- prog->_LinkedShaders[i]->Type,
- &next_position, &total_uniforms);
- }
- }
-
- talloc_free(mem_ctx);
-
- gl_uniform_list *ul = (gl_uniform_list *)
- calloc(1, sizeof(gl_uniform_list));
-
- ul->Size = total_uniforms;
- ul->NumUniforms = total_uniforms;
- ul->Uniforms = (gl_uniform *) calloc(total_uniforms, sizeof(gl_uniform));
-
- unsigned idx = 0;
- uniform_node *next;
- for (uniform_node *node = (uniform_node *) uniforms.head
- ; node->link.next != NULL
- ; node = next) {
- next = (uniform_node *) node->link.next;
-
- node->link.remove();
- memcpy(&ul->Uniforms[idx], node->u, sizeof(gl_uniform));
- idx++;
-
- free(node->u);
- free(node);
- }
-
- hash_table_dtor(ht);
-
- prog->Uniforms = ul;
-}
-
-
-/**
- * Find a contiguous set of available bits in a bitmask
- *
- * \param used_mask Bits representing used (1) and unused (0) locations
- * \param needed_count Number of contiguous bits needed.
- *
- * \return
- * Base location of the available bits on success or -1 on failure.
- */
-int
-find_available_slots(unsigned used_mask, unsigned needed_count)
-{
- unsigned needed_mask = (1 << needed_count) - 1;
- const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count;
-
- /* The comparison to 32 is redundant, but without it GCC emits "warning:
- * cannot optimize possibly infinite loops" for the loop below.
- */
- if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32))
- return -1;
-
- for (int i = 0; i <= max_bit_to_test; i++) {
- if ((needed_mask & ~used_mask) == needed_mask)
- return i;
-
- needed_mask <<= 1;
- }
-
- return -1;
-}
-
-
-bool
-assign_attribute_locations(gl_shader_program *prog, unsigned max_attribute_index)
-{
- /* Mark invalid attribute locations as being used.
- */
- unsigned used_locations = (max_attribute_index >= 32)
- ? ~0 : ~((1 << max_attribute_index) - 1);
-
- gl_shader *const sh = prog->_LinkedShaders[0];
- assert(sh->Type == GL_VERTEX_SHADER);
-
- /* Operate in a total of four passes.
- *
- * 1. Invalidate the location assignments for all vertex shader inputs.
- *
- * 2. Assign locations for inputs that have user-defined (via
- * glBindVertexAttribLocation) locatoins.
- *
- * 3. Sort the attributes without assigned locations by number of slots
- * required in decreasing order. Fragmentation caused by attribute
- * locations assigned by the application may prevent large attributes
- * from having enough contiguous space.
- *
- * 4. Assign locations to any inputs without assigned locations.
- */
-
- invalidate_variable_locations(sh, ir_var_in, VERT_ATTRIB_GENERIC0);
-
- if (prog->Attributes != NULL) {
- for (unsigned i = 0; i < prog->Attributes->NumParameters; i++) {
- ir_variable *const var =
- sh->symbols->get_variable(prog->Attributes->Parameters[i].Name);
-
- /* Note: attributes that occupy multiple slots, such as arrays or
- * matrices, may appear in the attrib array multiple times.
- */
- if ((var == NULL) || (var->location != -1))
- continue;
-
- /* From page 61 of the OpenGL 4.0 spec:
- *
- * "LinkProgram will fail if the attribute bindings assigned by
- * BindAttribLocation do not leave not enough space to assign a
- * location for an active matrix attribute or an active attribute
- * array, both of which require multiple contiguous generic
- * attributes."
- *
- * Previous versions of the spec contain similar language but omit the
- * bit about attribute arrays.
- *
- * Page 61 of the OpenGL 4.0 spec also says:
- *
- * "It is possible for an application to bind more than one
- * attribute name to the same location. This is referred to as
- * aliasing. This will only work if only one of the aliased
- * attributes is active in the executable program, or if no path
- * through the shader consumes more than one attribute of a set
- * of attributes aliased to the same location. A link error can
- * occur if the linker determines that every path through the
- * shader consumes multiple aliased attributes, but
- * implementations are not required to generate an error in this
- * case."
- *
- * These two paragraphs are either somewhat contradictory, or I don't
- * fully understand one or both of them.
- */
- /* FINISHME: The code as currently written does not support attribute
- * FINISHME: location aliasing (see comment above).
- */
- const int attr = prog->Attributes->Parameters[i].StateIndexes[0];
- const unsigned slots = count_attribute_slots(var->type);
-
- /* Mask representing the contiguous slots that will be used by this
- * attribute.
- */
- const unsigned use_mask = (1 << slots) - 1;
-
- /* Generate a link error if the set of bits requested for this
- * attribute overlaps any previously allocated bits.
- */
- if ((~(use_mask << attr) & used_locations) != used_locations) {
- linker_error_printf(prog,
- "insufficient contiguous attribute locations "
- "available for vertex shader input `%s'",
- var->name);
- return false;
- }
-
- var->location = VERT_ATTRIB_GENERIC0 + attr;
- used_locations |= (use_mask << attr);
- }
- }
-
- /* Temporary storage for the set of attributes that need locations assigned.
- */
- struct temp_attr {
- unsigned slots;
- ir_variable *var;
-
- /* Used below in the call to qsort. */
- static int compare(const void *a, const void *b)
- {
- const temp_attr *const l = (const temp_attr *) a;
- const temp_attr *const r = (const temp_attr *) b;
-
- /* Reversed because we want a descending order sort below. */
- return r->slots - l->slots;
- }
- } to_assign[16];
-
- unsigned num_attr = 0;
-
- foreach_list(node, sh->ir) {
- ir_variable *const var = ((ir_instruction *) node)->as_variable();
-
- if ((var == NULL) || (var->mode != ir_var_in))
- continue;
-
- if (var->explicit_location) {
- const unsigned slots = count_attribute_slots(var->type);
- const unsigned use_mask = (1 << slots) - 1;
- const int attr = var->location - VERT_ATTRIB_GENERIC0;
-
- if ((var->location >= (int)(max_attribute_index + VERT_ATTRIB_GENERIC0))
- || (var->location < 0)) {
- linker_error_printf(prog,
- "invalid explicit location %d specified for "
- "`%s'\n",
- (var->location < 0) ? var->location : attr,
- var->name);
- return false;
- } else if (var->location >= VERT_ATTRIB_GENERIC0) {
- used_locations |= (use_mask << attr);
- }
- }
-
- /* The location was explicitly assigned, nothing to do here.
- */
- if (var->location != -1)
- continue;
-
- to_assign[num_attr].slots = count_attribute_slots(var->type);
- to_assign[num_attr].var = var;
- num_attr++;
- }
-
- /* If all of the attributes were assigned locations by the application (or
- * are built-in attributes with fixed locations), return early. This should
- * be the common case.
- */
- if (num_attr == 0)
- return true;
-
- qsort(to_assign, num_attr, sizeof(to_assign[0]), temp_attr::compare);
-
- /* VERT_ATTRIB_GENERIC0 is a psdueo-alias for VERT_ATTRIB_POS. It can only
- * be explicitly assigned by via glBindAttribLocation. Mark it as reserved
- * to prevent it from being automatically allocated below.
- */
- find_deref_visitor find("gl_Vertex");
- find.run(sh->ir);
- if (find.variable_found())
- used_locations |= (1 << 0);
-
- for (unsigned i = 0; i < num_attr; i++) {
- /* Mask representing the contiguous slots that will be used by this
- * attribute.
- */
- const unsigned use_mask = (1 << to_assign[i].slots) - 1;
-
- int location = find_available_slots(used_locations, to_assign[i].slots);
-
- if (location < 0) {
- linker_error_printf(prog,
- "insufficient contiguous attribute locations "
- "available for vertex shader input `%s'",
- to_assign[i].var->name);
- return false;
- }
-
- to_assign[i].var->location = VERT_ATTRIB_GENERIC0 + location;
- used_locations |= (use_mask << location);
- }
-
- return true;
-}
-
-
-/**
- * Demote shader inputs and outputs that are not used in other stages
- */
-void
-demote_shader_inputs_and_outputs(gl_shader *sh, enum ir_variable_mode mode)
-{
- foreach_list(node, sh->ir) {
- ir_variable *const var = ((ir_instruction *) node)->as_variable();
-
- if ((var == NULL) || (var->mode != int(mode)))
- continue;
-
- /* A shader 'in' or 'out' variable is only really an input or output if
- * its value is used by other shader stages. This will cause the variable
- * to have a location assigned.
- */
- if (var->location == -1) {
- var->mode = ir_var_auto;
- }
- }
-}
-
-
-void
-assign_varying_locations(struct gl_shader_program *prog,
- gl_shader *producer, gl_shader *consumer)
-{
- /* FINISHME: Set dynamically when geometry shader support is added. */
- unsigned output_index = VERT_RESULT_VAR0;
- unsigned input_index = FRAG_ATTRIB_VAR0;
-
- /* Operate in a total of three passes.
- *
- * 1. Assign locations for any matching inputs and outputs.
- *
- * 2. Mark output variables in the producer that do not have locations as
- * not being outputs. This lets the optimizer eliminate them.
- *
- * 3. Mark input variables in the consumer that do not have locations as
- * not being inputs. This lets the optimizer eliminate them.
- */
-
- invalidate_variable_locations(producer, ir_var_out, VERT_RESULT_VAR0);
- invalidate_variable_locations(consumer, ir_var_in, FRAG_ATTRIB_VAR0);
-
- foreach_list(node, producer->ir) {
- ir_variable *const output_var = ((ir_instruction *) node)->as_variable();
-
- if ((output_var == NULL) || (output_var->mode != ir_var_out)
- || (output_var->location != -1))
- continue;
-
- ir_variable *const input_var =
- consumer->symbols->get_variable(output_var->name);
-
- if ((input_var == NULL) || (input_var->mode != ir_var_in))
- continue;
-
- assert(input_var->location == -1);
-
- output_var->location = output_index;
- input_var->location = input_index;
-
- /* FINISHME: Support for "varying" records in GLSL 1.50. */
- assert(!output_var->type->is_record());
-
- if (output_var->type->is_array()) {
- const unsigned slots = output_var->type->length
- * output_var->type->fields.array->matrix_columns;
-
- output_index += slots;
- input_index += slots;
- } else {
- const unsigned slots = output_var->type->matrix_columns;
-
- output_index += slots;
- input_index += slots;
- }
- }
-
- foreach_list(node, consumer->ir) {
- ir_variable *const var = ((ir_instruction *) node)->as_variable();
-
- if ((var == NULL) || (var->mode != ir_var_in))
- continue;
-
- if (var->location == -1) {
- if (prog->Version <= 120) {
- /* On page 25 (page 31 of the PDF) of the GLSL 1.20 spec:
- *
- * Only those varying variables used (i.e. read) in
- * the fragment shader executable must be written to
- * by the vertex shader executable; declaring
- * superfluous varying variables in a vertex shader is
- * permissible.
- *
- * We interpret this text as meaning that the VS must
- * write the variable for the FS to read it. See
- * "glsl1-varying read but not written" in piglit.
- */
-
- linker_error_printf(prog, "fragment shader varying %s not written "
- "by vertex shader\n.", var->name);
- prog->LinkStatus = false;
- }
-
- /* An 'in' variable is only really a shader input if its
- * value is written by the previous stage.
- */
- var->mode = ir_var_auto;
- }
- }
-}
-
-
-void
-link_shaders(struct gl_context *ctx, struct gl_shader_program *prog)
-{
- void *mem_ctx = talloc_init("temporary linker context");
-
- prog->LinkStatus = false;
- prog->Validated = false;
- prog->_Used = false;
-
- if (prog->InfoLog != NULL)
- talloc_free(prog->InfoLog);
-
- prog->InfoLog = talloc_strdup(NULL, "");
-
- /* Separate the shaders into groups based on their type.
- */
- struct gl_shader **vert_shader_list;
- unsigned num_vert_shaders = 0;
- struct gl_shader **frag_shader_list;
- unsigned num_frag_shaders = 0;
-
- vert_shader_list = (struct gl_shader **)
- calloc(2 * prog->NumShaders, sizeof(struct gl_shader *));
- frag_shader_list = &vert_shader_list[prog->NumShaders];
-
- unsigned min_version = UINT_MAX;
- unsigned max_version = 0;
- for (unsigned i = 0; i < prog->NumShaders; i++) {
- min_version = MIN2(min_version, prog->Shaders[i]->Version);
- max_version = MAX2(max_version, prog->Shaders[i]->Version);
-
- switch (prog->Shaders[i]->Type) {
- case GL_VERTEX_SHADER:
- vert_shader_list[num_vert_shaders] = prog->Shaders[i];
- num_vert_shaders++;
- break;
- case GL_FRAGMENT_SHADER:
- frag_shader_list[num_frag_shaders] = prog->Shaders[i];
- num_frag_shaders++;
- break;
- case GL_GEOMETRY_SHADER:
- /* FINISHME: Support geometry shaders. */
- assert(prog->Shaders[i]->Type != GL_GEOMETRY_SHADER);
- break;
- }
- }
-
- /* Previous to GLSL version 1.30, different compilation units could mix and
- * match shading language versions. With GLSL 1.30 and later, the versions
- * of all shaders must match.
- */
- assert(min_version >= 100);
- assert(max_version <= 130);
- if ((max_version >= 130 || min_version == 100)
- && min_version != max_version) {
- linker_error_printf(prog, "all shaders must use same shading "
- "language version\n");
- goto done;
- }
-
- prog->Version = max_version;
-
- for (unsigned int i = 0; i < MESA_SHADER_TYPES; i++) {
- if (prog->_LinkedShaders[i] != NULL)
- ctx->Driver.DeleteShader(ctx, prog->_LinkedShaders[i]);
-
- prog->_LinkedShaders[i] = NULL;
- }
-
- /* Link all shaders for a particular stage and validate the result.
- */
- if (num_vert_shaders > 0) {
- gl_shader *const sh =
- link_intrastage_shaders(mem_ctx, ctx, prog, vert_shader_list,
- num_vert_shaders);
-
- if (sh == NULL)
- goto done;
-
- if (!validate_vertex_shader_executable(prog, sh))
- goto done;
-
- _mesa_reference_shader(ctx, &prog->_LinkedShaders[MESA_SHADER_VERTEX],
- sh);
- }
-
- if (num_frag_shaders > 0) {
- gl_shader *const sh =
- link_intrastage_shaders(mem_ctx, ctx, prog, frag_shader_list,
- num_frag_shaders);
-
- if (sh == NULL)
- goto done;
-
- if (!validate_fragment_shader_executable(prog, sh))
- goto done;
-
- _mesa_reference_shader(ctx, &prog->_LinkedShaders[MESA_SHADER_FRAGMENT],
- sh);
- }
-
- /* Here begins the inter-stage linking phase. Some initial validation is
- * performed, then locations are assigned for uniforms, attributes, and
- * varyings.
- */
- if (cross_validate_uniforms(prog)) {
- unsigned prev;
-
- for (prev = 0; prev < MESA_SHADER_TYPES; prev++) {
- if (prog->_LinkedShaders[prev] != NULL)
- break;
- }
-
- /* Validate the inputs of each stage with the output of the preceeding
- * stage.
- */
- for (unsigned i = prev + 1; i < MESA_SHADER_TYPES; i++) {
- if (prog->_LinkedShaders[i] == NULL)
- continue;
-
- if (!cross_validate_outputs_to_inputs(prog,
- prog->_LinkedShaders[prev],
- prog->_LinkedShaders[i]))
- goto done;
-
- prev = i;
- }
-
- prog->LinkStatus = true;
- }
-
- /* Do common optimization before assigning storage for attributes,
- * uniforms, and varyings. Later optimization could possibly make
- * some of that unused.
- */
- for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
- if (prog->_LinkedShaders[i] == NULL)
- continue;
-
- while (do_common_optimization(prog->_LinkedShaders[i]->ir, true, 32))
- ;
- }
-
- update_array_sizes(prog);
-
- assign_uniform_locations(prog);
-
- if (prog->_LinkedShaders[MESA_SHADER_VERTEX] != NULL) {
- /* FINISHME: The value of the max_attribute_index parameter is
- * FINISHME: implementation dependent based on the value of
- * FINISHME: GL_MAX_VERTEX_ATTRIBS. GL_MAX_VERTEX_ATTRIBS must be
- * FINISHME: at least 16, so hardcode 16 for now.
- */
- if (!assign_attribute_locations(prog, 16)) {
- prog->LinkStatus = false;
- goto done;
- }
- }
-
- unsigned prev;
- for (prev = 0; prev < MESA_SHADER_TYPES; prev++) {
- if (prog->_LinkedShaders[prev] != NULL)
- break;
- }
-
- for (unsigned i = prev + 1; i < MESA_SHADER_TYPES; i++) {
- if (prog->_LinkedShaders[i] == NULL)
- continue;
-
- assign_varying_locations(prog,
- prog->_LinkedShaders[prev],
- prog->_LinkedShaders[i]);
- prev = i;
- }
-
- if (prog->_LinkedShaders[MESA_SHADER_VERTEX] != NULL) {
- demote_shader_inputs_and_outputs(prog->_LinkedShaders[MESA_SHADER_VERTEX],
- ir_var_out);
- }
-
- if (prog->_LinkedShaders[MESA_SHADER_GEOMETRY] != NULL) {
- gl_shader *const sh = prog->_LinkedShaders[MESA_SHADER_GEOMETRY];
-
- demote_shader_inputs_and_outputs(sh, ir_var_in);
- demote_shader_inputs_and_outputs(sh, ir_var_inout);
- demote_shader_inputs_and_outputs(sh, ir_var_out);
- }
-
- if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] != NULL) {
- gl_shader *const sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
-
- demote_shader_inputs_and_outputs(sh, ir_var_in);
- }
-
- /* FINISHME: Assign fragment shader output locations. */
-
-done:
- free(vert_shader_list);
-
- for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
- if (prog->_LinkedShaders[i] == NULL)
- continue;
-
- /* Retain any live IR, but trash the rest. */
- reparent_ir(prog->_LinkedShaders[i]->ir, prog->_LinkedShaders[i]->ir);
- }
-
- talloc_free(mem_ctx);
-}
+/*
+ * Copyright © 2010 Intel Corporation
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice (including the next
+ * paragraph) shall be included in all copies or substantial portions of the
+ * Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+ * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
+ * DEALINGS IN THE SOFTWARE.
+ */
+
+/**
+ * \file linker.cpp
+ * GLSL linker implementation
+ *
+ * Given a set of shaders that are to be linked to generate a final program,
+ * there are three distinct stages.
+ *
+ * In the first stage shaders are partitioned into groups based on the shader
+ * type. All shaders of a particular type (e.g., vertex shaders) are linked
+ * together.
+ *
+ * - Undefined references in each shader are resolve to definitions in
+ * another shader.
+ * - Types and qualifiers of uniforms, outputs, and global variables defined
+ * in multiple shaders with the same name are verified to be the same.
+ * - Initializers for uniforms and global variables defined
+ * in multiple shaders with the same name are verified to be the same.
+ *
+ * The result, in the terminology of the GLSL spec, is a set of shader
+ * executables for each processing unit.
+ *
+ * After the first stage is complete, a series of semantic checks are performed
+ * on each of the shader executables.
+ *
+ * - Each shader executable must define a \c main function.
+ * - Each vertex shader executable must write to \c gl_Position.
+ * - Each fragment shader executable must write to either \c gl_FragData or
+ * \c gl_FragColor.
+ *
+ * In the final stage individual shader executables are linked to create a
+ * complete exectuable.
+ *
+ * - Types of uniforms defined in multiple shader stages with the same name
+ * are verified to be the same.
+ * - Initializers for uniforms defined in multiple shader stages with the
+ * same name are verified to be the same.
+ * - Types and qualifiers of outputs defined in one stage are verified to
+ * be the same as the types and qualifiers of inputs defined with the same
+ * name in a later stage.
+ *
+ * \author Ian Romanick <ian.d.romanick@intel.com>
+ */
+#include <cstdlib>
+#include <cstdio>
+#include <cstdarg>
+#include <climits>
+
+#include "main/core.h"
+#include "glsl_symbol_table.h"
+#include "ir.h"
+#include "program.h"
+#include "program/hash_table.h"
+#include "linker.h"
+#include "ir_optimization.h"
+
+extern "C" {
+#include "main/shaderobj.h"
+}
+
+/**
+ * Visitor that determines whether or not a variable is ever written.
+ */
+class find_assignment_visitor : public ir_hierarchical_visitor {
+public:
+ find_assignment_visitor(const char *name)
+ : name(name), found(false)
+ {
+ /* empty */
+ }
+
+ virtual ir_visitor_status visit_enter(ir_assignment *ir)
+ {
+ ir_variable *const var = ir->lhs->variable_referenced();
+
+ if (strcmp(name, var->name) == 0) {
+ found = true;
+ return visit_stop;
+ }
+
+ return visit_continue_with_parent;
+ }
+
+ virtual ir_visitor_status visit_enter(ir_call *ir)
+ {
+ exec_list_iterator sig_iter = ir->get_callee()->parameters.iterator();
+ foreach_iter(exec_list_iterator, iter, *ir) {
+ ir_rvalue *param_rval = (ir_rvalue *)iter.get();
+ ir_variable *sig_param = (ir_variable *)sig_iter.get();
+
+ if (sig_param->mode == ir_var_out ||
+ sig_param->mode == ir_var_inout) {
+ ir_variable *var = param_rval->variable_referenced();
+ if (var && strcmp(name, var->name) == 0) {
+ found = true;
+ return visit_stop;
+ }
+ }
+ sig_iter.next();
+ }
+
+ return visit_continue_with_parent;
+ }
+
+ bool variable_found()
+ {
+ return found;
+ }
+
+private:
+ const char *name; /**< Find writes to a variable with this name. */
+ bool found; /**< Was a write to the variable found? */
+};
+
+
+/**
+ * Visitor that determines whether or not a variable is ever read.
+ */
+class find_deref_visitor : public ir_hierarchical_visitor {
+public:
+ find_deref_visitor(const char *name)
+ : name(name), found(false)
+ {
+ /* empty */
+ }
+
+ virtual ir_visitor_status visit(ir_dereference_variable *ir)
+ {
+ if (strcmp(this->name, ir->var->name) == 0) {
+ this->found = true;
+ return visit_stop;
+ }
+
+ return visit_continue;
+ }
+
+ bool variable_found() const
+ {
+ return this->found;
+ }
+
+private:
+ const char *name; /**< Find writes to a variable with this name. */
+ bool found; /**< Was a write to the variable found? */
+};
+
+
+void
+linker_error_printf(gl_shader_program *prog, const char *fmt, ...)
+{
+ va_list ap;
+
+ prog->InfoLog = talloc_strdup_append(prog->InfoLog, "error: ");
+ va_start(ap, fmt);
+ prog->InfoLog = talloc_vasprintf_append(prog->InfoLog, fmt, ap);
+ va_end(ap);
+}
+
+
+void
+invalidate_variable_locations(gl_shader *sh, enum ir_variable_mode mode,
+ int generic_base)
+{
+ foreach_list(node, sh->ir) {
+ ir_variable *const var = ((ir_instruction *) node)->as_variable();
+
+ if ((var == NULL) || (var->mode != (unsigned) mode))
+ continue;
+
+ /* Only assign locations for generic attributes / varyings / etc.
+ */
+ if ((var->location >= generic_base) && !var->explicit_location)
+ var->location = -1;
+ }
+}
+
+
+/**
+ * Determine the number of attribute slots required for a particular type
+ *
+ * This code is here because it implements the language rules of a specific
+ * GLSL version. Since it's a property of the language and not a property of
+ * types in general, it doesn't really belong in glsl_type.
+ */
+unsigned
+count_attribute_slots(const glsl_type *t)
+{
+ /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
+ *
+ * "A scalar input counts the same amount against this limit as a vec4,
+ * so applications may want to consider packing groups of four
+ * unrelated float inputs together into a vector to better utilize the
+ * capabilities of the underlying hardware. A matrix input will use up
+ * multiple locations. The number of locations used will equal the
+ * number of columns in the matrix."
+ *
+ * The spec does not explicitly say how arrays are counted. However, it
+ * should be safe to assume the total number of slots consumed by an array
+ * is the number of entries in the array multiplied by the number of slots
+ * consumed by a single element of the array.
+ */
+
+ if (t->is_array())
+ return t->array_size() * count_attribute_slots(t->element_type());
+
+ if (t->is_matrix())
+ return t->matrix_columns;
+
+ return 1;
+}
+
+
+/**
+ * Verify that a vertex shader executable meets all semantic requirements
+ *
+ * \param shader Vertex shader executable to be verified
+ */
+bool
+validate_vertex_shader_executable(struct gl_shader_program *prog,
+ struct gl_shader *shader)
+{
+ if (shader == NULL)
+ return true;
+
+ find_assignment_visitor find("gl_Position");
+ find.run(shader->ir);
+ if (!find.variable_found()) {
+ linker_error_printf(prog,
+ "vertex shader does not write to `gl_Position'\n");
+ return false;
+ }
+
+ return true;
+}
+
+
+/**
+ * Verify that a fragment shader executable meets all semantic requirements
+ *
+ * \param shader Fragment shader executable to be verified
+ */
+bool
+validate_fragment_shader_executable(struct gl_shader_program *prog,
+ struct gl_shader *shader)
+{
+ if (shader == NULL)
+ return true;
+
+ find_assignment_visitor frag_color("gl_FragColor");
+ find_assignment_visitor frag_data("gl_FragData");
+
+ frag_color.run(shader->ir);
+ frag_data.run(shader->ir);
+
+ if (frag_color.variable_found() && frag_data.variable_found()) {
+ linker_error_printf(prog, "fragment shader writes to both "
+ "`gl_FragColor' and `gl_FragData'\n");
+ return false;
+ }
+
+ return true;
+}
+
+
+/**
+ * Generate a string describing the mode of a variable
+ */
+static const char *
+mode_string(const ir_variable *var)
+{
+ switch (var->mode) {
+ case ir_var_auto:
+ return (var->read_only) ? "global constant" : "global variable";
+
+ case ir_var_uniform: return "uniform";
+ case ir_var_in: return "shader input";
+ case ir_var_out: return "shader output";
+ case ir_var_inout: return "shader inout";
+
+ case ir_var_temporary:
+ default:
+ assert(!"Should not get here.");
+ return "invalid variable";
+ }
+}
+
+
+/**
+ * Perform validation of global variables used across multiple shaders
+ */
+bool
+cross_validate_globals(struct gl_shader_program *prog,
+ struct gl_shader **shader_list,
+ unsigned num_shaders,
+ bool uniforms_only)
+{
+ /* Examine all of the uniforms in all of the shaders and cross validate
+ * them.
+ */
+ glsl_symbol_table variables;
+ for (unsigned i = 0; i < num_shaders; i++) {
+ if (shader_list[i] == NULL)
+ continue;
+
+ foreach_list(node, shader_list[i]->ir) {
+ ir_variable *const var = ((ir_instruction *) node)->as_variable();
+
+ if (var == NULL)
+ continue;
+
+ if (uniforms_only && (var->mode != ir_var_uniform))
+ continue;
+
+ /* Don't cross validate temporaries that are at global scope. These
+ * will eventually get pulled into the shaders 'main'.
+ */
+ if (var->mode == ir_var_temporary)
+ continue;
+
+ /* If a global with this name has already been seen, verify that the
+ * new instance has the same type. In addition, if the globals have
+ * initializers, the values of the initializers must be the same.
+ */
+ ir_variable *const existing = variables.get_variable(var->name);
+ if (existing != NULL) {
+ if (var->type != existing->type) {
+ /* Consider the types to be "the same" if both types are arrays
+ * of the same type and one of the arrays is implicitly sized.
+ * In addition, set the type of the linked variable to the
+ * explicitly sized array.
+ */
+ if (var->type->is_array()
+ && existing->type->is_array()
+ && (var->type->fields.array == existing->type->fields.array)
+ && ((var->type->length == 0)
+ || (existing->type->length == 0))) {
+ if (var->type->length != 0) {
+ existing->type = var->type;
+ }
+ } else {
+ linker_error_printf(prog, "%s `%s' declared as type "
+ "`%s' and type `%s'\n",
+ mode_string(var),
+ var->name, var->type->name,
+ existing->type->name);
+ return false;
+ }
+ }
+
+ if (var->explicit_location) {
+ if (existing->explicit_location
+ && (var->location != existing->location)) {
+ linker_error_printf(prog, "explicit locations for %s "
+ "`%s' have differing values\n",
+ mode_string(var), var->name);
+ return false;
+ }
+
+ existing->location = var->location;
+ existing->explicit_location = true;
+ }
+
+ /* FINISHME: Handle non-constant initializers.
+ */
+ if (var->constant_value != NULL) {
+ if (existing->constant_value != NULL) {
+ if (!var->constant_value->has_value(existing->constant_value)) {
+ linker_error_printf(prog, "initializers for %s "
+ "`%s' have differing values\n",
+ mode_string(var), var->name);
+ return false;
+ }
+ } else
+ /* If the first-seen instance of a particular uniform did not
+ * have an initializer but a later instance does, copy the
+ * initializer to the version stored in the symbol table.
+ */
+ /* FINISHME: This is wrong. The constant_value field should
+ * FINISHME: not be modified! Imagine a case where a shader
+ * FINISHME: without an initializer is linked in two different
+ * FINISHME: programs with shaders that have differing
+ * FINISHME: initializers. Linking with the first will
+ * FINISHME: modify the shader, and linking with the second
+ * FINISHME: will fail.
+ */
+ existing->constant_value =
+ var->constant_value->clone(talloc_parent(existing), NULL);
+ }
+
+ if (existing->invariant != var->invariant) {
+ linker_error_printf(prog, "declarations for %s `%s' have "
+ "mismatching invariant qualifiers\n",
+ mode_string(var), var->name);
+ return false;
+ }
+ if (existing->centroid != var->centroid) {
+ linker_error_printf(prog, "declarations for %s `%s' have "
+ "mismatching centroid qualifiers\n",
+ mode_string(var), var->name);
+ return false;
+ }
+ } else
+ variables.add_variable(var);
+ }
+ }
+
+ return true;
+}
+
+
+/**
+ * Perform validation of uniforms used across multiple shader stages
+ */
+bool
+cross_validate_uniforms(struct gl_shader_program *prog)
+{
+ return cross_validate_globals(prog, prog->_LinkedShaders,
+ MESA_SHADER_TYPES, true);
+}
+
+
+/**
+ * Validate that outputs from one stage match inputs of another
+ */
+bool
+cross_validate_outputs_to_inputs(struct gl_shader_program *prog,
+ gl_shader *producer, gl_shader *consumer)
+{
+ glsl_symbol_table parameters;
+ /* FINISHME: Figure these out dynamically. */
+ const char *const producer_stage = "vertex";
+ const char *const consumer_stage = "fragment";
+
+ /* Find all shader outputs in the "producer" stage.
+ */
+ foreach_list(node, producer->ir) {
+ ir_variable *const var = ((ir_instruction *) node)->as_variable();
+
+ /* FINISHME: For geometry shaders, this should also look for inout
+ * FINISHME: variables.
+ */
+ if ((var == NULL) || (var->mode != ir_var_out))
+ continue;
+
+ parameters.add_variable(var);
+ }
+
+
+ /* Find all shader inputs in the "consumer" stage. Any variables that have
+ * matching outputs already in the symbol table must have the same type and
+ * qualifiers.
+ */
+ foreach_list(node, consumer->ir) {
+ ir_variable *const input = ((ir_instruction *) node)->as_variable();
+
+ /* FINISHME: For geometry shaders, this should also look for inout
+ * FINISHME: variables.
+ */
+ if ((input == NULL) || (input->mode != ir_var_in))
+ continue;
+
+ ir_variable *const output = parameters.get_variable(input->name);
+ if (output != NULL) {
+ /* Check that the types match between stages.
+ */
+ if (input->type != output->type) {
+ /* There is a bit of a special case for gl_TexCoord. This
+ * built-in is unsized by default. Appliations that variable
+ * access it must redeclare it with a size. There is some
+ * language in the GLSL spec that implies the fragment shader
+ * and vertex shader do not have to agree on this size. Other
+ * driver behave this way, and one or two applications seem to
+ * rely on it.
+ *
+ * Neither declaration needs to be modified here because the array
+ * sizes are fixed later when update_array_sizes is called.
+ *
+ * From page 48 (page 54 of the PDF) of the GLSL 1.10 spec:
+ *
+ * "Unlike user-defined varying variables, the built-in
+ * varying variables don't have a strict one-to-one
+ * correspondence between the vertex language and the
+ * fragment language."
+ */
+ if (!output->type->is_array()
+ || (strncmp("gl_", output->name, 3) != 0)) {
+ linker_error_printf(prog,
+ "%s shader output `%s' declared as "
+ "type `%s', but %s shader input declared "
+ "as type `%s'\n",
+ producer_stage, output->name,
+ output->type->name,
+ consumer_stage, input->type->name);
+ return false;
+ }
+ }
+
+ /* Check that all of the qualifiers match between stages.
+ */
+ if (input->centroid != output->centroid) {
+ linker_error_printf(prog,
+ "%s shader output `%s' %s centroid qualifier, "
+ "but %s shader input %s centroid qualifier\n",
+ producer_stage,
+ output->name,
+ (output->centroid) ? "has" : "lacks",
+ consumer_stage,
+ (input->centroid) ? "has" : "lacks");
+ return false;
+ }
+
+ if (input->invariant != output->invariant) {
+ linker_error_printf(prog,
+ "%s shader output `%s' %s invariant qualifier, "
+ "but %s shader input %s invariant qualifier\n",
+ producer_stage,
+ output->name,
+ (output->invariant) ? "has" : "lacks",
+ consumer_stage,
+ (input->invariant) ? "has" : "lacks");
+ return false;
+ }
+
+ if (input->interpolation != output->interpolation) {
+ linker_error_printf(prog,
+ "%s shader output `%s' specifies %s "
+ "interpolation qualifier, "
+ "but %s shader input specifies %s "
+ "interpolation qualifier\n",
+ producer_stage,
+ output->name,
+ output->interpolation_string(),
+ consumer_stage,
+ input->interpolation_string());
+ return false;
+ }
+ }
+ }
+
+ return true;
+}
+
+
+/**
+ * Populates a shaders symbol table with all global declarations
+ */
+static void
+populate_symbol_table(gl_shader *sh)
+{
+ sh->symbols = new(sh) glsl_symbol_table;
+
+ foreach_list(node, sh->ir) {
+ ir_instruction *const inst = (ir_instruction *) node;
+ ir_variable *var;
+ ir_function *func;
+
+ if ((func = inst->as_function()) != NULL) {
+ sh->symbols->add_function(func);
+ } else if ((var = inst->as_variable()) != NULL) {
+ sh->symbols->add_variable(var);
+ }
+ }
+}
+
+
+/**
+ * Remap variables referenced in an instruction tree
+ *
+ * This is used when instruction trees are cloned from one shader and placed in
+ * another. These trees will contain references to \c ir_variable nodes that
+ * do not exist in the target shader. This function finds these \c ir_variable
+ * references and replaces the references with matching variables in the target
+ * shader.
+ *
+ * If there is no matching variable in the target shader, a clone of the
+ * \c ir_variable is made and added to the target shader. The new variable is
+ * added to \b both the instruction stream and the symbol table.
+ *
+ * \param inst IR tree that is to be processed.
+ * \param symbols Symbol table containing global scope symbols in the
+ * linked shader.
+ * \param instructions Instruction stream where new variable declarations
+ * should be added.
+ */
+void
+remap_variables(ir_instruction *inst, struct gl_shader *target,
+ hash_table *temps)
+{
+ class remap_visitor : public ir_hierarchical_visitor {
+ public:
+ remap_visitor(struct gl_shader *target,
+ hash_table *temps)
+ {
+ this->target = target;
+ this->symbols = target->symbols;
+ this->instructions = target->ir;
+ this->temps = temps;
+ }
+
+ virtual ir_visitor_status visit(ir_dereference_variable *ir)
+ {
+ if (ir->var->mode == ir_var_temporary) {
+ ir_variable *var = (ir_variable *) hash_table_find(temps, ir->var);
+
+ assert(var != NULL);
+ ir->var = var;
+ return visit_continue;
+ }
+
+ ir_variable *const existing =
+ this->symbols->get_variable(ir->var->name);
+ if (existing != NULL)
+ ir->var = existing;
+ else {
+ ir_variable *copy = ir->var->clone(this->target, NULL);
+
+ this->symbols->add_variable(copy);
+ this->instructions->push_head(copy);
+ ir->var = copy;
+ }
+
+ return visit_continue;
+ }
+
+ private:
+ struct gl_shader *target;
+ glsl_symbol_table *symbols;
+ exec_list *instructions;
+ hash_table *temps;
+ };
+
+ remap_visitor v(target, temps);
+
+ inst->accept(&v);
+}
+
+
+/**
+ * Move non-declarations from one instruction stream to another
+ *
+ * The intended usage pattern of this function is to pass the pointer to the
+ * head sentinel of a list (i.e., a pointer to the list cast to an \c exec_node
+ * pointer) for \c last and \c false for \c make_copies on the first
+ * call. Successive calls pass the return value of the previous call for
+ * \c last and \c true for \c make_copies.
+ *
+ * \param instructions Source instruction stream
+ * \param last Instruction after which new instructions should be
+ * inserted in the target instruction stream
+ * \param make_copies Flag selecting whether instructions in \c instructions
+ * should be copied (via \c ir_instruction::clone) into the
+ * target list or moved.
+ *
+ * \return
+ * The new "last" instruction in the target instruction stream. This pointer
+ * is suitable for use as the \c last parameter of a later call to this
+ * function.
+ */
+exec_node *
+move_non_declarations(exec_list *instructions, exec_node *last,
+ bool make_copies, gl_shader *target)
+{
+ hash_table *temps = NULL;
+
+ if (make_copies)
+ temps = hash_table_ctor(0, hash_table_pointer_hash,
+ hash_table_pointer_compare);
+
+ foreach_list_safe(node, instructions) {
+ ir_instruction *inst = (ir_instruction *) node;
+
+ if (inst->as_function())
+ continue;
+
+ ir_variable *var = inst->as_variable();
+ if ((var != NULL) && (var->mode != ir_var_temporary))
+ continue;
+
+ assert(inst->as_assignment()
+ || ((var != NULL) && (var->mode == ir_var_temporary)));
+
+ if (make_copies) {
+ inst = inst->clone(target, NULL);
+
+ if (var != NULL)
+ hash_table_insert(temps, inst, var);
+ else
+ remap_variables(inst, target, temps);
+ } else {
+ inst->remove();
+ }
+
+ last->insert_after(inst);
+ last = inst;
+ }
+
+ if (make_copies)
+ hash_table_dtor(temps);
+
+ return last;
+}
+
+/**
+ * Get the function signature for main from a shader
+ */
+static ir_function_signature *
+get_main_function_signature(gl_shader *sh)
+{
+ ir_function *const f = sh->symbols->get_function("main");
+ if (f != NULL) {
+ exec_list void_parameters;
+
+ /* Look for the 'void main()' signature and ensure that it's defined.
+ * This keeps the linker from accidentally pick a shader that just
+ * contains a prototype for main.
+ *
+ * We don't have to check for multiple definitions of main (in multiple
+ * shaders) because that would have already been caught above.
+ */
+ ir_function_signature *sig = f->matching_signature(&void_parameters);
+ if ((sig != NULL) && sig->is_defined) {
+ return sig;
+ }
+ }
+
+ return NULL;
+}
+
+
+/**
+ * Combine a group of shaders for a single stage to generate a linked shader
+ *
+ * \note
+ * If this function is supplied a single shader, it is cloned, and the new
+ * shader is returned.
+ */
+static struct gl_shader *
+link_intrastage_shaders(void *mem_ctx,
+ struct gl_context *ctx,
+ struct gl_shader_program *prog,
+ struct gl_shader **shader_list,
+ unsigned num_shaders)
+{
+ /* Check that global variables defined in multiple shaders are consistent.
+ */
+ if (!cross_validate_globals(prog, shader_list, num_shaders, false))
+ return NULL;
+
+ /* Check that there is only a single definition of each function signature
+ * across all shaders.
+ */
+ for (unsigned i = 0; i < (num_shaders - 1); i++) {
+ foreach_list(node, shader_list[i]->ir) {
+ ir_function *const f = ((ir_instruction *) node)->as_function();
+
+ if (f == NULL)
+ continue;
+
+ for (unsigned j = i + 1; j < num_shaders; j++) {
+ ir_function *const other =
+ shader_list[j]->symbols->get_function(f->name);
+
+ /* If the other shader has no function (and therefore no function
+ * signatures) with the same name, skip to the next shader.
+ */
+ if (other == NULL)
+ continue;
+
+ foreach_iter (exec_list_iterator, iter, *f) {
+ ir_function_signature *sig =
+ (ir_function_signature *) iter.get();
+
+ if (!sig->is_defined || sig->is_builtin)
+ continue;
+
+ ir_function_signature *other_sig =
+ other->exact_matching_signature(& sig->parameters);
+
+ if ((other_sig != NULL) && other_sig->is_defined
+ && !other_sig->is_builtin) {
+ linker_error_printf(prog,
+ "function `%s' is multiply defined",
+ f->name);
+ return NULL;
+ }
+ }
+ }
+ }
+ }
+
+ /* Find the shader that defines main, and make a clone of it.
+ *
+ * Starting with the clone, search for undefined references. If one is
+ * found, find the shader that defines it. Clone the reference and add
+ * it to the shader. Repeat until there are no undefined references or
+ * until a reference cannot be resolved.
+ */
+ gl_shader *main = NULL;
+ for (unsigned i = 0; i < num_shaders; i++) {
+ if (get_main_function_signature(shader_list[i]) != NULL) {
+ main = shader_list[i];
+ break;
+ }
+ }
+
+ if (main == NULL) {
+ linker_error_printf(prog, "%s shader lacks `main'\n",
+ (shader_list[0]->Type == GL_VERTEX_SHADER)
+ ? "vertex" : "fragment");
+ return NULL;
+ }
+
+ gl_shader *linked = ctx->Driver.NewShader(NULL, 0, main->Type);
+ linked->ir = new(linked) exec_list;
+ clone_ir_list(mem_ctx, linked->ir, main->ir);
+
+ populate_symbol_table(linked);
+
+ /* The a pointer to the main function in the final linked shader (i.e., the
+ * copy of the original shader that contained the main function).
+ */
+ ir_function_signature *const main_sig = get_main_function_signature(linked);
+
+ /* Move any instructions other than variable declarations or function
+ * declarations into main.
+ */
+ exec_node *insertion_point =
+ move_non_declarations(linked->ir, (exec_node *) &main_sig->body, false,
+ linked);
+
+ for (unsigned i = 0; i < num_shaders; i++) {
+ if (shader_list[i] == main)
+ continue;
+
+ insertion_point = move_non_declarations(shader_list[i]->ir,
+ insertion_point, true, linked);
+ }
+
+ /* Resolve initializers for global variables in the linked shader.
+ */
+ unsigned num_linking_shaders = num_shaders;
+ for (unsigned i = 0; i < num_shaders; i++)
+ num_linking_shaders += shader_list[i]->num_builtins_to_link;
+
+ gl_shader **linking_shaders =
+ (gl_shader **) calloc(num_linking_shaders, sizeof(gl_shader *));
+
+ memcpy(linking_shaders, shader_list,
+ sizeof(linking_shaders[0]) * num_shaders);
+
+ unsigned idx = num_shaders;
+ for (unsigned i = 0; i < num_shaders; i++) {
+ memcpy(&linking_shaders[idx], shader_list[i]->builtins_to_link,
+ sizeof(linking_shaders[0]) * shader_list[i]->num_builtins_to_link);
+ idx += shader_list[i]->num_builtins_to_link;
+ }
+
+ assert(idx == num_linking_shaders);
+
+ if (!link_function_calls(prog, linked, linking_shaders,
+ num_linking_shaders)) {
+ ctx->Driver.DeleteShader(ctx, linked);
+ linked = NULL;
+ }
+
+ free(linking_shaders);
+
+ /* Make a pass over all variable declarations to ensure that arrays with
+ * unspecified sizes have a size specified. The size is inferred from the
+ * max_array_access field.
+ */
+ if (linked != NULL) {
+ class array_sizing_visitor : public ir_hierarchical_visitor {
+ public:
+ virtual ir_visitor_status visit(ir_variable *var)
+ {
+ if (var->type->is_array() && (var->type->length == 0)) {
+ const glsl_type *type =
+ glsl_type::get_array_instance(var->type->fields.array,
+ var->max_array_access);
+
+ assert(type != NULL);
+ var->type = type;
+ }
+
+ return visit_continue;
+ }
+ } v;
+
+ v.run(linked->ir);
+ }
+
+ return linked;
+}
+
+
+struct uniform_node {
+ exec_node link;
+ struct gl_uniform *u;
+ unsigned slots;
+};
+
+/**
+ * Update the sizes of linked shader uniform arrays to the maximum
+ * array index used.
+ *
+ * From page 81 (page 95 of the PDF) of the OpenGL 2.1 spec:
+ *
+ * If one or more elements of an array are active,
+ * GetActiveUniform will return the name of the array in name,
+ * subject to the restrictions listed above. The type of the array
+ * is returned in type. The size parameter contains the highest
+ * array element index used, plus one. The compiler or linker
+ * determines the highest index used. There will be only one
+ * active uniform reported by the GL per uniform array.
+
+ */
+static void
+update_array_sizes(struct gl_shader_program *prog)
+{
+ for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
+ if (prog->_LinkedShaders[i] == NULL)
+ continue;
+
+ foreach_list(node, prog->_LinkedShaders[i]->ir) {
+ ir_variable *const var = ((ir_instruction *) node)->as_variable();
+
+ if ((var == NULL) || (var->mode != ir_var_uniform &&
+ var->mode != ir_var_in &&
+ var->mode != ir_var_out) ||
+ !var->type->is_array())
+ continue;
+
+ unsigned int size = var->max_array_access;
+ for (unsigned j = 0; j < MESA_SHADER_TYPES; j++) {
+ if (prog->_LinkedShaders[j] == NULL)
+ continue;
+
+ foreach_list(node2, prog->_LinkedShaders[j]->ir) {
+ ir_variable *other_var = ((ir_instruction *) node2)->as_variable();
+ if (!other_var)
+ continue;
+
+ if (strcmp(var->name, other_var->name) == 0 &&
+ other_var->max_array_access > size) {
+ size = other_var->max_array_access;
+ }
+ }
+ }
+
+ if (size + 1 != var->type->fields.array->length) {
+ var->type = glsl_type::get_array_instance(var->type->fields.array,
+ size + 1);
+ /* FINISHME: We should update the types of array
+ * dereferences of this variable now.
+ */
+ }
+ }
+ }
+}
+
+static void
+add_uniform(void *mem_ctx, exec_list *uniforms, struct hash_table *ht,
+ const char *name, const glsl_type *type, GLenum shader_type,
+ unsigned *next_shader_pos, unsigned *total_uniforms)
+{
+ if (type->is_record()) {
+ for (unsigned int i = 0; i < type->length; i++) {
+ const glsl_type *field_type = type->fields.structure[i].type;
+ char *field_name = talloc_asprintf(mem_ctx, "%s.%s", name,
+ type->fields.structure[i].name);
+
+ add_uniform(mem_ctx, uniforms, ht, field_name, field_type,
+ shader_type, next_shader_pos, total_uniforms);
+ }
+ } else {
+ uniform_node *n = (uniform_node *) hash_table_find(ht, name);
+ unsigned int vec4_slots;
+ const glsl_type *array_elem_type = NULL;
+
+ if (type->is_array()) {
+ array_elem_type = type->fields.array;
+ /* Array of structures. */
+ if (array_elem_type->is_record()) {
+ for (unsigned int i = 0; i < type->length; i++) {
+ char *elem_name = talloc_asprintf(mem_ctx, "%s[%d]", name, i);
+ add_uniform(mem_ctx, uniforms, ht, elem_name, array_elem_type,
+ shader_type, next_shader_pos, total_uniforms);
+ }
+ return;
+ }
+ }
+
+ /* Fix the storage size of samplers at 1 vec4 each. Be sure to pad out
+ * vectors to vec4 slots.
+ */
+ if (type->is_array()) {
+ if (array_elem_type->is_sampler())
+ vec4_slots = type->length;
+ else
+ vec4_slots = type->length * array_elem_type->matrix_columns;
+ } else if (type->is_sampler()) {
+ vec4_slots = 1;
+ } else {
+ vec4_slots = type->matrix_columns;
+ }
+
+ if (n == NULL) {
+ n = (uniform_node *) calloc(1, sizeof(struct uniform_node));
+ n->u = (gl_uniform *) calloc(1, sizeof(struct gl_uniform));
+ n->slots = vec4_slots;
+
+ n->u->Name = strdup(name);
+ n->u->Type = type;
+ n->u->VertPos = -1;
+ n->u->FragPos = -1;
+ n->u->GeomPos = -1;
+ (*total_uniforms)++;
+
+ hash_table_insert(ht, n, name);
+ uniforms->push_tail(& n->link);
+ }
+
+ switch (shader_type) {
+ case GL_VERTEX_SHADER:
+ n->u->VertPos = *next_shader_pos;
+ break;
+ case GL_FRAGMENT_SHADER:
+ n->u->FragPos = *next_shader_pos;
+ break;
+ case GL_GEOMETRY_SHADER:
+ n->u->GeomPos = *next_shader_pos;
+ break;
+ }
+
+ (*next_shader_pos) += vec4_slots;
+ }
+}
+
+void
+assign_uniform_locations(struct gl_shader_program *prog)
+{
+ /* */
+ exec_list uniforms;
+ unsigned total_uniforms = 0;
+ hash_table *ht = hash_table_ctor(32, hash_table_string_hash,
+ hash_table_string_compare);
+ void *mem_ctx = talloc_new(NULL);
+
+ for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
+ if (prog->_LinkedShaders[i] == NULL)
+ continue;
+
+ unsigned next_position = 0;
+
+ foreach_list(node, prog->_LinkedShaders[i]->ir) {
+ ir_variable *const var = ((ir_instruction *) node)->as_variable();
+
+ if ((var == NULL) || (var->mode != ir_var_uniform))
+ continue;
+
+ if (strncmp(var->name, "gl_", 3) == 0) {
+ /* At the moment, we don't allocate uniform locations for
+ * builtin uniforms. It's permitted by spec, and we'll
+ * likely switch to doing that at some point, but not yet.
+ */
+ continue;
+ }
+
+ var->location = next_position;
+ add_uniform(mem_ctx, &uniforms, ht, var->name, var->type,
+ prog->_LinkedShaders[i]->Type,
+ &next_position, &total_uniforms);
+ }
+ }
+
+ talloc_free(mem_ctx);
+
+ gl_uniform_list *ul = (gl_uniform_list *)
+ calloc(1, sizeof(gl_uniform_list));
+
+ ul->Size = total_uniforms;
+ ul->NumUniforms = total_uniforms;
+ ul->Uniforms = (gl_uniform *) calloc(total_uniforms, sizeof(gl_uniform));
+
+ unsigned idx = 0;
+ uniform_node *next;
+ for (uniform_node *node = (uniform_node *) uniforms.head
+ ; node->link.next != NULL
+ ; node = next) {
+ next = (uniform_node *) node->link.next;
+
+ node->link.remove();
+ memcpy(&ul->Uniforms[idx], node->u, sizeof(gl_uniform));
+ idx++;
+
+ free(node->u);
+ free(node);
+ }
+
+ hash_table_dtor(ht);
+
+ prog->Uniforms = ul;
+}
+
+
+/**
+ * Find a contiguous set of available bits in a bitmask
+ *
+ * \param used_mask Bits representing used (1) and unused (0) locations
+ * \param needed_count Number of contiguous bits needed.
+ *
+ * \return
+ * Base location of the available bits on success or -1 on failure.
+ */
+int
+find_available_slots(unsigned used_mask, unsigned needed_count)
+{
+ unsigned needed_mask = (1 << needed_count) - 1;
+ const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count;
+
+ /* The comparison to 32 is redundant, but without it GCC emits "warning:
+ * cannot optimize possibly infinite loops" for the loop below.
+ */
+ if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32))
+ return -1;
+
+ for (int i = 0; i <= max_bit_to_test; i++) {
+ if ((needed_mask & ~used_mask) == needed_mask)
+ return i;
+
+ needed_mask <<= 1;
+ }
+
+ return -1;
+}
+
+
+bool
+assign_attribute_locations(gl_shader_program *prog, unsigned max_attribute_index)
+{
+ /* Mark invalid attribute locations as being used.
+ */
+ unsigned used_locations = (max_attribute_index >= 32)
+ ? ~0 : ~((1 << max_attribute_index) - 1);
+
+ gl_shader *const sh = prog->_LinkedShaders[0];
+ assert(sh->Type == GL_VERTEX_SHADER);
+
+ /* Operate in a total of four passes.
+ *
+ * 1. Invalidate the location assignments for all vertex shader inputs.
+ *
+ * 2. Assign locations for inputs that have user-defined (via
+ * glBindVertexAttribLocation) locatoins.
+ *
+ * 3. Sort the attributes without assigned locations by number of slots
+ * required in decreasing order. Fragmentation caused by attribute
+ * locations assigned by the application may prevent large attributes
+ * from having enough contiguous space.
+ *
+ * 4. Assign locations to any inputs without assigned locations.
+ */
+
+ invalidate_variable_locations(sh, ir_var_in, VERT_ATTRIB_GENERIC0);
+
+ if (prog->Attributes != NULL) {
+ for (unsigned i = 0; i < prog->Attributes->NumParameters; i++) {
+ ir_variable *const var =
+ sh->symbols->get_variable(prog->Attributes->Parameters[i].Name);
+
+ /* Note: attributes that occupy multiple slots, such as arrays or
+ * matrices, may appear in the attrib array multiple times.
+ */
+ if ((var == NULL) || (var->location != -1))
+ continue;
+
+ /* From page 61 of the OpenGL 4.0 spec:
+ *
+ * "LinkProgram will fail if the attribute bindings assigned by
+ * BindAttribLocation do not leave not enough space to assign a
+ * location for an active matrix attribute or an active attribute
+ * array, both of which require multiple contiguous generic
+ * attributes."
+ *
+ * Previous versions of the spec contain similar language but omit the
+ * bit about attribute arrays.
+ *
+ * Page 61 of the OpenGL 4.0 spec also says:
+ *
+ * "It is possible for an application to bind more than one
+ * attribute name to the same location. This is referred to as
+ * aliasing. This will only work if only one of the aliased
+ * attributes is active in the executable program, or if no path
+ * through the shader consumes more than one attribute of a set
+ * of attributes aliased to the same location. A link error can
+ * occur if the linker determines that every path through the
+ * shader consumes multiple aliased attributes, but
+ * implementations are not required to generate an error in this
+ * case."
+ *
+ * These two paragraphs are either somewhat contradictory, or I don't
+ * fully understand one or both of them.
+ */
+ /* FINISHME: The code as currently written does not support attribute
+ * FINISHME: location aliasing (see comment above).
+ */
+ const int attr = prog->Attributes->Parameters[i].StateIndexes[0];
+ const unsigned slots = count_attribute_slots(var->type);
+
+ /* Mask representing the contiguous slots that will be used by this
+ * attribute.
+ */
+ const unsigned use_mask = (1 << slots) - 1;
+
+ /* Generate a link error if the set of bits requested for this
+ * attribute overlaps any previously allocated bits.
+ */
+ if ((~(use_mask << attr) & used_locations) != used_locations) {
+ linker_error_printf(prog,
+ "insufficient contiguous attribute locations "
+ "available for vertex shader input `%s'",
+ var->name);
+ return false;
+ }
+
+ var->location = VERT_ATTRIB_GENERIC0 + attr;
+ used_locations |= (use_mask << attr);
+ }
+ }
+
+ /* Temporary storage for the set of attributes that need locations assigned.
+ */
+ struct temp_attr {
+ unsigned slots;
+ ir_variable *var;
+
+ /* Used below in the call to qsort. */
+ static int compare(const void *a, const void *b)
+ {
+ const temp_attr *const l = (const temp_attr *) a;
+ const temp_attr *const r = (const temp_attr *) b;
+
+ /* Reversed because we want a descending order sort below. */
+ return r->slots - l->slots;
+ }
+ } to_assign[16];
+
+ unsigned num_attr = 0;
+
+ foreach_list(node, sh->ir) {
+ ir_variable *const var = ((ir_instruction *) node)->as_variable();
+
+ if ((var == NULL) || (var->mode != ir_var_in))
+ continue;
+
+ if (var->explicit_location) {
+ const unsigned slots = count_attribute_slots(var->type);
+ const unsigned use_mask = (1 << slots) - 1;
+ const int attr = var->location - VERT_ATTRIB_GENERIC0;
+
+ if ((var->location >= (int)(max_attribute_index + VERT_ATTRIB_GENERIC0))
+ || (var->location < 0)) {
+ linker_error_printf(prog,
+ "invalid explicit location %d specified for "
+ "`%s'\n",
+ (var->location < 0) ? var->location : attr,
+ var->name);
+ return false;
+ } else if (var->location >= VERT_ATTRIB_GENERIC0) {
+ used_locations |= (use_mask << attr);
+ }
+ }
+
+ /* The location was explicitly assigned, nothing to do here.
+ */
+ if (var->location != -1)
+ continue;
+
+ to_assign[num_attr].slots = count_attribute_slots(var->type);
+ to_assign[num_attr].var = var;
+ num_attr++;
+ }
+
+ /* If all of the attributes were assigned locations by the application (or
+ * are built-in attributes with fixed locations), return early. This should
+ * be the common case.
+ */
+ if (num_attr == 0)
+ return true;
+
+ qsort(to_assign, num_attr, sizeof(to_assign[0]), temp_attr::compare);
+
+ /* VERT_ATTRIB_GENERIC0 is a psdueo-alias for VERT_ATTRIB_POS. It can only
+ * be explicitly assigned by via glBindAttribLocation. Mark it as reserved
+ * to prevent it from being automatically allocated below.
+ */
+ find_deref_visitor find("gl_Vertex");
+ find.run(sh->ir);
+ if (find.variable_found())
+ used_locations |= (1 << 0);
+
+ for (unsigned i = 0; i < num_attr; i++) {
+ /* Mask representing the contiguous slots that will be used by this
+ * attribute.
+ */
+ const unsigned use_mask = (1 << to_assign[i].slots) - 1;
+
+ int location = find_available_slots(used_locations, to_assign[i].slots);
+
+ if (location < 0) {
+ linker_error_printf(prog,
+ "insufficient contiguous attribute locations "
+ "available for vertex shader input `%s'",
+ to_assign[i].var->name);
+ return false;
+ }
+
+ to_assign[i].var->location = VERT_ATTRIB_GENERIC0 + location;
+ used_locations |= (use_mask << location);
+ }
+
+ return true;
+}
+
+
+/**
+ * Demote shader inputs and outputs that are not used in other stages
+ */
+void
+demote_shader_inputs_and_outputs(gl_shader *sh, enum ir_variable_mode mode)
+{
+ foreach_list(node, sh->ir) {
+ ir_variable *const var = ((ir_instruction *) node)->as_variable();
+
+ if ((var == NULL) || (var->mode != int(mode)))
+ continue;
+
+ /* A shader 'in' or 'out' variable is only really an input or output if
+ * its value is used by other shader stages. This will cause the variable
+ * to have a location assigned.
+ */
+ if (var->location == -1) {
+ var->mode = ir_var_auto;
+ }
+ }
+}
+
+
+void
+assign_varying_locations(struct gl_shader_program *prog,
+ gl_shader *producer, gl_shader *consumer)
+{
+ /* FINISHME: Set dynamically when geometry shader support is added. */
+ unsigned output_index = VERT_RESULT_VAR0;
+ unsigned input_index = FRAG_ATTRIB_VAR0;
+
+ /* Operate in a total of three passes.
+ *
+ * 1. Assign locations for any matching inputs and outputs.
+ *
+ * 2. Mark output variables in the producer that do not have locations as
+ * not being outputs. This lets the optimizer eliminate them.
+ *
+ * 3. Mark input variables in the consumer that do not have locations as
+ * not being inputs. This lets the optimizer eliminate them.
+ */
+
+ invalidate_variable_locations(producer, ir_var_out, VERT_RESULT_VAR0);
+ invalidate_variable_locations(consumer, ir_var_in, FRAG_ATTRIB_VAR0);
+
+ foreach_list(node, producer->ir) {
+ ir_variable *const output_var = ((ir_instruction *) node)->as_variable();
+
+ if ((output_var == NULL) || (output_var->mode != ir_var_out)
+ || (output_var->location != -1))
+ continue;
+
+ ir_variable *const input_var =
+ consumer->symbols->get_variable(output_var->name);
+
+ if ((input_var == NULL) || (input_var->mode != ir_var_in))
+ continue;
+
+ assert(input_var->location == -1);
+
+ output_var->location = output_index;
+ input_var->location = input_index;
+
+ /* FINISHME: Support for "varying" records in GLSL 1.50. */
+ assert(!output_var->type->is_record());
+
+ if (output_var->type->is_array()) {
+ const unsigned slots = output_var->type->length
+ * output_var->type->fields.array->matrix_columns;
+
+ output_index += slots;
+ input_index += slots;
+ } else {
+ const unsigned slots = output_var->type->matrix_columns;
+
+ output_index += slots;
+ input_index += slots;
+ }
+ }
+
+ foreach_list(node, consumer->ir) {
+ ir_variable *const var = ((ir_instruction *) node)->as_variable();
+
+ if ((var == NULL) || (var->mode != ir_var_in))
+ continue;
+
+ if (var->location == -1) {
+ if (prog->Version <= 120) {
+ /* On page 25 (page 31 of the PDF) of the GLSL 1.20 spec:
+ *
+ * Only those varying variables used (i.e. read) in
+ * the fragment shader executable must be written to
+ * by the vertex shader executable; declaring
+ * superfluous varying variables in a vertex shader is
+ * permissible.
+ *
+ * We interpret this text as meaning that the VS must
+ * write the variable for the FS to read it. See
+ * "glsl1-varying read but not written" in piglit.
+ */
+
+ linker_error_printf(prog, "fragment shader varying %s not written "
+ "by vertex shader\n.", var->name);
+ prog->LinkStatus = false;
+ }
+
+ /* An 'in' variable is only really a shader input if its
+ * value is written by the previous stage.
+ */
+ var->mode = ir_var_auto;
+ }
+ }
+}
+
+
+void
+link_shaders(struct gl_context *ctx, struct gl_shader_program *prog)
+{
+ void *mem_ctx = talloc_init("temporary linker context");
+
+ prog->LinkStatus = false;
+ prog->Validated = false;
+ prog->_Used = false;
+
+ if (prog->InfoLog != NULL)
+ talloc_free(prog->InfoLog);
+
+ prog->InfoLog = talloc_strdup(NULL, "");
+
+ /* Separate the shaders into groups based on their type.
+ */
+ struct gl_shader **vert_shader_list;
+ unsigned num_vert_shaders = 0;
+ struct gl_shader **frag_shader_list;
+ unsigned num_frag_shaders = 0;
+
+ vert_shader_list = (struct gl_shader **)
+ calloc(2 * prog->NumShaders, sizeof(struct gl_shader *));
+ frag_shader_list = &vert_shader_list[prog->NumShaders];
+
+ unsigned min_version = UINT_MAX;
+ unsigned max_version = 0;
+ for (unsigned i = 0; i < prog->NumShaders; i++) {
+ min_version = MIN2(min_version, prog->Shaders[i]->Version);
+ max_version = MAX2(max_version, prog->Shaders[i]->Version);
+
+ switch (prog->Shaders[i]->Type) {
+ case GL_VERTEX_SHADER:
+ vert_shader_list[num_vert_shaders] = prog->Shaders[i];
+ num_vert_shaders++;
+ break;
+ case GL_FRAGMENT_SHADER:
+ frag_shader_list[num_frag_shaders] = prog->Shaders[i];
+ num_frag_shaders++;
+ break;
+ case GL_GEOMETRY_SHADER:
+ /* FINISHME: Support geometry shaders. */
+ assert(prog->Shaders[i]->Type != GL_GEOMETRY_SHADER);
+ break;
+ }
+ }
+
+ /* Previous to GLSL version 1.30, different compilation units could mix and
+ * match shading language versions. With GLSL 1.30 and later, the versions
+ * of all shaders must match.
+ */
+ assert(min_version >= 100);
+ assert(max_version <= 130);
+ if ((max_version >= 130 || min_version == 100)
+ && min_version != max_version) {
+ linker_error_printf(prog, "all shaders must use same shading "
+ "language version\n");
+ goto done;
+ }
+
+ prog->Version = max_version;
+
+ for (unsigned int i = 0; i < MESA_SHADER_TYPES; i++) {
+ if (prog->_LinkedShaders[i] != NULL)
+ ctx->Driver.DeleteShader(ctx, prog->_LinkedShaders[i]);
+
+ prog->_LinkedShaders[i] = NULL;
+ }
+
+ /* Link all shaders for a particular stage and validate the result.
+ */
+ if (num_vert_shaders > 0) {
+ gl_shader *const sh =
+ link_intrastage_shaders(mem_ctx, ctx, prog, vert_shader_list,
+ num_vert_shaders);
+
+ if (sh == NULL)
+ goto done;
+
+ if (!validate_vertex_shader_executable(prog, sh))
+ goto done;
+
+ _mesa_reference_shader(ctx, &prog->_LinkedShaders[MESA_SHADER_VERTEX],
+ sh);
+ }
+
+ if (num_frag_shaders > 0) {
+ gl_shader *const sh =
+ link_intrastage_shaders(mem_ctx, ctx, prog, frag_shader_list,
+ num_frag_shaders);
+
+ if (sh == NULL)
+ goto done;
+
+ if (!validate_fragment_shader_executable(prog, sh))
+ goto done;
+
+ _mesa_reference_shader(ctx, &prog->_LinkedShaders[MESA_SHADER_FRAGMENT],
+ sh);
+ }
+
+ /* Here begins the inter-stage linking phase. Some initial validation is
+ * performed, then locations are assigned for uniforms, attributes, and
+ * varyings.
+ */
+ if (cross_validate_uniforms(prog)) {
+ unsigned prev;
+
+ for (prev = 0; prev < MESA_SHADER_TYPES; prev++) {
+ if (prog->_LinkedShaders[prev] != NULL)
+ break;
+ }
+
+ /* Validate the inputs of each stage with the output of the preceeding
+ * stage.
+ */
+ for (unsigned i = prev + 1; i < MESA_SHADER_TYPES; i++) {
+ if (prog->_LinkedShaders[i] == NULL)
+ continue;
+
+ if (!cross_validate_outputs_to_inputs(prog,
+ prog->_LinkedShaders[prev],
+ prog->_LinkedShaders[i]))
+ goto done;
+
+ prev = i;
+ }
+
+ prog->LinkStatus = true;
+ }
+
+ /* Do common optimization before assigning storage for attributes,
+ * uniforms, and varyings. Later optimization could possibly make
+ * some of that unused.
+ */
+ for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
+ if (prog->_LinkedShaders[i] == NULL)
+ continue;
+
+ while (do_common_optimization(prog->_LinkedShaders[i]->ir, true, 32))
+ ;
+ }
+
+ update_array_sizes(prog);
+
+ assign_uniform_locations(prog);
+
+ if (prog->_LinkedShaders[MESA_SHADER_VERTEX] != NULL) {
+ /* FINISHME: The value of the max_attribute_index parameter is
+ * FINISHME: implementation dependent based on the value of
+ * FINISHME: GL_MAX_VERTEX_ATTRIBS. GL_MAX_VERTEX_ATTRIBS must be
+ * FINISHME: at least 16, so hardcode 16 for now.
+ */
+ if (!assign_attribute_locations(prog, 16)) {
+ prog->LinkStatus = false;
+ goto done;
+ }
+ }
+
+ unsigned prev;
+ for (prev = 0; prev < MESA_SHADER_TYPES; prev++) {
+ if (prog->_LinkedShaders[prev] != NULL)
+ break;
+ }
+
+ for (unsigned i = prev + 1; i < MESA_SHADER_TYPES; i++) {
+ if (prog->_LinkedShaders[i] == NULL)
+ continue;
+
+ assign_varying_locations(prog,
+ prog->_LinkedShaders[prev],
+ prog->_LinkedShaders[i]);
+ prev = i;
+ }
+
+ if (prog->_LinkedShaders[MESA_SHADER_VERTEX] != NULL) {
+ demote_shader_inputs_and_outputs(prog->_LinkedShaders[MESA_SHADER_VERTEX],
+ ir_var_out);
+ }
+
+ if (prog->_LinkedShaders[MESA_SHADER_GEOMETRY] != NULL) {
+ gl_shader *const sh = prog->_LinkedShaders[MESA_SHADER_GEOMETRY];
+
+ demote_shader_inputs_and_outputs(sh, ir_var_in);
+ demote_shader_inputs_and_outputs(sh, ir_var_inout);
+ demote_shader_inputs_and_outputs(sh, ir_var_out);
+ }
+
+ if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] != NULL) {
+ gl_shader *const sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
+
+ demote_shader_inputs_and_outputs(sh, ir_var_in);
+ }
+
+ /* FINISHME: Assign fragment shader output locations. */
+
+done:
+ free(vert_shader_list);
+
+ for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
+ if (prog->_LinkedShaders[i] == NULL)
+ continue;
+
+ /* Retain any live IR, but trash the rest. */
+ reparent_ir(prog->_LinkedShaders[i]->ir, prog->_LinkedShaders[i]->ir);
+ }
+
+ talloc_free(mem_ctx);
+}