aboutsummaryrefslogtreecommitdiff
path: root/mesalib/src/mesa/swrast/s_texfilter.c
diff options
context:
space:
mode:
Diffstat (limited to 'mesalib/src/mesa/swrast/s_texfilter.c')
-rw-r--r--mesalib/src/mesa/swrast/s_texfilter.c6625
1 files changed, 3314 insertions, 3311 deletions
diff --git a/mesalib/src/mesa/swrast/s_texfilter.c b/mesalib/src/mesa/swrast/s_texfilter.c
index 503f5b732..42785400c 100644
--- a/mesalib/src/mesa/swrast/s_texfilter.c
+++ b/mesalib/src/mesa/swrast/s_texfilter.c
@@ -1,3311 +1,3314 @@
-/*
- * Mesa 3-D graphics library
- * Version: 7.3
- *
- * Copyright (C) 1999-2008 Brian Paul All Rights Reserved.
- *
- * Permission is hereby granted, free of charge, to any person obtaining a
- * copy of this software and associated documentation files (the "Software"),
- * to deal in the Software without restriction, including without limitation
- * the rights to use, copy, modify, merge, publish, distribute, sublicense,
- * and/or sell copies of the Software, and to permit persons to whom the
- * Software is furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included
- * in all copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
- * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
- * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
- * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
- * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
- */
-
-
-#include "main/glheader.h"
-#include "main/context.h"
-#include "main/colormac.h"
-#include "main/imports.h"
-
-#include "s_context.h"
-#include "s_texfilter.h"
-
-
-/*
- * Note, the FRAC macro has to work perfectly. Otherwise you'll sometimes
- * see 1-pixel bands of improperly weighted linear-filtered textures.
- * The tests/texwrap.c demo is a good test.
- * Also note, FRAC(x) doesn't truly return the fractional part of x for x < 0.
- * Instead, if x < 0 then FRAC(x) = 1 - true_frac(x).
- */
-#define FRAC(f) ((f) - IFLOOR(f))
-
-
-
-/**
- * Linear interpolation macro
- */
-#define LERP(T, A, B) ( (A) + (T) * ((B) - (A)) )
-
-
-/**
- * Do 2D/biliner interpolation of float values.
- * v00, v10, v01 and v11 are typically four texture samples in a square/box.
- * a and b are the horizontal and vertical interpolants.
- * It's important that this function is inlined when compiled with
- * optimization! If we find that's not true on some systems, convert
- * to a macro.
- */
-static INLINE GLfloat
-lerp_2d(GLfloat a, GLfloat b,
- GLfloat v00, GLfloat v10, GLfloat v01, GLfloat v11)
-{
- const GLfloat temp0 = LERP(a, v00, v10);
- const GLfloat temp1 = LERP(a, v01, v11);
- return LERP(b, temp0, temp1);
-}
-
-
-/**
- * Do 3D/trilinear interpolation of float values.
- * \sa lerp_2d
- */
-static INLINE GLfloat
-lerp_3d(GLfloat a, GLfloat b, GLfloat c,
- GLfloat v000, GLfloat v100, GLfloat v010, GLfloat v110,
- GLfloat v001, GLfloat v101, GLfloat v011, GLfloat v111)
-{
- const GLfloat temp00 = LERP(a, v000, v100);
- const GLfloat temp10 = LERP(a, v010, v110);
- const GLfloat temp01 = LERP(a, v001, v101);
- const GLfloat temp11 = LERP(a, v011, v111);
- const GLfloat temp0 = LERP(b, temp00, temp10);
- const GLfloat temp1 = LERP(b, temp01, temp11);
- return LERP(c, temp0, temp1);
-}
-
-
-/**
- * Do linear interpolation of colors.
- */
-static INLINE void
-lerp_rgba(GLfloat result[4], GLfloat t, const GLfloat a[4], const GLfloat b[4])
-{
- result[0] = LERP(t, a[0], b[0]);
- result[1] = LERP(t, a[1], b[1]);
- result[2] = LERP(t, a[2], b[2]);
- result[3] = LERP(t, a[3], b[3]);
-}
-
-
-/**
- * Do bilinear interpolation of colors.
- */
-static INLINE void
-lerp_rgba_2d(GLfloat result[4], GLfloat a, GLfloat b,
- const GLfloat t00[4], const GLfloat t10[4],
- const GLfloat t01[4], const GLfloat t11[4])
-{
- result[0] = lerp_2d(a, b, t00[0], t10[0], t01[0], t11[0]);
- result[1] = lerp_2d(a, b, t00[1], t10[1], t01[1], t11[1]);
- result[2] = lerp_2d(a, b, t00[2], t10[2], t01[2], t11[2]);
- result[3] = lerp_2d(a, b, t00[3], t10[3], t01[3], t11[3]);
-}
-
-
-/**
- * Do trilinear interpolation of colors.
- */
-static INLINE void
-lerp_rgba_3d(GLfloat result[4], GLfloat a, GLfloat b, GLfloat c,
- const GLfloat t000[4], const GLfloat t100[4],
- const GLfloat t010[4], const GLfloat t110[4],
- const GLfloat t001[4], const GLfloat t101[4],
- const GLfloat t011[4], const GLfloat t111[4])
-{
- GLuint k;
- /* compiler should unroll these short loops */
- for (k = 0; k < 4; k++) {
- result[k] = lerp_3d(a, b, c, t000[k], t100[k], t010[k], t110[k],
- t001[k], t101[k], t011[k], t111[k]);
- }
-}
-
-
-/**
- * Used for GL_REPEAT wrap mode. Using A % B doesn't produce the
- * right results for A<0. Casting to A to be unsigned only works if B
- * is a power of two. Adding a bias to A (which is a multiple of B)
- * avoids the problems with A < 0 (for reasonable A) without using a
- * conditional.
- */
-#define REMAINDER(A, B) (((A) + (B) * 1024) % (B))
-
-
-/**
- * Used to compute texel locations for linear sampling.
- * Input:
- * wrapMode = GL_REPEAT, GL_CLAMP, GL_CLAMP_TO_EDGE, GL_CLAMP_TO_BORDER
- * s = texcoord in [0,1]
- * size = width (or height or depth) of texture
- * Output:
- * i0, i1 = returns two nearest texel indexes
- * weight = returns blend factor between texels
- */
-static INLINE void
-linear_texel_locations(GLenum wrapMode,
- const struct gl_texture_image *img,
- GLint size, GLfloat s,
- GLint *i0, GLint *i1, GLfloat *weight)
-{
- GLfloat u;
- switch (wrapMode) {
- case GL_REPEAT:
- u = s * size - 0.5F;
- if (img->_IsPowerOfTwo) {
- *i0 = IFLOOR(u) & (size - 1);
- *i1 = (*i0 + 1) & (size - 1);
- }
- else {
- *i0 = REMAINDER(IFLOOR(u), size);
- *i1 = REMAINDER(*i0 + 1, size);
- }
- break;
- case GL_CLAMP_TO_EDGE:
- if (s <= 0.0F)
- u = 0.0F;
- else if (s >= 1.0F)
- u = (GLfloat) size;
- else
- u = s * size;
- u -= 0.5F;
- *i0 = IFLOOR(u);
- *i1 = *i0 + 1;
- if (*i0 < 0)
- *i0 = 0;
- if (*i1 >= (GLint) size)
- *i1 = size - 1;
- break;
- case GL_CLAMP_TO_BORDER:
- {
- const GLfloat min = -1.0F / (2.0F * size);
- const GLfloat max = 1.0F - min;
- if (s <= min)
- u = min * size;
- else if (s >= max)
- u = max * size;
- else
- u = s * size;
- u -= 0.5F;
- *i0 = IFLOOR(u);
- *i1 = *i0 + 1;
- }
- break;
- case GL_MIRRORED_REPEAT:
- {
- const GLint flr = IFLOOR(s);
- if (flr & 1)
- u = 1.0F - (s - (GLfloat) flr);
- else
- u = s - (GLfloat) flr;
- u = (u * size) - 0.5F;
- *i0 = IFLOOR(u);
- *i1 = *i0 + 1;
- if (*i0 < 0)
- *i0 = 0;
- if (*i1 >= (GLint) size)
- *i1 = size - 1;
- }
- break;
- case GL_MIRROR_CLAMP_EXT:
- u = FABSF(s);
- if (u >= 1.0F)
- u = (GLfloat) size;
- else
- u *= size;
- u -= 0.5F;
- *i0 = IFLOOR(u);
- *i1 = *i0 + 1;
- break;
- case GL_MIRROR_CLAMP_TO_EDGE_EXT:
- u = FABSF(s);
- if (u >= 1.0F)
- u = (GLfloat) size;
- else
- u *= size;
- u -= 0.5F;
- *i0 = IFLOOR(u);
- *i1 = *i0 + 1;
- if (*i0 < 0)
- *i0 = 0;
- if (*i1 >= (GLint) size)
- *i1 = size - 1;
- break;
- case GL_MIRROR_CLAMP_TO_BORDER_EXT:
- {
- const GLfloat min = -1.0F / (2.0F * size);
- const GLfloat max = 1.0F - min;
- u = FABSF(s);
- if (u <= min)
- u = min * size;
- else if (u >= max)
- u = max * size;
- else
- u *= size;
- u -= 0.5F;
- *i0 = IFLOOR(u);
- *i1 = *i0 + 1;
- }
- break;
- case GL_CLAMP:
- if (s <= 0.0F)
- u = 0.0F;
- else if (s >= 1.0F)
- u = (GLfloat) size;
- else
- u = s * size;
- u -= 0.5F;
- *i0 = IFLOOR(u);
- *i1 = *i0 + 1;
- break;
- default:
- _mesa_problem(NULL, "Bad wrap mode");
- u = 0.0F;
- }
- *weight = FRAC(u);
-}
-
-
-/**
- * Used to compute texel location for nearest sampling.
- */
-static INLINE GLint
-nearest_texel_location(GLenum wrapMode,
- const struct gl_texture_image *img,
- GLint size, GLfloat s)
-{
- GLint i;
-
- switch (wrapMode) {
- case GL_REPEAT:
- /* s limited to [0,1) */
- /* i limited to [0,size-1] */
- i = IFLOOR(s * size);
- if (img->_IsPowerOfTwo)
- i &= (size - 1);
- else
- i = REMAINDER(i, size);
- return i;
- case GL_CLAMP_TO_EDGE:
- {
- /* s limited to [min,max] */
- /* i limited to [0, size-1] */
- const GLfloat min = 1.0F / (2.0F * size);
- const GLfloat max = 1.0F - min;
- if (s < min)
- i = 0;
- else if (s > max)
- i = size - 1;
- else
- i = IFLOOR(s * size);
- }
- return i;
- case GL_CLAMP_TO_BORDER:
- {
- /* s limited to [min,max] */
- /* i limited to [-1, size] */
- const GLfloat min = -1.0F / (2.0F * size);
- const GLfloat max = 1.0F - min;
- if (s <= min)
- i = -1;
- else if (s >= max)
- i = size;
- else
- i = IFLOOR(s * size);
- }
- return i;
- case GL_MIRRORED_REPEAT:
- {
- const GLfloat min = 1.0F / (2.0F * size);
- const GLfloat max = 1.0F - min;
- const GLint flr = IFLOOR(s);
- GLfloat u;
- if (flr & 1)
- u = 1.0F - (s - (GLfloat) flr);
- else
- u = s - (GLfloat) flr;
- if (u < min)
- i = 0;
- else if (u > max)
- i = size - 1;
- else
- i = IFLOOR(u * size);
- }
- return i;
- case GL_MIRROR_CLAMP_EXT:
- {
- /* s limited to [0,1] */
- /* i limited to [0,size-1] */
- const GLfloat u = FABSF(s);
- if (u <= 0.0F)
- i = 0;
- else if (u >= 1.0F)
- i = size - 1;
- else
- i = IFLOOR(u * size);
- }
- return i;
- case GL_MIRROR_CLAMP_TO_EDGE_EXT:
- {
- /* s limited to [min,max] */
- /* i limited to [0, size-1] */
- const GLfloat min = 1.0F / (2.0F * size);
- const GLfloat max = 1.0F - min;
- const GLfloat u = FABSF(s);
- if (u < min)
- i = 0;
- else if (u > max)
- i = size - 1;
- else
- i = IFLOOR(u * size);
- }
- return i;
- case GL_MIRROR_CLAMP_TO_BORDER_EXT:
- {
- /* s limited to [min,max] */
- /* i limited to [0, size-1] */
- const GLfloat min = -1.0F / (2.0F * size);
- const GLfloat max = 1.0F - min;
- const GLfloat u = FABSF(s);
- if (u < min)
- i = -1;
- else if (u > max)
- i = size;
- else
- i = IFLOOR(u * size);
- }
- return i;
- case GL_CLAMP:
- /* s limited to [0,1] */
- /* i limited to [0,size-1] */
- if (s <= 0.0F)
- i = 0;
- else if (s >= 1.0F)
- i = size - 1;
- else
- i = IFLOOR(s * size);
- return i;
- default:
- _mesa_problem(NULL, "Bad wrap mode");
- return 0;
- }
-}
-
-
-/* Power of two image sizes only */
-static INLINE void
-linear_repeat_texel_location(GLuint size, GLfloat s,
- GLint *i0, GLint *i1, GLfloat *weight)
-{
- GLfloat u = s * size - 0.5F;
- *i0 = IFLOOR(u) & (size - 1);
- *i1 = (*i0 + 1) & (size - 1);
- *weight = FRAC(u);
-}
-
-
-/**
- * Do clamp/wrap for a texture rectangle coord, GL_NEAREST filter mode.
- */
-static INLINE GLint
-clamp_rect_coord_nearest(GLenum wrapMode, GLfloat coord, GLint max)
-{
- switch (wrapMode) {
- case GL_CLAMP:
- return IFLOOR( CLAMP(coord, 0.0F, max - 1) );
- case GL_CLAMP_TO_EDGE:
- return IFLOOR( CLAMP(coord, 0.5F, max - 0.5F) );
- case GL_CLAMP_TO_BORDER:
- return IFLOOR( CLAMP(coord, -0.5F, max + 0.5F) );
- default:
- _mesa_problem(NULL, "bad wrapMode in clamp_rect_coord_nearest");
- return 0;
- }
-}
-
-
-/**
- * As above, but GL_LINEAR filtering.
- */
-static INLINE void
-clamp_rect_coord_linear(GLenum wrapMode, GLfloat coord, GLint max,
- GLint *i0out, GLint *i1out, GLfloat *weight)
-{
- GLfloat fcol;
- GLint i0, i1;
- switch (wrapMode) {
- case GL_CLAMP:
- /* Not exactly what the spec says, but it matches NVIDIA output */
- fcol = CLAMP(coord - 0.5F, 0.0F, max - 1);
- i0 = IFLOOR(fcol);
- i1 = i0 + 1;
- break;
- case GL_CLAMP_TO_EDGE:
- fcol = CLAMP(coord, 0.5F, max - 0.5F);
- fcol -= 0.5F;
- i0 = IFLOOR(fcol);
- i1 = i0 + 1;
- if (i1 > max - 1)
- i1 = max - 1;
- break;
- case GL_CLAMP_TO_BORDER:
- fcol = CLAMP(coord, -0.5F, max + 0.5F);
- fcol -= 0.5F;
- i0 = IFLOOR(fcol);
- i1 = i0 + 1;
- break;
- default:
- _mesa_problem(NULL, "bad wrapMode in clamp_rect_coord_linear");
- i0 = i1 = 0;
- fcol = 0.0F;
- }
- *i0out = i0;
- *i1out = i1;
- *weight = FRAC(fcol);
-}
-
-
-/**
- * Compute slice/image to use for 1D or 2D array texture.
- */
-static INLINE GLint
-tex_array_slice(GLfloat coord, GLsizei size)
-{
- GLint slice = IFLOOR(coord + 0.5f);
- slice = CLAMP(slice, 0, size - 1);
- return slice;
-}
-
-
-/**
- * Compute nearest integer texcoords for given texobj and coordinate.
- * NOTE: only used for depth texture sampling.
- */
-static INLINE void
-nearest_texcoord(const struct gl_texture_object *texObj,
- GLuint level,
- const GLfloat texcoord[4],
- GLint *i, GLint *j, GLint *k)
-{
- const struct gl_texture_image *img = texObj->Image[0][level];
- const GLint width = img->Width;
- const GLint height = img->Height;
- const GLint depth = img->Depth;
-
- switch (texObj->Target) {
- case GL_TEXTURE_RECTANGLE_ARB:
- *i = clamp_rect_coord_nearest(texObj->WrapS, texcoord[0], width);
- *j = clamp_rect_coord_nearest(texObj->WrapT, texcoord[1], height);
- *k = 0;
- break;
- case GL_TEXTURE_1D:
- *i = nearest_texel_location(texObj->WrapS, img, width, texcoord[0]);
- *j = 0;
- *k = 0;
- break;
- case GL_TEXTURE_2D:
- *i = nearest_texel_location(texObj->WrapS, img, width, texcoord[0]);
- *j = nearest_texel_location(texObj->WrapT, img, height, texcoord[1]);
- *k = 0;
- break;
- case GL_TEXTURE_1D_ARRAY_EXT:
- *i = nearest_texel_location(texObj->WrapS, img, width, texcoord[0]);
- *j = tex_array_slice(texcoord[1], height);
- *k = 0;
- break;
- case GL_TEXTURE_2D_ARRAY_EXT:
- *i = nearest_texel_location(texObj->WrapS, img, width, texcoord[0]);
- *j = nearest_texel_location(texObj->WrapT, img, height, texcoord[1]);
- *k = tex_array_slice(texcoord[2], depth);
- break;
- default:
- *i = *j = *k = 0;
- }
-}
-
-
-/**
- * Compute linear integer texcoords for given texobj and coordinate.
- * NOTE: only used for depth texture sampling.
- */
-static INLINE void
-linear_texcoord(const struct gl_texture_object *texObj,
- GLuint level,
- const GLfloat texcoord[4],
- GLint *i0, GLint *i1, GLint *j0, GLint *j1, GLint *slice,
- GLfloat *wi, GLfloat *wj)
-{
- const struct gl_texture_image *img = texObj->Image[0][level];
- const GLint width = img->Width;
- const GLint height = img->Height;
- const GLint depth = img->Depth;
-
- switch (texObj->Target) {
- case GL_TEXTURE_RECTANGLE_ARB:
- clamp_rect_coord_linear(texObj->WrapS, texcoord[0],
- width, i0, i1, wi);
- clamp_rect_coord_linear(texObj->WrapT, texcoord[1],
- height, j0, j1, wj);
- *slice = 0;
- break;
-
- case GL_TEXTURE_1D:
- case GL_TEXTURE_2D:
- linear_texel_locations(texObj->WrapS, img, width,
- texcoord[0], i0, i1, wi);
- linear_texel_locations(texObj->WrapT, img, height,
- texcoord[1], j0, j1, wj);
- *slice = 0;
- break;
-
- case GL_TEXTURE_1D_ARRAY_EXT:
- linear_texel_locations(texObj->WrapS, img, width,
- texcoord[0], i0, i1, wi);
- *j0 = tex_array_slice(texcoord[1], height);
- *j1 = *j0;
- *slice = 0;
- break;
-
- case GL_TEXTURE_2D_ARRAY_EXT:
- linear_texel_locations(texObj->WrapS, img, width,
- texcoord[0], i0, i1, wi);
- linear_texel_locations(texObj->WrapT, img, height,
- texcoord[1], j0, j1, wj);
- *slice = tex_array_slice(texcoord[2], depth);
- break;
-
- default:
- *slice = 0;
- }
-}
-
-
-
-/**
- * For linear interpolation between mipmap levels N and N+1, this function
- * computes N.
- */
-static INLINE GLint
-linear_mipmap_level(const struct gl_texture_object *tObj, GLfloat lambda)
-{
- if (lambda < 0.0F)
- return tObj->BaseLevel;
- else if (lambda > tObj->_MaxLambda)
- return (GLint) (tObj->BaseLevel + tObj->_MaxLambda);
- else
- return (GLint) (tObj->BaseLevel + lambda);
-}
-
-
-/**
- * Compute the nearest mipmap level to take texels from.
- */
-static INLINE GLint
-nearest_mipmap_level(const struct gl_texture_object *tObj, GLfloat lambda)
-{
- GLfloat l;
- GLint level;
- if (lambda <= 0.5F)
- l = 0.0F;
- else if (lambda > tObj->_MaxLambda + 0.4999F)
- l = tObj->_MaxLambda + 0.4999F;
- else
- l = lambda;
- level = (GLint) (tObj->BaseLevel + l + 0.5F);
- if (level > tObj->_MaxLevel)
- level = tObj->_MaxLevel;
- return level;
-}
-
-
-
-/*
- * Bitflags for texture border color sampling.
- */
-#define I0BIT 1
-#define I1BIT 2
-#define J0BIT 4
-#define J1BIT 8
-#define K0BIT 16
-#define K1BIT 32
-
-
-
-/**
- * The lambda[] array values are always monotonic. Either the whole span
- * will be minified, magnified, or split between the two. This function
- * determines the subranges in [0, n-1] that are to be minified or magnified.
- */
-static INLINE void
-compute_min_mag_ranges(const struct gl_texture_object *tObj,
- GLuint n, const GLfloat lambda[],
- GLuint *minStart, GLuint *minEnd,
- GLuint *magStart, GLuint *magEnd)
-{
- GLfloat minMagThresh;
-
- /* we shouldn't be here if minfilter == magfilter */
- ASSERT(tObj->MinFilter != tObj->MagFilter);
-
- /* This bit comes from the OpenGL spec: */
- if (tObj->MagFilter == GL_LINEAR
- && (tObj->MinFilter == GL_NEAREST_MIPMAP_NEAREST ||
- tObj->MinFilter == GL_NEAREST_MIPMAP_LINEAR)) {
- minMagThresh = 0.5F;
- }
- else {
- minMagThresh = 0.0F;
- }
-
-#if 0
- /* DEBUG CODE: Verify that lambda[] is monotonic.
- * We can't really use this because the inaccuracy in the LOG2 function
- * causes this test to fail, yet the resulting texturing is correct.
- */
- if (n > 1) {
- GLuint i;
- printf("lambda delta = %g\n", lambda[0] - lambda[n-1]);
- if (lambda[0] >= lambda[n-1]) { /* decreasing */
- for (i = 0; i < n - 1; i++) {
- ASSERT((GLint) (lambda[i] * 10) >= (GLint) (lambda[i+1] * 10));
- }
- }
- else { /* increasing */
- for (i = 0; i < n - 1; i++) {
- ASSERT((GLint) (lambda[i] * 10) <= (GLint) (lambda[i+1] * 10));
- }
- }
- }
-#endif /* DEBUG */
-
- if (lambda[0] <= minMagThresh && (n <= 1 || lambda[n-1] <= minMagThresh)) {
- /* magnification for whole span */
- *magStart = 0;
- *magEnd = n;
- *minStart = *minEnd = 0;
- }
- else if (lambda[0] > minMagThresh && (n <=1 || lambda[n-1] > minMagThresh)) {
- /* minification for whole span */
- *minStart = 0;
- *minEnd = n;
- *magStart = *magEnd = 0;
- }
- else {
- /* a mix of minification and magnification */
- GLuint i;
- if (lambda[0] > minMagThresh) {
- /* start with minification */
- for (i = 1; i < n; i++) {
- if (lambda[i] <= minMagThresh)
- break;
- }
- *minStart = 0;
- *minEnd = i;
- *magStart = i;
- *magEnd = n;
- }
- else {
- /* start with magnification */
- for (i = 1; i < n; i++) {
- if (lambda[i] > minMagThresh)
- break;
- }
- *magStart = 0;
- *magEnd = i;
- *minStart = i;
- *minEnd = n;
- }
- }
-
-#if 0
- /* Verify the min/mag Start/End values
- * We don't use this either (see above)
- */
- {
- GLint i;
- for (i = 0; i < n; i++) {
- if (lambda[i] > minMagThresh) {
- /* minification */
- ASSERT(i >= *minStart);
- ASSERT(i < *minEnd);
- }
- else {
- /* magnification */
- ASSERT(i >= *magStart);
- ASSERT(i < *magEnd);
- }
- }
- }
-#endif
-}
-
-
-/**
- * When we sample the border color, it must be interpreted according to
- * the base texture format. Ex: if the texture base format it GL_ALPHA,
- * we return (0,0,0,BorderAlpha).
- */
-static INLINE void
-get_border_color(const struct gl_texture_object *tObj,
- const struct gl_texture_image *img,
- GLfloat rgba[4])
-{
- switch (img->_BaseFormat) {
- case GL_RGB:
- rgba[0] = tObj->BorderColor.f[0];
- rgba[1] = tObj->BorderColor.f[1];
- rgba[2] = tObj->BorderColor.f[2];
- rgba[3] = 1.0F;
- break;
- case GL_ALPHA:
- rgba[0] = rgba[1] = rgba[2] = 0.0;
- rgba[3] = tObj->BorderColor.f[3];
- break;
- case GL_LUMINANCE:
- rgba[0] = rgba[1] = rgba[2] = tObj->BorderColor.f[0];
- rgba[3] = 1.0;
- break;
- case GL_LUMINANCE_ALPHA:
- rgba[0] = rgba[1] = rgba[2] = tObj->BorderColor.f[0];
- rgba[3] = tObj->BorderColor.f[3];
- break;
- case GL_INTENSITY:
- rgba[0] = rgba[1] = rgba[2] = rgba[3] = tObj->BorderColor.f[0];
- break;
- default:
- COPY_4V(rgba, tObj->BorderColor.f);
- }
-}
-
-
-/**********************************************************************/
-/* 1-D Texture Sampling Functions */
-/**********************************************************************/
-
-/**
- * Return the texture sample for coordinate (s) using GL_NEAREST filter.
- */
-static INLINE void
-sample_1d_nearest(struct gl_context *ctx,
- const struct gl_texture_object *tObj,
- const struct gl_texture_image *img,
- const GLfloat texcoord[4], GLfloat rgba[4])
-{
- const GLint width = img->Width2; /* without border, power of two */
- GLint i;
- i = nearest_texel_location(tObj->WrapS, img, width, texcoord[0]);
- /* skip over the border, if any */
- i += img->Border;
- if (i < 0 || i >= (GLint) img->Width) {
- /* Need this test for GL_CLAMP_TO_BORDER mode */
- get_border_color(tObj, img, rgba);
- }
- else {
- img->FetchTexelf(img, i, 0, 0, rgba);
- }
-}
-
-
-/**
- * Return the texture sample for coordinate (s) using GL_LINEAR filter.
- */
-static INLINE void
-sample_1d_linear(struct gl_context *ctx,
- const struct gl_texture_object *tObj,
- const struct gl_texture_image *img,
- const GLfloat texcoord[4], GLfloat rgba[4])
-{
- const GLint width = img->Width2;
- GLint i0, i1;
- GLbitfield useBorderColor = 0x0;
- GLfloat a;
- GLfloat t0[4], t1[4]; /* texels */
-
- linear_texel_locations(tObj->WrapS, img, width, texcoord[0], &i0, &i1, &a);
-
- if (img->Border) {
- i0 += img->Border;
- i1 += img->Border;
- }
- else {
- if (i0 < 0 || i0 >= width) useBorderColor |= I0BIT;
- if (i1 < 0 || i1 >= width) useBorderColor |= I1BIT;
- }
-
- /* fetch texel colors */
- if (useBorderColor & I0BIT) {
- get_border_color(tObj, img, t0);
- }
- else {
- img->FetchTexelf(img, i0, 0, 0, t0);
- }
- if (useBorderColor & I1BIT) {
- get_border_color(tObj, img, t1);
- }
- else {
- img->FetchTexelf(img, i1, 0, 0, t1);
- }
-
- lerp_rgba(rgba, a, t0, t1);
-}
-
-
-static void
-sample_1d_nearest_mipmap_nearest(struct gl_context *ctx,
- const struct gl_texture_object *tObj,
- GLuint n, const GLfloat texcoord[][4],
- const GLfloat lambda[], GLfloat rgba[][4])
-{
- GLuint i;
- ASSERT(lambda != NULL);
- for (i = 0; i < n; i++) {
- GLint level = nearest_mipmap_level(tObj, lambda[i]);
- sample_1d_nearest(ctx, tObj, tObj->Image[0][level], texcoord[i], rgba[i]);
- }
-}
-
-
-static void
-sample_1d_linear_mipmap_nearest(struct gl_context *ctx,
- const struct gl_texture_object *tObj,
- GLuint n, const GLfloat texcoord[][4],
- const GLfloat lambda[], GLfloat rgba[][4])
-{
- GLuint i;
- ASSERT(lambda != NULL);
- for (i = 0; i < n; i++) {
- GLint level = nearest_mipmap_level(tObj, lambda[i]);
- sample_1d_linear(ctx, tObj, tObj->Image[0][level], texcoord[i], rgba[i]);
- }
-}
-
-
-static void
-sample_1d_nearest_mipmap_linear(struct gl_context *ctx,
- const struct gl_texture_object *tObj,
- GLuint n, const GLfloat texcoord[][4],
- const GLfloat lambda[], GLfloat rgba[][4])
-{
- GLuint i;
- ASSERT(lambda != NULL);
- for (i = 0; i < n; i++) {
- GLint level = linear_mipmap_level(tObj, lambda[i]);
- if (level >= tObj->_MaxLevel) {
- sample_1d_nearest(ctx, tObj, tObj->Image[0][tObj->_MaxLevel],
- texcoord[i], rgba[i]);
- }
- else {
- GLfloat t0[4], t1[4];
- const GLfloat f = FRAC(lambda[i]);
- sample_1d_nearest(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0);
- sample_1d_nearest(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1);
- lerp_rgba(rgba[i], f, t0, t1);
- }
- }
-}
-
-
-static void
-sample_1d_linear_mipmap_linear(struct gl_context *ctx,
- const struct gl_texture_object *tObj,
- GLuint n, const GLfloat texcoord[][4],
- const GLfloat lambda[], GLfloat rgba[][4])
-{
- GLuint i;
- ASSERT(lambda != NULL);
- for (i = 0; i < n; i++) {
- GLint level = linear_mipmap_level(tObj, lambda[i]);
- if (level >= tObj->_MaxLevel) {
- sample_1d_linear(ctx, tObj, tObj->Image[0][tObj->_MaxLevel],
- texcoord[i], rgba[i]);
- }
- else {
- GLfloat t0[4], t1[4];
- const GLfloat f = FRAC(lambda[i]);
- sample_1d_linear(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0);
- sample_1d_linear(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1);
- lerp_rgba(rgba[i], f, t0, t1);
- }
- }
-}
-
-
-/** Sample 1D texture, nearest filtering for both min/magnification */
-static void
-sample_nearest_1d( struct gl_context *ctx,
- const struct gl_texture_object *tObj, GLuint n,
- const GLfloat texcoords[][4], const GLfloat lambda[],
- GLfloat rgba[][4] )
-{
- GLuint i;
- struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel];
- (void) lambda;
- for (i = 0; i < n; i++) {
- sample_1d_nearest(ctx, tObj, image, texcoords[i], rgba[i]);
- }
-}
-
-
-/** Sample 1D texture, linear filtering for both min/magnification */
-static void
-sample_linear_1d( struct gl_context *ctx,
- const struct gl_texture_object *tObj, GLuint n,
- const GLfloat texcoords[][4], const GLfloat lambda[],
- GLfloat rgba[][4] )
-{
- GLuint i;
- struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel];
- (void) lambda;
- for (i = 0; i < n; i++) {
- sample_1d_linear(ctx, tObj, image, texcoords[i], rgba[i]);
- }
-}
-
-
-/** Sample 1D texture, using lambda to choose between min/magnification */
-static void
-sample_lambda_1d( struct gl_context *ctx,
- const struct gl_texture_object *tObj, GLuint n,
- const GLfloat texcoords[][4],
- const GLfloat lambda[], GLfloat rgba[][4] )
-{
- GLuint minStart, minEnd; /* texels with minification */
- GLuint magStart, magEnd; /* texels with magnification */
- GLuint i;
-
- ASSERT(lambda != NULL);
- compute_min_mag_ranges(tObj, n, lambda,
- &minStart, &minEnd, &magStart, &magEnd);
-
- if (minStart < minEnd) {
- /* do the minified texels */
- const GLuint m = minEnd - minStart;
- switch (tObj->MinFilter) {
- case GL_NEAREST:
- for (i = minStart; i < minEnd; i++)
- sample_1d_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
- texcoords[i], rgba[i]);
- break;
- case GL_LINEAR:
- for (i = minStart; i < minEnd; i++)
- sample_1d_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
- texcoords[i], rgba[i]);
- break;
- case GL_NEAREST_MIPMAP_NEAREST:
- sample_1d_nearest_mipmap_nearest(ctx, tObj, m, texcoords + minStart,
- lambda + minStart, rgba + minStart);
- break;
- case GL_LINEAR_MIPMAP_NEAREST:
- sample_1d_linear_mipmap_nearest(ctx, tObj, m, texcoords + minStart,
- lambda + minStart, rgba + minStart);
- break;
- case GL_NEAREST_MIPMAP_LINEAR:
- sample_1d_nearest_mipmap_linear(ctx, tObj, m, texcoords + minStart,
- lambda + minStart, rgba + minStart);
- break;
- case GL_LINEAR_MIPMAP_LINEAR:
- sample_1d_linear_mipmap_linear(ctx, tObj, m, texcoords + minStart,
- lambda + minStart, rgba + minStart);
- break;
- default:
- _mesa_problem(ctx, "Bad min filter in sample_1d_texture");
- return;
- }
- }
-
- if (magStart < magEnd) {
- /* do the magnified texels */
- switch (tObj->MagFilter) {
- case GL_NEAREST:
- for (i = magStart; i < magEnd; i++)
- sample_1d_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
- texcoords[i], rgba[i]);
- break;
- case GL_LINEAR:
- for (i = magStart; i < magEnd; i++)
- sample_1d_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
- texcoords[i], rgba[i]);
- break;
- default:
- _mesa_problem(ctx, "Bad mag filter in sample_1d_texture");
- return;
- }
- }
-}
-
-
-/**********************************************************************/
-/* 2-D Texture Sampling Functions */
-/**********************************************************************/
-
-
-/**
- * Return the texture sample for coordinate (s,t) using GL_NEAREST filter.
- */
-static INLINE void
-sample_2d_nearest(struct gl_context *ctx,
- const struct gl_texture_object *tObj,
- const struct gl_texture_image *img,
- const GLfloat texcoord[4],
- GLfloat rgba[])
-{
- const GLint width = img->Width2; /* without border, power of two */
- const GLint height = img->Height2; /* without border, power of two */
- GLint i, j;
- (void) ctx;
-
- i = nearest_texel_location(tObj->WrapS, img, width, texcoord[0]);
- j = nearest_texel_location(tObj->WrapT, img, height, texcoord[1]);
-
- /* skip over the border, if any */
- i += img->Border;
- j += img->Border;
-
- if (i < 0 || i >= (GLint) img->Width || j < 0 || j >= (GLint) img->Height) {
- /* Need this test for GL_CLAMP_TO_BORDER mode */
- get_border_color(tObj, img, rgba);
- }
- else {
- img->FetchTexelf(img, i, j, 0, rgba);
- }
-}
-
-
-/**
- * Return the texture sample for coordinate (s,t) using GL_LINEAR filter.
- * New sampling code contributed by Lynn Quam <quam@ai.sri.com>.
- */
-static INLINE void
-sample_2d_linear(struct gl_context *ctx,
- const struct gl_texture_object *tObj,
- const struct gl_texture_image *img,
- const GLfloat texcoord[4],
- GLfloat rgba[])
-{
- const GLint width = img->Width2;
- const GLint height = img->Height2;
- GLint i0, j0, i1, j1;
- GLbitfield useBorderColor = 0x0;
- GLfloat a, b;
- GLfloat t00[4], t10[4], t01[4], t11[4]; /* sampled texel colors */
-
- linear_texel_locations(tObj->WrapS, img, width, texcoord[0], &i0, &i1, &a);
- linear_texel_locations(tObj->WrapT, img, height, texcoord[1], &j0, &j1, &b);
-
- if (img->Border) {
- i0 += img->Border;
- i1 += img->Border;
- j0 += img->Border;
- j1 += img->Border;
- }
- else {
- if (i0 < 0 || i0 >= width) useBorderColor |= I0BIT;
- if (i1 < 0 || i1 >= width) useBorderColor |= I1BIT;
- if (j0 < 0 || j0 >= height) useBorderColor |= J0BIT;
- if (j1 < 0 || j1 >= height) useBorderColor |= J1BIT;
- }
-
- /* fetch four texel colors */
- if (useBorderColor & (I0BIT | J0BIT)) {
- get_border_color(tObj, img, t00);
- }
- else {
- img->FetchTexelf(img, i0, j0, 0, t00);
- }
- if (useBorderColor & (I1BIT | J0BIT)) {
- get_border_color(tObj, img, t10);
- }
- else {
- img->FetchTexelf(img, i1, j0, 0, t10);
- }
- if (useBorderColor & (I0BIT | J1BIT)) {
- get_border_color(tObj, img, t01);
- }
- else {
- img->FetchTexelf(img, i0, j1, 0, t01);
- }
- if (useBorderColor & (I1BIT | J1BIT)) {
- get_border_color(tObj, img, t11);
- }
- else {
- img->FetchTexelf(img, i1, j1, 0, t11);
- }
-
- lerp_rgba_2d(rgba, a, b, t00, t10, t01, t11);
-}
-
-
-/**
- * As above, but we know WRAP_S == REPEAT and WRAP_T == REPEAT.
- * We don't have to worry about the texture border.
- */
-static INLINE void
-sample_2d_linear_repeat(struct gl_context *ctx,
- const struct gl_texture_object *tObj,
- const struct gl_texture_image *img,
- const GLfloat texcoord[4],
- GLfloat rgba[])
-{
- const GLint width = img->Width2;
- const GLint height = img->Height2;
- GLint i0, j0, i1, j1;
- GLfloat wi, wj;
- GLfloat t00[4], t10[4], t01[4], t11[4]; /* sampled texel colors */
-
- (void) ctx;
-
- ASSERT(tObj->WrapS == GL_REPEAT);
- ASSERT(tObj->WrapT == GL_REPEAT);
- ASSERT(img->Border == 0);
- ASSERT(img->_BaseFormat != GL_COLOR_INDEX);
- ASSERT(img->_IsPowerOfTwo);
-
- linear_repeat_texel_location(width, texcoord[0], &i0, &i1, &wi);
- linear_repeat_texel_location(height, texcoord[1], &j0, &j1, &wj);
-
- img->FetchTexelf(img, i0, j0, 0, t00);
- img->FetchTexelf(img, i1, j0, 0, t10);
- img->FetchTexelf(img, i0, j1, 0, t01);
- img->FetchTexelf(img, i1, j1, 0, t11);
-
- lerp_rgba_2d(rgba, wi, wj, t00, t10, t01, t11);
-}
-
-
-static void
-sample_2d_nearest_mipmap_nearest(struct gl_context *ctx,
- const struct gl_texture_object *tObj,
- GLuint n, const GLfloat texcoord[][4],
- const GLfloat lambda[], GLfloat rgba[][4])
-{
- GLuint i;
- for (i = 0; i < n; i++) {
- GLint level = nearest_mipmap_level(tObj, lambda[i]);
- sample_2d_nearest(ctx, tObj, tObj->Image[0][level], texcoord[i], rgba[i]);
- }
-}
-
-
-static void
-sample_2d_linear_mipmap_nearest(struct gl_context *ctx,
- const struct gl_texture_object *tObj,
- GLuint n, const GLfloat texcoord[][4],
- const GLfloat lambda[], GLfloat rgba[][4])
-{
- GLuint i;
- ASSERT(lambda != NULL);
- for (i = 0; i < n; i++) {
- GLint level = nearest_mipmap_level(tObj, lambda[i]);
- sample_2d_linear(ctx, tObj, tObj->Image[0][level], texcoord[i], rgba[i]);
- }
-}
-
-
-static void
-sample_2d_nearest_mipmap_linear(struct gl_context *ctx,
- const struct gl_texture_object *tObj,
- GLuint n, const GLfloat texcoord[][4],
- const GLfloat lambda[], GLfloat rgba[][4])
-{
- GLuint i;
- ASSERT(lambda != NULL);
- for (i = 0; i < n; i++) {
- GLint level = linear_mipmap_level(tObj, lambda[i]);
- if (level >= tObj->_MaxLevel) {
- sample_2d_nearest(ctx, tObj, tObj->Image[0][tObj->_MaxLevel],
- texcoord[i], rgba[i]);
- }
- else {
- GLfloat t0[4], t1[4]; /* texels */
- const GLfloat f = FRAC(lambda[i]);
- sample_2d_nearest(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0);
- sample_2d_nearest(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1);
- lerp_rgba(rgba[i], f, t0, t1);
- }
- }
-}
-
-
-static void
-sample_2d_linear_mipmap_linear( struct gl_context *ctx,
- const struct gl_texture_object *tObj,
- GLuint n, const GLfloat texcoord[][4],
- const GLfloat lambda[], GLfloat rgba[][4] )
-{
- GLuint i;
- ASSERT(lambda != NULL);
- for (i = 0; i < n; i++) {
- GLint level = linear_mipmap_level(tObj, lambda[i]);
- if (level >= tObj->_MaxLevel) {
- sample_2d_linear(ctx, tObj, tObj->Image[0][tObj->_MaxLevel],
- texcoord[i], rgba[i]);
- }
- else {
- GLfloat t0[4], t1[4]; /* texels */
- const GLfloat f = FRAC(lambda[i]);
- sample_2d_linear(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0);
- sample_2d_linear(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1);
- lerp_rgba(rgba[i], f, t0, t1);
- }
- }
-}
-
-
-static void
-sample_2d_linear_mipmap_linear_repeat(struct gl_context *ctx,
- const struct gl_texture_object *tObj,
- GLuint n, const GLfloat texcoord[][4],
- const GLfloat lambda[], GLfloat rgba[][4])
-{
- GLuint i;
- ASSERT(lambda != NULL);
- ASSERT(tObj->WrapS == GL_REPEAT);
- ASSERT(tObj->WrapT == GL_REPEAT);
- for (i = 0; i < n; i++) {
- GLint level = linear_mipmap_level(tObj, lambda[i]);
- if (level >= tObj->_MaxLevel) {
- sample_2d_linear_repeat(ctx, tObj, tObj->Image[0][tObj->_MaxLevel],
- texcoord[i], rgba[i]);
- }
- else {
- GLfloat t0[4], t1[4]; /* texels */
- const GLfloat f = FRAC(lambda[i]);
- sample_2d_linear_repeat(ctx, tObj, tObj->Image[0][level ],
- texcoord[i], t0);
- sample_2d_linear_repeat(ctx, tObj, tObj->Image[0][level+1],
- texcoord[i], t1);
- lerp_rgba(rgba[i], f, t0, t1);
- }
- }
-}
-
-
-/** Sample 2D texture, nearest filtering for both min/magnification */
-static void
-sample_nearest_2d(struct gl_context *ctx,
- const struct gl_texture_object *tObj, GLuint n,
- const GLfloat texcoords[][4],
- const GLfloat lambda[], GLfloat rgba[][4])
-{
- GLuint i;
- struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel];
- (void) lambda;
- for (i = 0; i < n; i++) {
- sample_2d_nearest(ctx, tObj, image, texcoords[i], rgba[i]);
- }
-}
-
-
-/** Sample 2D texture, linear filtering for both min/magnification */
-static void
-sample_linear_2d(struct gl_context *ctx,
- const struct gl_texture_object *tObj, GLuint n,
- const GLfloat texcoords[][4],
- const GLfloat lambda[], GLfloat rgba[][4])
-{
- GLuint i;
- struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel];
- (void) lambda;
- if (tObj->WrapS == GL_REPEAT &&
- tObj->WrapT == GL_REPEAT &&
- image->_IsPowerOfTwo &&
- image->Border == 0) {
- for (i = 0; i < n; i++) {
- sample_2d_linear_repeat(ctx, tObj, image, texcoords[i], rgba[i]);
- }
- }
- else {
- for (i = 0; i < n; i++) {
- sample_2d_linear(ctx, tObj, image, texcoords[i], rgba[i]);
- }
- }
-}
-
-
-/**
- * Optimized 2-D texture sampling:
- * S and T wrap mode == GL_REPEAT
- * GL_NEAREST min/mag filter
- * No border,
- * RowStride == Width,
- * Format = GL_RGB
- */
-static void
-opt_sample_rgb_2d(struct gl_context *ctx,
- const struct gl_texture_object *tObj,
- GLuint n, const GLfloat texcoords[][4],
- const GLfloat lambda[], GLfloat rgba[][4])
-{
- const struct gl_texture_image *img = tObj->Image[0][tObj->BaseLevel];
- const GLfloat width = (GLfloat) img->Width;
- const GLfloat height = (GLfloat) img->Height;
- const GLint colMask = img->Width - 1;
- const GLint rowMask = img->Height - 1;
- const GLint shift = img->WidthLog2;
- GLuint k;
- (void) ctx;
- (void) lambda;
- ASSERT(tObj->WrapS==GL_REPEAT);
- ASSERT(tObj->WrapT==GL_REPEAT);
- ASSERT(img->Border==0);
- ASSERT(img->TexFormat == MESA_FORMAT_RGB888);
- ASSERT(img->_IsPowerOfTwo);
-
- for (k=0; k<n; k++) {
- GLint i = IFLOOR(texcoords[k][0] * width) & colMask;
- GLint j = IFLOOR(texcoords[k][1] * height) & rowMask;
- GLint pos = (j << shift) | i;
- GLubyte *texel = ((GLubyte *) img->Data) + 3*pos;
- rgba[k][RCOMP] = UBYTE_TO_FLOAT(texel[2]);
- rgba[k][GCOMP] = UBYTE_TO_FLOAT(texel[1]);
- rgba[k][BCOMP] = UBYTE_TO_FLOAT(texel[0]);
- rgba[k][ACOMP] = 1.0F;
- }
-}
-
-
-/**
- * Optimized 2-D texture sampling:
- * S and T wrap mode == GL_REPEAT
- * GL_NEAREST min/mag filter
- * No border
- * RowStride == Width,
- * Format = GL_RGBA
- */
-static void
-opt_sample_rgba_2d(struct gl_context *ctx,
- const struct gl_texture_object *tObj,
- GLuint n, const GLfloat texcoords[][4],
- const GLfloat lambda[], GLfloat rgba[][4])
-{
- const struct gl_texture_image *img = tObj->Image[0][tObj->BaseLevel];
- const GLfloat width = (GLfloat) img->Width;
- const GLfloat height = (GLfloat) img->Height;
- const GLint colMask = img->Width - 1;
- const GLint rowMask = img->Height - 1;
- const GLint shift = img->WidthLog2;
- GLuint i;
- (void) ctx;
- (void) lambda;
- ASSERT(tObj->WrapS==GL_REPEAT);
- ASSERT(tObj->WrapT==GL_REPEAT);
- ASSERT(img->Border==0);
- ASSERT(img->TexFormat == MESA_FORMAT_RGBA8888);
- ASSERT(img->_IsPowerOfTwo);
-
- for (i = 0; i < n; i++) {
- const GLint col = IFLOOR(texcoords[i][0] * width) & colMask;
- const GLint row = IFLOOR(texcoords[i][1] * height) & rowMask;
- const GLint pos = (row << shift) | col;
- const GLuint texel = *((GLuint *) img->Data + pos);
- rgba[i][RCOMP] = UBYTE_TO_FLOAT( (texel >> 24) );
- rgba[i][GCOMP] = UBYTE_TO_FLOAT( (texel >> 16) & 0xff );
- rgba[i][BCOMP] = UBYTE_TO_FLOAT( (texel >> 8) & 0xff );
- rgba[i][ACOMP] = UBYTE_TO_FLOAT( (texel ) & 0xff );
- }
-}
-
-
-/** Sample 2D texture, using lambda to choose between min/magnification */
-static void
-sample_lambda_2d(struct gl_context *ctx,
- const struct gl_texture_object *tObj,
- GLuint n, const GLfloat texcoords[][4],
- const GLfloat lambda[], GLfloat rgba[][4])
-{
- const struct gl_texture_image *tImg = tObj->Image[0][tObj->BaseLevel];
- GLuint minStart, minEnd; /* texels with minification */
- GLuint magStart, magEnd; /* texels with magnification */
-
- const GLboolean repeatNoBorderPOT = (tObj->WrapS == GL_REPEAT)
- && (tObj->WrapT == GL_REPEAT)
- && (tImg->Border == 0 && (tImg->Width == tImg->RowStride))
- && (tImg->_BaseFormat != GL_COLOR_INDEX)
- && tImg->_IsPowerOfTwo;
-
- ASSERT(lambda != NULL);
- compute_min_mag_ranges(tObj, n, lambda,
- &minStart, &minEnd, &magStart, &magEnd);
-
- if (minStart < minEnd) {
- /* do the minified texels */
- const GLuint m = minEnd - minStart;
- switch (tObj->MinFilter) {
- case GL_NEAREST:
- if (repeatNoBorderPOT) {
- switch (tImg->TexFormat) {
- case MESA_FORMAT_RGB888:
- opt_sample_rgb_2d(ctx, tObj, m, texcoords + minStart,
- NULL, rgba + minStart);
- break;
- case MESA_FORMAT_RGBA8888:
- opt_sample_rgba_2d(ctx, tObj, m, texcoords + minStart,
- NULL, rgba + minStart);
- break;
- default:
- sample_nearest_2d(ctx, tObj, m, texcoords + minStart,
- NULL, rgba + minStart );
- }
- }
- else {
- sample_nearest_2d(ctx, tObj, m, texcoords + minStart,
- NULL, rgba + minStart);
- }
- break;
- case GL_LINEAR:
- sample_linear_2d(ctx, tObj, m, texcoords + minStart,
- NULL, rgba + minStart);
- break;
- case GL_NEAREST_MIPMAP_NEAREST:
- sample_2d_nearest_mipmap_nearest(ctx, tObj, m,
- texcoords + minStart,
- lambda + minStart, rgba + minStart);
- break;
- case GL_LINEAR_MIPMAP_NEAREST:
- sample_2d_linear_mipmap_nearest(ctx, tObj, m, texcoords + minStart,
- lambda + minStart, rgba + minStart);
- break;
- case GL_NEAREST_MIPMAP_LINEAR:
- sample_2d_nearest_mipmap_linear(ctx, tObj, m, texcoords + minStart,
- lambda + minStart, rgba + minStart);
- break;
- case GL_LINEAR_MIPMAP_LINEAR:
- if (repeatNoBorderPOT)
- sample_2d_linear_mipmap_linear_repeat(ctx, tObj, m,
- texcoords + minStart, lambda + minStart, rgba + minStart);
- else
- sample_2d_linear_mipmap_linear(ctx, tObj, m, texcoords + minStart,
- lambda + minStart, rgba + minStart);
- break;
- default:
- _mesa_problem(ctx, "Bad min filter in sample_2d_texture");
- return;
- }
- }
-
- if (magStart < magEnd) {
- /* do the magnified texels */
- const GLuint m = magEnd - magStart;
-
- switch (tObj->MagFilter) {
- case GL_NEAREST:
- if (repeatNoBorderPOT) {
- switch (tImg->TexFormat) {
- case MESA_FORMAT_RGB888:
- opt_sample_rgb_2d(ctx, tObj, m, texcoords + magStart,
- NULL, rgba + magStart);
- break;
- case MESA_FORMAT_RGBA8888:
- opt_sample_rgba_2d(ctx, tObj, m, texcoords + magStart,
- NULL, rgba + magStart);
- break;
- default:
- sample_nearest_2d(ctx, tObj, m, texcoords + magStart,
- NULL, rgba + magStart );
- }
- }
- else {
- sample_nearest_2d(ctx, tObj, m, texcoords + magStart,
- NULL, rgba + magStart);
- }
- break;
- case GL_LINEAR:
- sample_linear_2d(ctx, tObj, m, texcoords + magStart,
- NULL, rgba + magStart);
- break;
- default:
- _mesa_problem(ctx, "Bad mag filter in sample_lambda_2d");
- }
- }
-}
-
-
-
-/**********************************************************************/
-/* 3-D Texture Sampling Functions */
-/**********************************************************************/
-
-/**
- * Return the texture sample for coordinate (s,t,r) using GL_NEAREST filter.
- */
-static INLINE void
-sample_3d_nearest(struct gl_context *ctx,
- const struct gl_texture_object *tObj,
- const struct gl_texture_image *img,
- const GLfloat texcoord[4],
- GLfloat rgba[4])
-{
- const GLint width = img->Width2; /* without border, power of two */
- const GLint height = img->Height2; /* without border, power of two */
- const GLint depth = img->Depth2; /* without border, power of two */
- GLint i, j, k;
- (void) ctx;
-
- i = nearest_texel_location(tObj->WrapS, img, width, texcoord[0]);
- j = nearest_texel_location(tObj->WrapT, img, height, texcoord[1]);
- k = nearest_texel_location(tObj->WrapR, img, depth, texcoord[2]);
-
- if (i < 0 || i >= (GLint) img->Width ||
- j < 0 || j >= (GLint) img->Height ||
- k < 0 || k >= (GLint) img->Depth) {
- /* Need this test for GL_CLAMP_TO_BORDER mode */
- get_border_color(tObj, img, rgba);
- }
- else {
- img->FetchTexelf(img, i, j, k, rgba);
- }
-}
-
-
-/**
- * Return the texture sample for coordinate (s,t,r) using GL_LINEAR filter.
- */
-static void
-sample_3d_linear(struct gl_context *ctx,
- const struct gl_texture_object *tObj,
- const struct gl_texture_image *img,
- const GLfloat texcoord[4],
- GLfloat rgba[4])
-{
- const GLint width = img->Width2;
- const GLint height = img->Height2;
- const GLint depth = img->Depth2;
- GLint i0, j0, k0, i1, j1, k1;
- GLbitfield useBorderColor = 0x0;
- GLfloat a, b, c;
- GLfloat t000[4], t010[4], t001[4], t011[4];
- GLfloat t100[4], t110[4], t101[4], t111[4];
-
- linear_texel_locations(tObj->WrapS, img, width, texcoord[0], &i0, &i1, &a);
- linear_texel_locations(tObj->WrapT, img, height, texcoord[1], &j0, &j1, &b);
- linear_texel_locations(tObj->WrapR, img, depth, texcoord[2], &k0, &k1, &c);
-
- if (img->Border) {
- i0 += img->Border;
- i1 += img->Border;
- j0 += img->Border;
- j1 += img->Border;
- k0 += img->Border;
- k1 += img->Border;
- }
- else {
- /* check if sampling texture border color */
- if (i0 < 0 || i0 >= width) useBorderColor |= I0BIT;
- if (i1 < 0 || i1 >= width) useBorderColor |= I1BIT;
- if (j0 < 0 || j0 >= height) useBorderColor |= J0BIT;
- if (j1 < 0 || j1 >= height) useBorderColor |= J1BIT;
- if (k0 < 0 || k0 >= depth) useBorderColor |= K0BIT;
- if (k1 < 0 || k1 >= depth) useBorderColor |= K1BIT;
- }
-
- /* Fetch texels */
- if (useBorderColor & (I0BIT | J0BIT | K0BIT)) {
- get_border_color(tObj, img, t000);
- }
- else {
- img->FetchTexelf(img, i0, j0, k0, t000);
- }
- if (useBorderColor & (I1BIT | J0BIT | K0BIT)) {
- get_border_color(tObj, img, t100);
- }
- else {
- img->FetchTexelf(img, i1, j0, k0, t100);
- }
- if (useBorderColor & (I0BIT | J1BIT | K0BIT)) {
- get_border_color(tObj, img, t010);
- }
- else {
- img->FetchTexelf(img, i0, j1, k0, t010);
- }
- if (useBorderColor & (I1BIT | J1BIT | K0BIT)) {
- get_border_color(tObj, img, t110);
- }
- else {
- img->FetchTexelf(img, i1, j1, k0, t110);
- }
-
- if (useBorderColor & (I0BIT | J0BIT | K1BIT)) {
- get_border_color(tObj, img, t001);
- }
- else {
- img->FetchTexelf(img, i0, j0, k1, t001);
- }
- if (useBorderColor & (I1BIT | J0BIT | K1BIT)) {
- get_border_color(tObj, img, t101);
- }
- else {
- img->FetchTexelf(img, i1, j0, k1, t101);
- }
- if (useBorderColor & (I0BIT | J1BIT | K1BIT)) {
- get_border_color(tObj, img, t011);
- }
- else {
- img->FetchTexelf(img, i0, j1, k1, t011);
- }
- if (useBorderColor & (I1BIT | J1BIT | K1BIT)) {
- get_border_color(tObj, img, t111);
- }
- else {
- img->FetchTexelf(img, i1, j1, k1, t111);
- }
-
- /* trilinear interpolation of samples */
- lerp_rgba_3d(rgba, a, b, c, t000, t100, t010, t110, t001, t101, t011, t111);
-}
-
-
-static void
-sample_3d_nearest_mipmap_nearest(struct gl_context *ctx,
- const struct gl_texture_object *tObj,
- GLuint n, const GLfloat texcoord[][4],
- const GLfloat lambda[], GLfloat rgba[][4] )
-{
- GLuint i;
- for (i = 0; i < n; i++) {
- GLint level = nearest_mipmap_level(tObj, lambda[i]);
- sample_3d_nearest(ctx, tObj, tObj->Image[0][level], texcoord[i], rgba[i]);
- }
-}
-
-
-static void
-sample_3d_linear_mipmap_nearest(struct gl_context *ctx,
- const struct gl_texture_object *tObj,
- GLuint n, const GLfloat texcoord[][4],
- const GLfloat lambda[], GLfloat rgba[][4])
-{
- GLuint i;
- ASSERT(lambda != NULL);
- for (i = 0; i < n; i++) {
- GLint level = nearest_mipmap_level(tObj, lambda[i]);
- sample_3d_linear(ctx, tObj, tObj->Image[0][level], texcoord[i], rgba[i]);
- }
-}
-
-
-static void
-sample_3d_nearest_mipmap_linear(struct gl_context *ctx,
- const struct gl_texture_object *tObj,
- GLuint n, const GLfloat texcoord[][4],
- const GLfloat lambda[], GLfloat rgba[][4])
-{
- GLuint i;
- ASSERT(lambda != NULL);
- for (i = 0; i < n; i++) {
- GLint level = linear_mipmap_level(tObj, lambda[i]);
- if (level >= tObj->_MaxLevel) {
- sample_3d_nearest(ctx, tObj, tObj->Image[0][tObj->_MaxLevel],
- texcoord[i], rgba[i]);
- }
- else {
- GLfloat t0[4], t1[4]; /* texels */
- const GLfloat f = FRAC(lambda[i]);
- sample_3d_nearest(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0);
- sample_3d_nearest(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1);
- lerp_rgba(rgba[i], f, t0, t1);
- }
- }
-}
-
-
-static void
-sample_3d_linear_mipmap_linear(struct gl_context *ctx,
- const struct gl_texture_object *tObj,
- GLuint n, const GLfloat texcoord[][4],
- const GLfloat lambda[], GLfloat rgba[][4])
-{
- GLuint i;
- ASSERT(lambda != NULL);
- for (i = 0; i < n; i++) {
- GLint level = linear_mipmap_level(tObj, lambda[i]);
- if (level >= tObj->_MaxLevel) {
- sample_3d_linear(ctx, tObj, tObj->Image[0][tObj->_MaxLevel],
- texcoord[i], rgba[i]);
- }
- else {
- GLfloat t0[4], t1[4]; /* texels */
- const GLfloat f = FRAC(lambda[i]);
- sample_3d_linear(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0);
- sample_3d_linear(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1);
- lerp_rgba(rgba[i], f, t0, t1);
- }
- }
-}
-
-
-/** Sample 3D texture, nearest filtering for both min/magnification */
-static void
-sample_nearest_3d(struct gl_context *ctx,
- const struct gl_texture_object *tObj, GLuint n,
- const GLfloat texcoords[][4], const GLfloat lambda[],
- GLfloat rgba[][4])
-{
- GLuint i;
- struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel];
- (void) lambda;
- for (i = 0; i < n; i++) {
- sample_3d_nearest(ctx, tObj, image, texcoords[i], rgba[i]);
- }
-}
-
-
-/** Sample 3D texture, linear filtering for both min/magnification */
-static void
-sample_linear_3d(struct gl_context *ctx,
- const struct gl_texture_object *tObj, GLuint n,
- const GLfloat texcoords[][4],
- const GLfloat lambda[], GLfloat rgba[][4])
-{
- GLuint i;
- struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel];
- (void) lambda;
- for (i = 0; i < n; i++) {
- sample_3d_linear(ctx, tObj, image, texcoords[i], rgba[i]);
- }
-}
-
-
-/** Sample 3D texture, using lambda to choose between min/magnification */
-static void
-sample_lambda_3d(struct gl_context *ctx,
- const struct gl_texture_object *tObj, GLuint n,
- const GLfloat texcoords[][4], const GLfloat lambda[],
- GLfloat rgba[][4])
-{
- GLuint minStart, minEnd; /* texels with minification */
- GLuint magStart, magEnd; /* texels with magnification */
- GLuint i;
-
- ASSERT(lambda != NULL);
- compute_min_mag_ranges(tObj, n, lambda,
- &minStart, &minEnd, &magStart, &magEnd);
-
- if (minStart < minEnd) {
- /* do the minified texels */
- GLuint m = minEnd - minStart;
- switch (tObj->MinFilter) {
- case GL_NEAREST:
- for (i = minStart; i < minEnd; i++)
- sample_3d_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
- texcoords[i], rgba[i]);
- break;
- case GL_LINEAR:
- for (i = minStart; i < minEnd; i++)
- sample_3d_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
- texcoords[i], rgba[i]);
- break;
- case GL_NEAREST_MIPMAP_NEAREST:
- sample_3d_nearest_mipmap_nearest(ctx, tObj, m, texcoords + minStart,
- lambda + minStart, rgba + minStart);
- break;
- case GL_LINEAR_MIPMAP_NEAREST:
- sample_3d_linear_mipmap_nearest(ctx, tObj, m, texcoords + minStart,
- lambda + minStart, rgba + minStart);
- break;
- case GL_NEAREST_MIPMAP_LINEAR:
- sample_3d_nearest_mipmap_linear(ctx, tObj, m, texcoords + minStart,
- lambda + minStart, rgba + minStart);
- break;
- case GL_LINEAR_MIPMAP_LINEAR:
- sample_3d_linear_mipmap_linear(ctx, tObj, m, texcoords + minStart,
- lambda + minStart, rgba + minStart);
- break;
- default:
- _mesa_problem(ctx, "Bad min filter in sample_3d_texture");
- return;
- }
- }
-
- if (magStart < magEnd) {
- /* do the magnified texels */
- switch (tObj->MagFilter) {
- case GL_NEAREST:
- for (i = magStart; i < magEnd; i++)
- sample_3d_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
- texcoords[i], rgba[i]);
- break;
- case GL_LINEAR:
- for (i = magStart; i < magEnd; i++)
- sample_3d_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
- texcoords[i], rgba[i]);
- break;
- default:
- _mesa_problem(ctx, "Bad mag filter in sample_3d_texture");
- return;
- }
- }
-}
-
-
-/**********************************************************************/
-/* Texture Cube Map Sampling Functions */
-/**********************************************************************/
-
-/**
- * Choose one of six sides of a texture cube map given the texture
- * coord (rx,ry,rz). Return pointer to corresponding array of texture
- * images.
- */
-static const struct gl_texture_image **
-choose_cube_face(const struct gl_texture_object *texObj,
- const GLfloat texcoord[4], GLfloat newCoord[4])
-{
- /*
- major axis
- direction target sc tc ma
- ---------- ------------------------------- --- --- ---
- +rx TEXTURE_CUBE_MAP_POSITIVE_X_EXT -rz -ry rx
- -rx TEXTURE_CUBE_MAP_NEGATIVE_X_EXT +rz -ry rx
- +ry TEXTURE_CUBE_MAP_POSITIVE_Y_EXT +rx +rz ry
- -ry TEXTURE_CUBE_MAP_NEGATIVE_Y_EXT +rx -rz ry
- +rz TEXTURE_CUBE_MAP_POSITIVE_Z_EXT +rx -ry rz
- -rz TEXTURE_CUBE_MAP_NEGATIVE_Z_EXT -rx -ry rz
- */
- const GLfloat rx = texcoord[0];
- const GLfloat ry = texcoord[1];
- const GLfloat rz = texcoord[2];
- const GLfloat arx = FABSF(rx), ary = FABSF(ry), arz = FABSF(rz);
- GLuint face;
- GLfloat sc, tc, ma;
-
- if (arx >= ary && arx >= arz) {
- if (rx >= 0.0F) {
- face = FACE_POS_X;
- sc = -rz;
- tc = -ry;
- ma = arx;
- }
- else {
- face = FACE_NEG_X;
- sc = rz;
- tc = -ry;
- ma = arx;
- }
- }
- else if (ary >= arx && ary >= arz) {
- if (ry >= 0.0F) {
- face = FACE_POS_Y;
- sc = rx;
- tc = rz;
- ma = ary;
- }
- else {
- face = FACE_NEG_Y;
- sc = rx;
- tc = -rz;
- ma = ary;
- }
- }
- else {
- if (rz > 0.0F) {
- face = FACE_POS_Z;
- sc = rx;
- tc = -ry;
- ma = arz;
- }
- else {
- face = FACE_NEG_Z;
- sc = -rx;
- tc = -ry;
- ma = arz;
- }
- }
-
- {
- const float ima = 1.0F / ma;
- newCoord[0] = ( sc * ima + 1.0F ) * 0.5F;
- newCoord[1] = ( tc * ima + 1.0F ) * 0.5F;
- }
-
- return (const struct gl_texture_image **) texObj->Image[face];
-}
-
-
-static void
-sample_nearest_cube(struct gl_context *ctx,
- const struct gl_texture_object *tObj, GLuint n,
- const GLfloat texcoords[][4], const GLfloat lambda[],
- GLfloat rgba[][4])
-{
- GLuint i;
- (void) lambda;
- for (i = 0; i < n; i++) {
- const struct gl_texture_image **images;
- GLfloat newCoord[4];
- images = choose_cube_face(tObj, texcoords[i], newCoord);
- sample_2d_nearest(ctx, tObj, images[tObj->BaseLevel],
- newCoord, rgba[i]);
- }
-}
-
-
-static void
-sample_linear_cube(struct gl_context *ctx,
- const struct gl_texture_object *tObj, GLuint n,
- const GLfloat texcoords[][4],
- const GLfloat lambda[], GLfloat rgba[][4])
-{
- GLuint i;
- (void) lambda;
- for (i = 0; i < n; i++) {
- const struct gl_texture_image **images;
- GLfloat newCoord[4];
- images = choose_cube_face(tObj, texcoords[i], newCoord);
- sample_2d_linear(ctx, tObj, images[tObj->BaseLevel],
- newCoord, rgba[i]);
- }
-}
-
-
-static void
-sample_cube_nearest_mipmap_nearest(struct gl_context *ctx,
- const struct gl_texture_object *tObj,
- GLuint n, const GLfloat texcoord[][4],
- const GLfloat lambda[], GLfloat rgba[][4])
-{
- GLuint i;
- ASSERT(lambda != NULL);
- for (i = 0; i < n; i++) {
- const struct gl_texture_image **images;
- GLfloat newCoord[4];
- GLint level;
- images = choose_cube_face(tObj, texcoord[i], newCoord);
-
- /* XXX we actually need to recompute lambda here based on the newCoords.
- * But we would need the texcoords of adjacent fragments to compute that
- * properly, and we don't have those here.
- * For now, do an approximation: subtracting 1 from the chosen mipmap
- * level seems to work in some test cases.
- * The same adjustment is done in the next few functions.
- */
- level = nearest_mipmap_level(tObj, lambda[i]);
- level = MAX2(level - 1, 0);
-
- sample_2d_nearest(ctx, tObj, images[level], newCoord, rgba[i]);
- }
-}
-
-
-static void
-sample_cube_linear_mipmap_nearest(struct gl_context *ctx,
- const struct gl_texture_object *tObj,
- GLuint n, const GLfloat texcoord[][4],
- const GLfloat lambda[], GLfloat rgba[][4])
-{
- GLuint i;
- ASSERT(lambda != NULL);
- for (i = 0; i < n; i++) {
- const struct gl_texture_image **images;
- GLfloat newCoord[4];
- GLint level = nearest_mipmap_level(tObj, lambda[i]);
- level = MAX2(level - 1, 0); /* see comment above */
- images = choose_cube_face(tObj, texcoord[i], newCoord);
- sample_2d_linear(ctx, tObj, images[level], newCoord, rgba[i]);
- }
-}
-
-
-static void
-sample_cube_nearest_mipmap_linear(struct gl_context *ctx,
- const struct gl_texture_object *tObj,
- GLuint n, const GLfloat texcoord[][4],
- const GLfloat lambda[], GLfloat rgba[][4])
-{
- GLuint i;
- ASSERT(lambda != NULL);
- for (i = 0; i < n; i++) {
- const struct gl_texture_image **images;
- GLfloat newCoord[4];
- GLint level = linear_mipmap_level(tObj, lambda[i]);
- level = MAX2(level - 1, 0); /* see comment above */
- images = choose_cube_face(tObj, texcoord[i], newCoord);
- if (level >= tObj->_MaxLevel) {
- sample_2d_nearest(ctx, tObj, images[tObj->_MaxLevel],
- newCoord, rgba[i]);
- }
- else {
- GLfloat t0[4], t1[4]; /* texels */
- const GLfloat f = FRAC(lambda[i]);
- sample_2d_nearest(ctx, tObj, images[level ], newCoord, t0);
- sample_2d_nearest(ctx, tObj, images[level+1], newCoord, t1);
- lerp_rgba(rgba[i], f, t0, t1);
- }
- }
-}
-
-
-static void
-sample_cube_linear_mipmap_linear(struct gl_context *ctx,
- const struct gl_texture_object *tObj,
- GLuint n, const GLfloat texcoord[][4],
- const GLfloat lambda[], GLfloat rgba[][4])
-{
- GLuint i;
- ASSERT(lambda != NULL);
- for (i = 0; i < n; i++) {
- const struct gl_texture_image **images;
- GLfloat newCoord[4];
- GLint level = linear_mipmap_level(tObj, lambda[i]);
- level = MAX2(level - 1, 0); /* see comment above */
- images = choose_cube_face(tObj, texcoord[i], newCoord);
- if (level >= tObj->_MaxLevel) {
- sample_2d_linear(ctx, tObj, images[tObj->_MaxLevel],
- newCoord, rgba[i]);
- }
- else {
- GLfloat t0[4], t1[4];
- const GLfloat f = FRAC(lambda[i]);
- sample_2d_linear(ctx, tObj, images[level ], newCoord, t0);
- sample_2d_linear(ctx, tObj, images[level+1], newCoord, t1);
- lerp_rgba(rgba[i], f, t0, t1);
- }
- }
-}
-
-
-/** Sample cube texture, using lambda to choose between min/magnification */
-static void
-sample_lambda_cube(struct gl_context *ctx,
- const struct gl_texture_object *tObj, GLuint n,
- const GLfloat texcoords[][4], const GLfloat lambda[],
- GLfloat rgba[][4])
-{
- GLuint minStart, minEnd; /* texels with minification */
- GLuint magStart, magEnd; /* texels with magnification */
-
- ASSERT(lambda != NULL);
- compute_min_mag_ranges(tObj, n, lambda,
- &minStart, &minEnd, &magStart, &magEnd);
-
- if (minStart < minEnd) {
- /* do the minified texels */
- const GLuint m = minEnd - minStart;
- switch (tObj->MinFilter) {
- case GL_NEAREST:
- sample_nearest_cube(ctx, tObj, m, texcoords + minStart,
- lambda + minStart, rgba + minStart);
- break;
- case GL_LINEAR:
- sample_linear_cube(ctx, tObj, m, texcoords + minStart,
- lambda + minStart, rgba + minStart);
- break;
- case GL_NEAREST_MIPMAP_NEAREST:
- sample_cube_nearest_mipmap_nearest(ctx, tObj, m,
- texcoords + minStart,
- lambda + minStart, rgba + minStart);
- break;
- case GL_LINEAR_MIPMAP_NEAREST:
- sample_cube_linear_mipmap_nearest(ctx, tObj, m,
- texcoords + minStart,
- lambda + minStart, rgba + minStart);
- break;
- case GL_NEAREST_MIPMAP_LINEAR:
- sample_cube_nearest_mipmap_linear(ctx, tObj, m,
- texcoords + minStart,
- lambda + minStart, rgba + minStart);
- break;
- case GL_LINEAR_MIPMAP_LINEAR:
- sample_cube_linear_mipmap_linear(ctx, tObj, m,
- texcoords + minStart,
- lambda + minStart, rgba + minStart);
- break;
- default:
- _mesa_problem(ctx, "Bad min filter in sample_lambda_cube");
- }
- }
-
- if (magStart < magEnd) {
- /* do the magnified texels */
- const GLuint m = magEnd - magStart;
- switch (tObj->MagFilter) {
- case GL_NEAREST:
- sample_nearest_cube(ctx, tObj, m, texcoords + magStart,
- lambda + magStart, rgba + magStart);
- break;
- case GL_LINEAR:
- sample_linear_cube(ctx, tObj, m, texcoords + magStart,
- lambda + magStart, rgba + magStart);
- break;
- default:
- _mesa_problem(ctx, "Bad mag filter in sample_lambda_cube");
- }
- }
-}
-
-
-/**********************************************************************/
-/* Texture Rectangle Sampling Functions */
-/**********************************************************************/
-
-
-static void
-sample_nearest_rect(struct gl_context *ctx,
- const struct gl_texture_object *tObj, GLuint n,
- const GLfloat texcoords[][4], const GLfloat lambda[],
- GLfloat rgba[][4])
-{
- const struct gl_texture_image *img = tObj->Image[0][0];
- const GLint width = img->Width;
- const GLint height = img->Height;
- GLuint i;
-
- (void) ctx;
- (void) lambda;
-
- ASSERT(tObj->WrapS == GL_CLAMP ||
- tObj->WrapS == GL_CLAMP_TO_EDGE ||
- tObj->WrapS == GL_CLAMP_TO_BORDER);
- ASSERT(tObj->WrapT == GL_CLAMP ||
- tObj->WrapT == GL_CLAMP_TO_EDGE ||
- tObj->WrapT == GL_CLAMP_TO_BORDER);
- ASSERT(img->_BaseFormat != GL_COLOR_INDEX);
-
- for (i = 0; i < n; i++) {
- GLint row, col;
- col = clamp_rect_coord_nearest(tObj->WrapS, texcoords[i][0], width);
- row = clamp_rect_coord_nearest(tObj->WrapT, texcoords[i][1], height);
- if (col < 0 || col >= width || row < 0 || row >= height)
- get_border_color(tObj, img, rgba[i]);
- else
- img->FetchTexelf(img, col, row, 0, rgba[i]);
- }
-}
-
-
-static void
-sample_linear_rect(struct gl_context *ctx,
- const struct gl_texture_object *tObj, GLuint n,
- const GLfloat texcoords[][4],
- const GLfloat lambda[], GLfloat rgba[][4])
-{
- const struct gl_texture_image *img = tObj->Image[0][0];
- const GLint width = img->Width;
- const GLint height = img->Height;
- GLuint i;
-
- (void) ctx;
- (void) lambda;
-
- ASSERT(tObj->WrapS == GL_CLAMP ||
- tObj->WrapS == GL_CLAMP_TO_EDGE ||
- tObj->WrapS == GL_CLAMP_TO_BORDER);
- ASSERT(tObj->WrapT == GL_CLAMP ||
- tObj->WrapT == GL_CLAMP_TO_EDGE ||
- tObj->WrapT == GL_CLAMP_TO_BORDER);
- ASSERT(img->_BaseFormat != GL_COLOR_INDEX);
-
- for (i = 0; i < n; i++) {
- GLint i0, j0, i1, j1;
- GLfloat t00[4], t01[4], t10[4], t11[4];
- GLfloat a, b;
- GLbitfield useBorderColor = 0x0;
-
- clamp_rect_coord_linear(tObj->WrapS, texcoords[i][0], width,
- &i0, &i1, &a);
- clamp_rect_coord_linear(tObj->WrapT, texcoords[i][1], height,
- &j0, &j1, &b);
-
- /* compute integer rows/columns */
- if (i0 < 0 || i0 >= width) useBorderColor |= I0BIT;
- if (i1 < 0 || i1 >= width) useBorderColor |= I1BIT;
- if (j0 < 0 || j0 >= height) useBorderColor |= J0BIT;
- if (j1 < 0 || j1 >= height) useBorderColor |= J1BIT;
-
- /* get four texel samples */
- if (useBorderColor & (I0BIT | J0BIT))
- get_border_color(tObj, img, t00);
- else
- img->FetchTexelf(img, i0, j0, 0, t00);
-
- if (useBorderColor & (I1BIT | J0BIT))
- get_border_color(tObj, img, t10);
- else
- img->FetchTexelf(img, i1, j0, 0, t10);
-
- if (useBorderColor & (I0BIT | J1BIT))
- get_border_color(tObj, img, t01);
- else
- img->FetchTexelf(img, i0, j1, 0, t01);
-
- if (useBorderColor & (I1BIT | J1BIT))
- get_border_color(tObj, img, t11);
- else
- img->FetchTexelf(img, i1, j1, 0, t11);
-
- lerp_rgba_2d(rgba[i], a, b, t00, t10, t01, t11);
- }
-}
-
-
-/** Sample Rect texture, using lambda to choose between min/magnification */
-static void
-sample_lambda_rect(struct gl_context *ctx,
- const struct gl_texture_object *tObj, GLuint n,
- const GLfloat texcoords[][4], const GLfloat lambda[],
- GLfloat rgba[][4])
-{
- GLuint minStart, minEnd, magStart, magEnd;
-
- /* We only need lambda to decide between minification and magnification.
- * There is no mipmapping with rectangular textures.
- */
- compute_min_mag_ranges(tObj, n, lambda,
- &minStart, &minEnd, &magStart, &magEnd);
-
- if (minStart < minEnd) {
- if (tObj->MinFilter == GL_NEAREST) {
- sample_nearest_rect(ctx, tObj, minEnd - minStart,
- texcoords + minStart, NULL, rgba + minStart);
- }
- else {
- sample_linear_rect(ctx, tObj, minEnd - minStart,
- texcoords + minStart, NULL, rgba + minStart);
- }
- }
- if (magStart < magEnd) {
- if (tObj->MagFilter == GL_NEAREST) {
- sample_nearest_rect(ctx, tObj, magEnd - magStart,
- texcoords + magStart, NULL, rgba + magStart);
- }
- else {
- sample_linear_rect(ctx, tObj, magEnd - magStart,
- texcoords + magStart, NULL, rgba + magStart);
- }
- }
-}
-
-
-/**********************************************************************/
-/* 2D Texture Array Sampling Functions */
-/**********************************************************************/
-
-/**
- * Return the texture sample for coordinate (s,t,r) using GL_NEAREST filter.
- */
-static void
-sample_2d_array_nearest(struct gl_context *ctx,
- const struct gl_texture_object *tObj,
- const struct gl_texture_image *img,
- const GLfloat texcoord[4],
- GLfloat rgba[4])
-{
- const GLint width = img->Width2; /* without border, power of two */
- const GLint height = img->Height2; /* without border, power of two */
- const GLint depth = img->Depth;
- GLint i, j;
- GLint array;
- (void) ctx;
-
- i = nearest_texel_location(tObj->WrapS, img, width, texcoord[0]);
- j = nearest_texel_location(tObj->WrapT, img, height, texcoord[1]);
- array = tex_array_slice(texcoord[2], depth);
-
- if (i < 0 || i >= (GLint) img->Width ||
- j < 0 || j >= (GLint) img->Height ||
- array < 0 || array >= (GLint) img->Depth) {
- /* Need this test for GL_CLAMP_TO_BORDER mode */
- get_border_color(tObj, img, rgba);
- }
- else {
- img->FetchTexelf(img, i, j, array, rgba);
- }
-}
-
-
-/**
- * Return the texture sample for coordinate (s,t,r) using GL_LINEAR filter.
- */
-static void
-sample_2d_array_linear(struct gl_context *ctx,
- const struct gl_texture_object *tObj,
- const struct gl_texture_image *img,
- const GLfloat texcoord[4],
- GLfloat rgba[4])
-{
- const GLint width = img->Width2;
- const GLint height = img->Height2;
- const GLint depth = img->Depth;
- GLint i0, j0, i1, j1;
- GLint array;
- GLbitfield useBorderColor = 0x0;
- GLfloat a, b;
- GLfloat t00[4], t01[4], t10[4], t11[4];
-
- linear_texel_locations(tObj->WrapS, img, width, texcoord[0], &i0, &i1, &a);
- linear_texel_locations(tObj->WrapT, img, height, texcoord[1], &j0, &j1, &b);
- array = tex_array_slice(texcoord[2], depth);
-
- if (array < 0 || array >= depth) {
- COPY_4V(rgba, tObj->BorderColor.f);
- }
- else {
- if (img->Border) {
- i0 += img->Border;
- i1 += img->Border;
- j0 += img->Border;
- j1 += img->Border;
- }
- else {
- /* check if sampling texture border color */
- if (i0 < 0 || i0 >= width) useBorderColor |= I0BIT;
- if (i1 < 0 || i1 >= width) useBorderColor |= I1BIT;
- if (j0 < 0 || j0 >= height) useBorderColor |= J0BIT;
- if (j1 < 0 || j1 >= height) useBorderColor |= J1BIT;
- }
-
- /* Fetch texels */
- if (useBorderColor & (I0BIT | J0BIT)) {
- get_border_color(tObj, img, t00);
- }
- else {
- img->FetchTexelf(img, i0, j0, array, t00);
- }
- if (useBorderColor & (I1BIT | J0BIT)) {
- get_border_color(tObj, img, t10);
- }
- else {
- img->FetchTexelf(img, i1, j0, array, t10);
- }
- if (useBorderColor & (I0BIT | J1BIT)) {
- get_border_color(tObj, img, t01);
- }
- else {
- img->FetchTexelf(img, i0, j1, array, t01);
- }
- if (useBorderColor & (I1BIT | J1BIT)) {
- get_border_color(tObj, img, t11);
- }
- else {
- img->FetchTexelf(img, i1, j1, array, t11);
- }
-
- /* trilinear interpolation of samples */
- lerp_rgba_2d(rgba, a, b, t00, t10, t01, t11);
- }
-}
-
-
-static void
-sample_2d_array_nearest_mipmap_nearest(struct gl_context *ctx,
- const struct gl_texture_object *tObj,
- GLuint n, const GLfloat texcoord[][4],
- const GLfloat lambda[], GLfloat rgba[][4])
-{
- GLuint i;
- for (i = 0; i < n; i++) {
- GLint level = nearest_mipmap_level(tObj, lambda[i]);
- sample_2d_array_nearest(ctx, tObj, tObj->Image[0][level], texcoord[i],
- rgba[i]);
- }
-}
-
-
-static void
-sample_2d_array_linear_mipmap_nearest(struct gl_context *ctx,
- const struct gl_texture_object *tObj,
- GLuint n, const GLfloat texcoord[][4],
- const GLfloat lambda[], GLfloat rgba[][4])
-{
- GLuint i;
- ASSERT(lambda != NULL);
- for (i = 0; i < n; i++) {
- GLint level = nearest_mipmap_level(tObj, lambda[i]);
- sample_2d_array_linear(ctx, tObj, tObj->Image[0][level],
- texcoord[i], rgba[i]);
- }
-}
-
-
-static void
-sample_2d_array_nearest_mipmap_linear(struct gl_context *ctx,
- const struct gl_texture_object *tObj,
- GLuint n, const GLfloat texcoord[][4],
- const GLfloat lambda[], GLfloat rgba[][4])
-{
- GLuint i;
- ASSERT(lambda != NULL);
- for (i = 0; i < n; i++) {
- GLint level = linear_mipmap_level(tObj, lambda[i]);
- if (level >= tObj->_MaxLevel) {
- sample_2d_array_nearest(ctx, tObj, tObj->Image[0][tObj->_MaxLevel],
- texcoord[i], rgba[i]);
- }
- else {
- GLfloat t0[4], t1[4]; /* texels */
- const GLfloat f = FRAC(lambda[i]);
- sample_2d_array_nearest(ctx, tObj, tObj->Image[0][level ],
- texcoord[i], t0);
- sample_2d_array_nearest(ctx, tObj, tObj->Image[0][level+1],
- texcoord[i], t1);
- lerp_rgba(rgba[i], f, t0, t1);
- }
- }
-}
-
-
-static void
-sample_2d_array_linear_mipmap_linear(struct gl_context *ctx,
- const struct gl_texture_object *tObj,
- GLuint n, const GLfloat texcoord[][4],
- const GLfloat lambda[], GLfloat rgba[][4])
-{
- GLuint i;
- ASSERT(lambda != NULL);
- for (i = 0; i < n; i++) {
- GLint level = linear_mipmap_level(tObj, lambda[i]);
- if (level >= tObj->_MaxLevel) {
- sample_2d_array_linear(ctx, tObj, tObj->Image[0][tObj->_MaxLevel],
- texcoord[i], rgba[i]);
- }
- else {
- GLfloat t0[4], t1[4]; /* texels */
- const GLfloat f = FRAC(lambda[i]);
- sample_2d_array_linear(ctx, tObj, tObj->Image[0][level ],
- texcoord[i], t0);
- sample_2d_array_linear(ctx, tObj, tObj->Image[0][level+1],
- texcoord[i], t1);
- lerp_rgba(rgba[i], f, t0, t1);
- }
- }
-}
-
-
-/** Sample 2D Array texture, nearest filtering for both min/magnification */
-static void
-sample_nearest_2d_array(struct gl_context *ctx,
- const struct gl_texture_object *tObj, GLuint n,
- const GLfloat texcoords[][4], const GLfloat lambda[],
- GLfloat rgba[][4])
-{
- GLuint i;
- struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel];
- (void) lambda;
- for (i = 0; i < n; i++) {
- sample_2d_array_nearest(ctx, tObj, image, texcoords[i], rgba[i]);
- }
-}
-
-
-
-/** Sample 2D Array texture, linear filtering for both min/magnification */
-static void
-sample_linear_2d_array(struct gl_context *ctx,
- const struct gl_texture_object *tObj, GLuint n,
- const GLfloat texcoords[][4],
- const GLfloat lambda[], GLfloat rgba[][4])
-{
- GLuint i;
- struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel];
- (void) lambda;
- for (i = 0; i < n; i++) {
- sample_2d_array_linear(ctx, tObj, image, texcoords[i], rgba[i]);
- }
-}
-
-
-/** Sample 2D Array texture, using lambda to choose between min/magnification */
-static void
-sample_lambda_2d_array(struct gl_context *ctx,
- const struct gl_texture_object *tObj, GLuint n,
- const GLfloat texcoords[][4], const GLfloat lambda[],
- GLfloat rgba[][4])
-{
- GLuint minStart, minEnd; /* texels with minification */
- GLuint magStart, magEnd; /* texels with magnification */
- GLuint i;
-
- ASSERT(lambda != NULL);
- compute_min_mag_ranges(tObj, n, lambda,
- &minStart, &minEnd, &magStart, &magEnd);
-
- if (minStart < minEnd) {
- /* do the minified texels */
- GLuint m = minEnd - minStart;
- switch (tObj->MinFilter) {
- case GL_NEAREST:
- for (i = minStart; i < minEnd; i++)
- sample_2d_array_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
- texcoords[i], rgba[i]);
- break;
- case GL_LINEAR:
- for (i = minStart; i < minEnd; i++)
- sample_2d_array_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
- texcoords[i], rgba[i]);
- break;
- case GL_NEAREST_MIPMAP_NEAREST:
- sample_2d_array_nearest_mipmap_nearest(ctx, tObj, m,
- texcoords + minStart,
- lambda + minStart,
- rgba + minStart);
- break;
- case GL_LINEAR_MIPMAP_NEAREST:
- sample_2d_array_linear_mipmap_nearest(ctx, tObj, m,
- texcoords + minStart,
- lambda + minStart,
- rgba + minStart);
- break;
- case GL_NEAREST_MIPMAP_LINEAR:
- sample_2d_array_nearest_mipmap_linear(ctx, tObj, m,
- texcoords + minStart,
- lambda + minStart,
- rgba + minStart);
- break;
- case GL_LINEAR_MIPMAP_LINEAR:
- sample_2d_array_linear_mipmap_linear(ctx, tObj, m,
- texcoords + minStart,
- lambda + minStart,
- rgba + minStart);
- break;
- default:
- _mesa_problem(ctx, "Bad min filter in sample_2d_array_texture");
- return;
- }
- }
-
- if (magStart < magEnd) {
- /* do the magnified texels */
- switch (tObj->MagFilter) {
- case GL_NEAREST:
- for (i = magStart; i < magEnd; i++)
- sample_2d_array_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
- texcoords[i], rgba[i]);
- break;
- case GL_LINEAR:
- for (i = magStart; i < magEnd; i++)
- sample_2d_array_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
- texcoords[i], rgba[i]);
- break;
- default:
- _mesa_problem(ctx, "Bad mag filter in sample_2d_array_texture");
- return;
- }
- }
-}
-
-
-
-
-/**********************************************************************/
-/* 1D Texture Array Sampling Functions */
-/**********************************************************************/
-
-/**
- * Return the texture sample for coordinate (s,t,r) using GL_NEAREST filter.
- */
-static void
-sample_1d_array_nearest(struct gl_context *ctx,
- const struct gl_texture_object *tObj,
- const struct gl_texture_image *img,
- const GLfloat texcoord[4],
- GLfloat rgba[4])
-{
- const GLint width = img->Width2; /* without border, power of two */
- const GLint height = img->Height;
- GLint i;
- GLint array;
- (void) ctx;
-
- i = nearest_texel_location(tObj->WrapS, img, width, texcoord[0]);
- array = tex_array_slice(texcoord[1], height);
-
- if (i < 0 || i >= (GLint) img->Width ||
- array < 0 || array >= (GLint) img->Height) {
- /* Need this test for GL_CLAMP_TO_BORDER mode */
- get_border_color(tObj, img, rgba);
- }
- else {
- img->FetchTexelf(img, i, array, 0, rgba);
- }
-}
-
-
-/**
- * Return the texture sample for coordinate (s,t,r) using GL_LINEAR filter.
- */
-static void
-sample_1d_array_linear(struct gl_context *ctx,
- const struct gl_texture_object *tObj,
- const struct gl_texture_image *img,
- const GLfloat texcoord[4],
- GLfloat rgba[4])
-{
- const GLint width = img->Width2;
- const GLint height = img->Height;
- GLint i0, i1;
- GLint array;
- GLbitfield useBorderColor = 0x0;
- GLfloat a;
- GLfloat t0[4], t1[4];
-
- linear_texel_locations(tObj->WrapS, img, width, texcoord[0], &i0, &i1, &a);
- array = tex_array_slice(texcoord[1], height);
-
- if (img->Border) {
- i0 += img->Border;
- i1 += img->Border;
- }
- else {
- /* check if sampling texture border color */
- if (i0 < 0 || i0 >= width) useBorderColor |= I0BIT;
- if (i1 < 0 || i1 >= width) useBorderColor |= I1BIT;
- }
-
- if (array < 0 || array >= height) useBorderColor |= K0BIT;
-
- /* Fetch texels */
- if (useBorderColor & (I0BIT | K0BIT)) {
- get_border_color(tObj, img, t0);
- }
- else {
- img->FetchTexelf(img, i0, array, 0, t0);
- }
- if (useBorderColor & (I1BIT | K0BIT)) {
- get_border_color(tObj, img, t1);
- }
- else {
- img->FetchTexelf(img, i1, array, 0, t1);
- }
-
- /* bilinear interpolation of samples */
- lerp_rgba(rgba, a, t0, t1);
-}
-
-
-static void
-sample_1d_array_nearest_mipmap_nearest(struct gl_context *ctx,
- const struct gl_texture_object *tObj,
- GLuint n, const GLfloat texcoord[][4],
- const GLfloat lambda[], GLfloat rgba[][4])
-{
- GLuint i;
- for (i = 0; i < n; i++) {
- GLint level = nearest_mipmap_level(tObj, lambda[i]);
- sample_1d_array_nearest(ctx, tObj, tObj->Image[0][level], texcoord[i],
- rgba[i]);
- }
-}
-
-
-static void
-sample_1d_array_linear_mipmap_nearest(struct gl_context *ctx,
- const struct gl_texture_object *tObj,
- GLuint n, const GLfloat texcoord[][4],
- const GLfloat lambda[], GLfloat rgba[][4])
-{
- GLuint i;
- ASSERT(lambda != NULL);
- for (i = 0; i < n; i++) {
- GLint level = nearest_mipmap_level(tObj, lambda[i]);
- sample_1d_array_linear(ctx, tObj, tObj->Image[0][level],
- texcoord[i], rgba[i]);
- }
-}
-
-
-static void
-sample_1d_array_nearest_mipmap_linear(struct gl_context *ctx,
- const struct gl_texture_object *tObj,
- GLuint n, const GLfloat texcoord[][4],
- const GLfloat lambda[], GLfloat rgba[][4])
-{
- GLuint i;
- ASSERT(lambda != NULL);
- for (i = 0; i < n; i++) {
- GLint level = linear_mipmap_level(tObj, lambda[i]);
- if (level >= tObj->_MaxLevel) {
- sample_1d_array_nearest(ctx, tObj, tObj->Image[0][tObj->_MaxLevel],
- texcoord[i], rgba[i]);
- }
- else {
- GLfloat t0[4], t1[4]; /* texels */
- const GLfloat f = FRAC(lambda[i]);
- sample_1d_array_nearest(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0);
- sample_1d_array_nearest(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1);
- lerp_rgba(rgba[i], f, t0, t1);
- }
- }
-}
-
-
-static void
-sample_1d_array_linear_mipmap_linear(struct gl_context *ctx,
- const struct gl_texture_object *tObj,
- GLuint n, const GLfloat texcoord[][4],
- const GLfloat lambda[], GLfloat rgba[][4])
-{
- GLuint i;
- ASSERT(lambda != NULL);
- for (i = 0; i < n; i++) {
- GLint level = linear_mipmap_level(tObj, lambda[i]);
- if (level >= tObj->_MaxLevel) {
- sample_1d_array_linear(ctx, tObj, tObj->Image[0][tObj->_MaxLevel],
- texcoord[i], rgba[i]);
- }
- else {
- GLfloat t0[4], t1[4]; /* texels */
- const GLfloat f = FRAC(lambda[i]);
- sample_1d_array_linear(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0);
- sample_1d_array_linear(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1);
- lerp_rgba(rgba[i], f, t0, t1);
- }
- }
-}
-
-
-/** Sample 1D Array texture, nearest filtering for both min/magnification */
-static void
-sample_nearest_1d_array(struct gl_context *ctx,
- const struct gl_texture_object *tObj, GLuint n,
- const GLfloat texcoords[][4], const GLfloat lambda[],
- GLfloat rgba[][4])
-{
- GLuint i;
- struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel];
- (void) lambda;
- for (i = 0; i < n; i++) {
- sample_1d_array_nearest(ctx, tObj, image, texcoords[i], rgba[i]);
- }
-}
-
-
-/** Sample 1D Array texture, linear filtering for both min/magnification */
-static void
-sample_linear_1d_array(struct gl_context *ctx,
- const struct gl_texture_object *tObj, GLuint n,
- const GLfloat texcoords[][4],
- const GLfloat lambda[], GLfloat rgba[][4])
-{
- GLuint i;
- struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel];
- (void) lambda;
- for (i = 0; i < n; i++) {
- sample_1d_array_linear(ctx, tObj, image, texcoords[i], rgba[i]);
- }
-}
-
-
-/** Sample 1D Array texture, using lambda to choose between min/magnification */
-static void
-sample_lambda_1d_array(struct gl_context *ctx,
- const struct gl_texture_object *tObj, GLuint n,
- const GLfloat texcoords[][4], const GLfloat lambda[],
- GLfloat rgba[][4])
-{
- GLuint minStart, minEnd; /* texels with minification */
- GLuint magStart, magEnd; /* texels with magnification */
- GLuint i;
-
- ASSERT(lambda != NULL);
- compute_min_mag_ranges(tObj, n, lambda,
- &minStart, &minEnd, &magStart, &magEnd);
-
- if (minStart < minEnd) {
- /* do the minified texels */
- GLuint m = minEnd - minStart;
- switch (tObj->MinFilter) {
- case GL_NEAREST:
- for (i = minStart; i < minEnd; i++)
- sample_1d_array_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
- texcoords[i], rgba[i]);
- break;
- case GL_LINEAR:
- for (i = minStart; i < minEnd; i++)
- sample_1d_array_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
- texcoords[i], rgba[i]);
- break;
- case GL_NEAREST_MIPMAP_NEAREST:
- sample_1d_array_nearest_mipmap_nearest(ctx, tObj, m, texcoords + minStart,
- lambda + minStart, rgba + minStart);
- break;
- case GL_LINEAR_MIPMAP_NEAREST:
- sample_1d_array_linear_mipmap_nearest(ctx, tObj, m,
- texcoords + minStart,
- lambda + minStart,
- rgba + minStart);
- break;
- case GL_NEAREST_MIPMAP_LINEAR:
- sample_1d_array_nearest_mipmap_linear(ctx, tObj, m, texcoords + minStart,
- lambda + minStart, rgba + minStart);
- break;
- case GL_LINEAR_MIPMAP_LINEAR:
- sample_1d_array_linear_mipmap_linear(ctx, tObj, m,
- texcoords + minStart,
- lambda + minStart,
- rgba + minStart);
- break;
- default:
- _mesa_problem(ctx, "Bad min filter in sample_1d_array_texture");
- return;
- }
- }
-
- if (magStart < magEnd) {
- /* do the magnified texels */
- switch (tObj->MagFilter) {
- case GL_NEAREST:
- for (i = magStart; i < magEnd; i++)
- sample_1d_array_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
- texcoords[i], rgba[i]);
- break;
- case GL_LINEAR:
- for (i = magStart; i < magEnd; i++)
- sample_1d_array_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
- texcoords[i], rgba[i]);
- break;
- default:
- _mesa_problem(ctx, "Bad mag filter in sample_1d_array_texture");
- return;
- }
- }
-}
-
-
-/**
- * Compare texcoord against depth sample. Return 1.0 or the ambient value.
- */
-static INLINE GLfloat
-shadow_compare(GLenum function, GLfloat coord, GLfloat depthSample,
- GLfloat ambient)
-{
- switch (function) {
- case GL_LEQUAL:
- return (coord <= depthSample) ? 1.0F : ambient;
- case GL_GEQUAL:
- return (coord >= depthSample) ? 1.0F : ambient;
- case GL_LESS:
- return (coord < depthSample) ? 1.0F : ambient;
- case GL_GREATER:
- return (coord > depthSample) ? 1.0F : ambient;
- case GL_EQUAL:
- return (coord == depthSample) ? 1.0F : ambient;
- case GL_NOTEQUAL:
- return (coord != depthSample) ? 1.0F : ambient;
- case GL_ALWAYS:
- return 1.0F;
- case GL_NEVER:
- return ambient;
- case GL_NONE:
- return depthSample;
- default:
- _mesa_problem(NULL, "Bad compare func in shadow_compare");
- return ambient;
- }
-}
-
-
-/**
- * Compare texcoord against four depth samples.
- */
-static INLINE GLfloat
-shadow_compare4(GLenum function, GLfloat coord,
- GLfloat depth00, GLfloat depth01,
- GLfloat depth10, GLfloat depth11,
- GLfloat ambient, GLfloat wi, GLfloat wj)
-{
- const GLfloat d = (1.0F - (GLfloat) ambient) * 0.25F;
- GLfloat luminance = 1.0F;
-
- switch (function) {
- case GL_LEQUAL:
- if (depth00 <= coord) luminance -= d;
- if (depth01 <= coord) luminance -= d;
- if (depth10 <= coord) luminance -= d;
- if (depth11 <= coord) luminance -= d;
- return luminance;
- case GL_GEQUAL:
- if (depth00 >= coord) luminance -= d;
- if (depth01 >= coord) luminance -= d;
- if (depth10 >= coord) luminance -= d;
- if (depth11 >= coord) luminance -= d;
- return luminance;
- case GL_LESS:
- if (depth00 < coord) luminance -= d;
- if (depth01 < coord) luminance -= d;
- if (depth10 < coord) luminance -= d;
- if (depth11 < coord) luminance -= d;
- return luminance;
- case GL_GREATER:
- if (depth00 > coord) luminance -= d;
- if (depth01 > coord) luminance -= d;
- if (depth10 > coord) luminance -= d;
- if (depth11 > coord) luminance -= d;
- return luminance;
- case GL_EQUAL:
- if (depth00 == coord) luminance -= d;
- if (depth01 == coord) luminance -= d;
- if (depth10 == coord) luminance -= d;
- if (depth11 == coord) luminance -= d;
- return luminance;
- case GL_NOTEQUAL:
- if (depth00 != coord) luminance -= d;
- if (depth01 != coord) luminance -= d;
- if (depth10 != coord) luminance -= d;
- if (depth11 != coord) luminance -= d;
- return luminance;
- case GL_ALWAYS:
- return 0.0;
- case GL_NEVER:
- return ambient;
- case GL_NONE:
- /* ordinary bilinear filtering */
- return lerp_2d(wi, wj, depth00, depth10, depth01, depth11);
- default:
- _mesa_problem(NULL, "Bad compare func in sample_depth_texture");
- return 0.0F;
- }
-}
-
-
-/**
- * Choose the mipmap level to use when sampling from a depth texture.
- */
-static int
-choose_depth_texture_level(const struct gl_texture_object *tObj, GLfloat lambda)
-{
- GLint level;
-
- if (tObj->MinFilter == GL_NEAREST || tObj->MinFilter == GL_LINEAR) {
- /* no mipmapping - use base level */
- level = tObj->BaseLevel;
- }
- else {
- /* choose mipmap level */
- lambda = CLAMP(lambda, tObj->MinLod, tObj->MaxLod);
- level = (GLint) lambda;
- level = CLAMP(level, tObj->BaseLevel, tObj->_MaxLevel);
- }
-
- return level;
-}
-
-
-/**
- * Sample a shadow/depth texture. This function is incomplete. It doesn't
- * check for minification vs. magnification, etc.
- */
-static void
-sample_depth_texture( struct gl_context *ctx,
- const struct gl_texture_object *tObj, GLuint n,
- const GLfloat texcoords[][4], const GLfloat lambda[],
- GLfloat texel[][4] )
-{
- const GLint level = choose_depth_texture_level(tObj, lambda[0]);
- const struct gl_texture_image *img = tObj->Image[0][level];
- const GLint width = img->Width;
- const GLint height = img->Height;
- const GLint depth = img->Depth;
- const GLuint compare_coord = (tObj->Target == GL_TEXTURE_2D_ARRAY_EXT)
- ? 3 : 2;
- GLfloat ambient;
- GLenum function;
- GLfloat result;
-
- ASSERT(img->_BaseFormat == GL_DEPTH_COMPONENT ||
- img->_BaseFormat == GL_DEPTH_STENCIL_EXT);
-
- ASSERT(tObj->Target == GL_TEXTURE_1D ||
- tObj->Target == GL_TEXTURE_2D ||
- tObj->Target == GL_TEXTURE_RECTANGLE_NV ||
- tObj->Target == GL_TEXTURE_1D_ARRAY_EXT ||
- tObj->Target == GL_TEXTURE_2D_ARRAY_EXT);
-
- ambient = tObj->CompareFailValue;
-
- /* XXXX if tObj->MinFilter != tObj->MagFilter, we're ignoring lambda */
-
- function = (tObj->CompareMode == GL_COMPARE_R_TO_TEXTURE_ARB) ?
- tObj->CompareFunc : GL_NONE;
-
- if (tObj->MagFilter == GL_NEAREST) {
- GLuint i;
- for (i = 0; i < n; i++) {
- GLfloat depthSample;
- GLint col, row, slice;
-
- nearest_texcoord(tObj, level, texcoords[i], &col, &row, &slice);
-
- if (col >= 0 && row >= 0 && col < width && row < height &&
- slice >= 0 && slice < depth) {
- img->FetchTexelf(img, col, row, slice, &depthSample);
- }
- else {
- depthSample = tObj->BorderColor.f[0];
- }
-
- result = shadow_compare(function, texcoords[i][compare_coord],
- depthSample, ambient);
-
- switch (tObj->DepthMode) {
- case GL_LUMINANCE:
- ASSIGN_4V(texel[i], result, result, result, 1.0F);
- break;
- case GL_INTENSITY:
- ASSIGN_4V(texel[i], result, result, result, result);
- break;
- case GL_ALPHA:
- ASSIGN_4V(texel[i], 0.0F, 0.0F, 0.0F, result);
- break;
- case GL_RED:
- ASSIGN_4V(texel[i], result, 0.0F, 0.0F, 1.0F);
- break;
- default:
- _mesa_problem(ctx, "Bad depth texture mode");
- }
- }
- }
- else {
- GLuint i;
- ASSERT(tObj->MagFilter == GL_LINEAR);
- for (i = 0; i < n; i++) {
- GLfloat depth00, depth01, depth10, depth11;
- GLint i0, i1, j0, j1;
- GLint slice;
- GLfloat wi, wj;
- GLuint useBorderTexel;
-
- linear_texcoord(tObj, level, texcoords[i], &i0, &i1, &j0, &j1, &slice,
- &wi, &wj);
-
- useBorderTexel = 0;
- if (img->Border) {
- i0 += img->Border;
- i1 += img->Border;
- if (tObj->Target != GL_TEXTURE_1D_ARRAY_EXT) {
- j0 += img->Border;
- j1 += img->Border;
- }
- }
- else {
- if (i0 < 0 || i0 >= (GLint) width) useBorderTexel |= I0BIT;
- if (i1 < 0 || i1 >= (GLint) width) useBorderTexel |= I1BIT;
- if (j0 < 0 || j0 >= (GLint) height) useBorderTexel |= J0BIT;
- if (j1 < 0 || j1 >= (GLint) height) useBorderTexel |= J1BIT;
- }
-
- if (slice < 0 || slice >= (GLint) depth) {
- depth00 = tObj->BorderColor.f[0];
- depth01 = tObj->BorderColor.f[0];
- depth10 = tObj->BorderColor.f[0];
- depth11 = tObj->BorderColor.f[0];
- }
- else {
- /* get four depth samples from the texture */
- if (useBorderTexel & (I0BIT | J0BIT)) {
- depth00 = tObj->BorderColor.f[0];
- }
- else {
- img->FetchTexelf(img, i0, j0, slice, &depth00);
- }
- if (useBorderTexel & (I1BIT | J0BIT)) {
- depth10 = tObj->BorderColor.f[0];
- }
- else {
- img->FetchTexelf(img, i1, j0, slice, &depth10);
- }
-
- if (tObj->Target != GL_TEXTURE_1D_ARRAY_EXT) {
- if (useBorderTexel & (I0BIT | J1BIT)) {
- depth01 = tObj->BorderColor.f[0];
- }
- else {
- img->FetchTexelf(img, i0, j1, slice, &depth01);
- }
- if (useBorderTexel & (I1BIT | J1BIT)) {
- depth11 = tObj->BorderColor.f[0];
- }
- else {
- img->FetchTexelf(img, i1, j1, slice, &depth11);
- }
- }
- else {
- depth01 = depth00;
- depth11 = depth10;
- }
- }
-
- result = shadow_compare4(function, texcoords[i][compare_coord],
- depth00, depth01, depth10, depth11,
- ambient, wi, wj);
-
- switch (tObj->DepthMode) {
- case GL_LUMINANCE:
- ASSIGN_4V(texel[i], result, result, result, 1.0F);
- break;
- case GL_INTENSITY:
- ASSIGN_4V(texel[i], result, result, result, result);
- break;
- case GL_ALPHA:
- ASSIGN_4V(texel[i], 0.0F, 0.0F, 0.0F, result);
- break;
- default:
- _mesa_problem(ctx, "Bad depth texture mode");
- }
-
- } /* for */
- } /* if filter */
-}
-
-
-/**
- * We use this function when a texture object is in an "incomplete" state.
- * When a fragment program attempts to sample an incomplete texture we
- * return black (see issue 23 in GL_ARB_fragment_program spec).
- * Note: fragment programs don't observe the texture enable/disable flags.
- */
-static void
-null_sample_func( struct gl_context *ctx,
- const struct gl_texture_object *tObj, GLuint n,
- const GLfloat texcoords[][4], const GLfloat lambda[],
- GLfloat rgba[][4])
-{
- GLuint i;
- (void) ctx;
- (void) tObj;
- (void) texcoords;
- (void) lambda;
- for (i = 0; i < n; i++) {
- rgba[i][RCOMP] = 0;
- rgba[i][GCOMP] = 0;
- rgba[i][BCOMP] = 0;
- rgba[i][ACOMP] = 1.0;
- }
-}
-
-
-/**
- * Choose the texture sampling function for the given texture object.
- */
-texture_sample_func
-_swrast_choose_texture_sample_func( struct gl_context *ctx,
- const struct gl_texture_object *t )
-{
- if (!t || !t->_Complete) {
- return &null_sample_func;
- }
- else {
- const GLboolean needLambda = (GLboolean) (t->MinFilter != t->MagFilter);
- const GLenum format = t->Image[0][t->BaseLevel]->_BaseFormat;
-
- switch (t->Target) {
- case GL_TEXTURE_1D:
- if (format == GL_DEPTH_COMPONENT || format == GL_DEPTH_STENCIL_EXT) {
- return &sample_depth_texture;
- }
- else if (needLambda) {
- return &sample_lambda_1d;
- }
- else if (t->MinFilter == GL_LINEAR) {
- return &sample_linear_1d;
- }
- else {
- ASSERT(t->MinFilter == GL_NEAREST);
- return &sample_nearest_1d;
- }
- case GL_TEXTURE_2D:
- if (format == GL_DEPTH_COMPONENT || format == GL_DEPTH_STENCIL_EXT) {
- return &sample_depth_texture;
- }
- else if (needLambda) {
- return &sample_lambda_2d;
- }
- else if (t->MinFilter == GL_LINEAR) {
- return &sample_linear_2d;
- }
- else {
- /* check for a few optimized cases */
- const struct gl_texture_image *img = t->Image[0][t->BaseLevel];
- ASSERT(t->MinFilter == GL_NEAREST);
- if (t->WrapS == GL_REPEAT &&
- t->WrapT == GL_REPEAT &&
- img->_IsPowerOfTwo &&
- img->Border == 0 &&
- img->TexFormat == MESA_FORMAT_RGB888) {
- return &opt_sample_rgb_2d;
- }
- else if (t->WrapS == GL_REPEAT &&
- t->WrapT == GL_REPEAT &&
- img->_IsPowerOfTwo &&
- img->Border == 0 &&
- img->TexFormat == MESA_FORMAT_RGBA8888) {
- return &opt_sample_rgba_2d;
- }
- else {
- return &sample_nearest_2d;
- }
- }
- case GL_TEXTURE_3D:
- if (needLambda) {
- return &sample_lambda_3d;
- }
- else if (t->MinFilter == GL_LINEAR) {
- return &sample_linear_3d;
- }
- else {
- ASSERT(t->MinFilter == GL_NEAREST);
- return &sample_nearest_3d;
- }
- case GL_TEXTURE_CUBE_MAP:
- if (needLambda) {
- return &sample_lambda_cube;
- }
- else if (t->MinFilter == GL_LINEAR) {
- return &sample_linear_cube;
- }
- else {
- ASSERT(t->MinFilter == GL_NEAREST);
- return &sample_nearest_cube;
- }
- case GL_TEXTURE_RECTANGLE_NV:
- if (format == GL_DEPTH_COMPONENT || format == GL_DEPTH_STENCIL_EXT) {
- return &sample_depth_texture;
- }
- else if (needLambda) {
- return &sample_lambda_rect;
- }
- else if (t->MinFilter == GL_LINEAR) {
- return &sample_linear_rect;
- }
- else {
- ASSERT(t->MinFilter == GL_NEAREST);
- return &sample_nearest_rect;
- }
- case GL_TEXTURE_1D_ARRAY_EXT:
- if (needLambda) {
- return &sample_lambda_1d_array;
- }
- else if (t->MinFilter == GL_LINEAR) {
- return &sample_linear_1d_array;
- }
- else {
- ASSERT(t->MinFilter == GL_NEAREST);
- return &sample_nearest_1d_array;
- }
- case GL_TEXTURE_2D_ARRAY_EXT:
- if (needLambda) {
- return &sample_lambda_2d_array;
- }
- else if (t->MinFilter == GL_LINEAR) {
- return &sample_linear_2d_array;
- }
- else {
- ASSERT(t->MinFilter == GL_NEAREST);
- return &sample_nearest_2d_array;
- }
- default:
- _mesa_problem(ctx,
- "invalid target in _swrast_choose_texture_sample_func");
- return &null_sample_func;
- }
- }
-}
+/*
+ * Mesa 3-D graphics library
+ * Version: 7.3
+ *
+ * Copyright (C) 1999-2008 Brian Paul All Rights Reserved.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included
+ * in all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
+ * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
+ * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+ */
+
+
+#include "main/glheader.h"
+#include "main/context.h"
+#include "main/colormac.h"
+#include "main/imports.h"
+
+#include "s_context.h"
+#include "s_texfilter.h"
+
+
+/*
+ * Note, the FRAC macro has to work perfectly. Otherwise you'll sometimes
+ * see 1-pixel bands of improperly weighted linear-filtered textures.
+ * The tests/texwrap.c demo is a good test.
+ * Also note, FRAC(x) doesn't truly return the fractional part of x for x < 0.
+ * Instead, if x < 0 then FRAC(x) = 1 - true_frac(x).
+ */
+#define FRAC(f) ((f) - IFLOOR(f))
+
+
+
+/**
+ * Linear interpolation macro
+ */
+#define LERP(T, A, B) ( (A) + (T) * ((B) - (A)) )
+
+
+/**
+ * Do 2D/biliner interpolation of float values.
+ * v00, v10, v01 and v11 are typically four texture samples in a square/box.
+ * a and b are the horizontal and vertical interpolants.
+ * It's important that this function is inlined when compiled with
+ * optimization! If we find that's not true on some systems, convert
+ * to a macro.
+ */
+static INLINE GLfloat
+lerp_2d(GLfloat a, GLfloat b,
+ GLfloat v00, GLfloat v10, GLfloat v01, GLfloat v11)
+{
+ const GLfloat temp0 = LERP(a, v00, v10);
+ const GLfloat temp1 = LERP(a, v01, v11);
+ return LERP(b, temp0, temp1);
+}
+
+
+/**
+ * Do 3D/trilinear interpolation of float values.
+ * \sa lerp_2d
+ */
+static INLINE GLfloat
+lerp_3d(GLfloat a, GLfloat b, GLfloat c,
+ GLfloat v000, GLfloat v100, GLfloat v010, GLfloat v110,
+ GLfloat v001, GLfloat v101, GLfloat v011, GLfloat v111)
+{
+ const GLfloat temp00 = LERP(a, v000, v100);
+ const GLfloat temp10 = LERP(a, v010, v110);
+ const GLfloat temp01 = LERP(a, v001, v101);
+ const GLfloat temp11 = LERP(a, v011, v111);
+ const GLfloat temp0 = LERP(b, temp00, temp10);
+ const GLfloat temp1 = LERP(b, temp01, temp11);
+ return LERP(c, temp0, temp1);
+}
+
+
+/**
+ * Do linear interpolation of colors.
+ */
+static INLINE void
+lerp_rgba(GLfloat result[4], GLfloat t, const GLfloat a[4], const GLfloat b[4])
+{
+ result[0] = LERP(t, a[0], b[0]);
+ result[1] = LERP(t, a[1], b[1]);
+ result[2] = LERP(t, a[2], b[2]);
+ result[3] = LERP(t, a[3], b[3]);
+}
+
+
+/**
+ * Do bilinear interpolation of colors.
+ */
+static INLINE void
+lerp_rgba_2d(GLfloat result[4], GLfloat a, GLfloat b,
+ const GLfloat t00[4], const GLfloat t10[4],
+ const GLfloat t01[4], const GLfloat t11[4])
+{
+ result[0] = lerp_2d(a, b, t00[0], t10[0], t01[0], t11[0]);
+ result[1] = lerp_2d(a, b, t00[1], t10[1], t01[1], t11[1]);
+ result[2] = lerp_2d(a, b, t00[2], t10[2], t01[2], t11[2]);
+ result[3] = lerp_2d(a, b, t00[3], t10[3], t01[3], t11[3]);
+}
+
+
+/**
+ * Do trilinear interpolation of colors.
+ */
+static INLINE void
+lerp_rgba_3d(GLfloat result[4], GLfloat a, GLfloat b, GLfloat c,
+ const GLfloat t000[4], const GLfloat t100[4],
+ const GLfloat t010[4], const GLfloat t110[4],
+ const GLfloat t001[4], const GLfloat t101[4],
+ const GLfloat t011[4], const GLfloat t111[4])
+{
+ GLuint k;
+ /* compiler should unroll these short loops */
+ for (k = 0; k < 4; k++) {
+ result[k] = lerp_3d(a, b, c, t000[k], t100[k], t010[k], t110[k],
+ t001[k], t101[k], t011[k], t111[k]);
+ }
+}
+
+
+/**
+ * Used for GL_REPEAT wrap mode. Using A % B doesn't produce the
+ * right results for A<0. Casting to A to be unsigned only works if B
+ * is a power of two. Adding a bias to A (which is a multiple of B)
+ * avoids the problems with A < 0 (for reasonable A) without using a
+ * conditional.
+ */
+#define REMAINDER(A, B) (((A) + (B) * 1024) % (B))
+
+
+/**
+ * Used to compute texel locations for linear sampling.
+ * Input:
+ * wrapMode = GL_REPEAT, GL_CLAMP, GL_CLAMP_TO_EDGE, GL_CLAMP_TO_BORDER
+ * s = texcoord in [0,1]
+ * size = width (or height or depth) of texture
+ * Output:
+ * i0, i1 = returns two nearest texel indexes
+ * weight = returns blend factor between texels
+ */
+static INLINE void
+linear_texel_locations(GLenum wrapMode,
+ const struct gl_texture_image *img,
+ GLint size, GLfloat s,
+ GLint *i0, GLint *i1, GLfloat *weight)
+{
+ GLfloat u;
+ switch (wrapMode) {
+ case GL_REPEAT:
+ u = s * size - 0.5F;
+ if (img->_IsPowerOfTwo) {
+ *i0 = IFLOOR(u) & (size - 1);
+ *i1 = (*i0 + 1) & (size - 1);
+ }
+ else {
+ *i0 = REMAINDER(IFLOOR(u), size);
+ *i1 = REMAINDER(*i0 + 1, size);
+ }
+ break;
+ case GL_CLAMP_TO_EDGE:
+ if (s <= 0.0F)
+ u = 0.0F;
+ else if (s >= 1.0F)
+ u = (GLfloat) size;
+ else
+ u = s * size;
+ u -= 0.5F;
+ *i0 = IFLOOR(u);
+ *i1 = *i0 + 1;
+ if (*i0 < 0)
+ *i0 = 0;
+ if (*i1 >= (GLint) size)
+ *i1 = size - 1;
+ break;
+ case GL_CLAMP_TO_BORDER:
+ {
+ const GLfloat min = -1.0F / (2.0F * size);
+ const GLfloat max = 1.0F - min;
+ if (s <= min)
+ u = min * size;
+ else if (s >= max)
+ u = max * size;
+ else
+ u = s * size;
+ u -= 0.5F;
+ *i0 = IFLOOR(u);
+ *i1 = *i0 + 1;
+ }
+ break;
+ case GL_MIRRORED_REPEAT:
+ {
+ const GLint flr = IFLOOR(s);
+ if (flr & 1)
+ u = 1.0F - (s - (GLfloat) flr);
+ else
+ u = s - (GLfloat) flr;
+ u = (u * size) - 0.5F;
+ *i0 = IFLOOR(u);
+ *i1 = *i0 + 1;
+ if (*i0 < 0)
+ *i0 = 0;
+ if (*i1 >= (GLint) size)
+ *i1 = size - 1;
+ }
+ break;
+ case GL_MIRROR_CLAMP_EXT:
+ u = FABSF(s);
+ if (u >= 1.0F)
+ u = (GLfloat) size;
+ else
+ u *= size;
+ u -= 0.5F;
+ *i0 = IFLOOR(u);
+ *i1 = *i0 + 1;
+ break;
+ case GL_MIRROR_CLAMP_TO_EDGE_EXT:
+ u = FABSF(s);
+ if (u >= 1.0F)
+ u = (GLfloat) size;
+ else
+ u *= size;
+ u -= 0.5F;
+ *i0 = IFLOOR(u);
+ *i1 = *i0 + 1;
+ if (*i0 < 0)
+ *i0 = 0;
+ if (*i1 >= (GLint) size)
+ *i1 = size - 1;
+ break;
+ case GL_MIRROR_CLAMP_TO_BORDER_EXT:
+ {
+ const GLfloat min = -1.0F / (2.0F * size);
+ const GLfloat max = 1.0F - min;
+ u = FABSF(s);
+ if (u <= min)
+ u = min * size;
+ else if (u >= max)
+ u = max * size;
+ else
+ u *= size;
+ u -= 0.5F;
+ *i0 = IFLOOR(u);
+ *i1 = *i0 + 1;
+ }
+ break;
+ case GL_CLAMP:
+ if (s <= 0.0F)
+ u = 0.0F;
+ else if (s >= 1.0F)
+ u = (GLfloat) size;
+ else
+ u = s * size;
+ u -= 0.5F;
+ *i0 = IFLOOR(u);
+ *i1 = *i0 + 1;
+ break;
+ default:
+ _mesa_problem(NULL, "Bad wrap mode");
+ u = 0.0F;
+ }
+ *weight = FRAC(u);
+}
+
+
+/**
+ * Used to compute texel location for nearest sampling.
+ */
+static INLINE GLint
+nearest_texel_location(GLenum wrapMode,
+ const struct gl_texture_image *img,
+ GLint size, GLfloat s)
+{
+ GLint i;
+
+ switch (wrapMode) {
+ case GL_REPEAT:
+ /* s limited to [0,1) */
+ /* i limited to [0,size-1] */
+ i = IFLOOR(s * size);
+ if (img->_IsPowerOfTwo)
+ i &= (size - 1);
+ else
+ i = REMAINDER(i, size);
+ return i;
+ case GL_CLAMP_TO_EDGE:
+ {
+ /* s limited to [min,max] */
+ /* i limited to [0, size-1] */
+ const GLfloat min = 1.0F / (2.0F * size);
+ const GLfloat max = 1.0F - min;
+ if (s < min)
+ i = 0;
+ else if (s > max)
+ i = size - 1;
+ else
+ i = IFLOOR(s * size);
+ }
+ return i;
+ case GL_CLAMP_TO_BORDER:
+ {
+ /* s limited to [min,max] */
+ /* i limited to [-1, size] */
+ const GLfloat min = -1.0F / (2.0F * size);
+ const GLfloat max = 1.0F - min;
+ if (s <= min)
+ i = -1;
+ else if (s >= max)
+ i = size;
+ else
+ i = IFLOOR(s * size);
+ }
+ return i;
+ case GL_MIRRORED_REPEAT:
+ {
+ const GLfloat min = 1.0F / (2.0F * size);
+ const GLfloat max = 1.0F - min;
+ const GLint flr = IFLOOR(s);
+ GLfloat u;
+ if (flr & 1)
+ u = 1.0F - (s - (GLfloat) flr);
+ else
+ u = s - (GLfloat) flr;
+ if (u < min)
+ i = 0;
+ else if (u > max)
+ i = size - 1;
+ else
+ i = IFLOOR(u * size);
+ }
+ return i;
+ case GL_MIRROR_CLAMP_EXT:
+ {
+ /* s limited to [0,1] */
+ /* i limited to [0,size-1] */
+ const GLfloat u = FABSF(s);
+ if (u <= 0.0F)
+ i = 0;
+ else if (u >= 1.0F)
+ i = size - 1;
+ else
+ i = IFLOOR(u * size);
+ }
+ return i;
+ case GL_MIRROR_CLAMP_TO_EDGE_EXT:
+ {
+ /* s limited to [min,max] */
+ /* i limited to [0, size-1] */
+ const GLfloat min = 1.0F / (2.0F * size);
+ const GLfloat max = 1.0F - min;
+ const GLfloat u = FABSF(s);
+ if (u < min)
+ i = 0;
+ else if (u > max)
+ i = size - 1;
+ else
+ i = IFLOOR(u * size);
+ }
+ return i;
+ case GL_MIRROR_CLAMP_TO_BORDER_EXT:
+ {
+ /* s limited to [min,max] */
+ /* i limited to [0, size-1] */
+ const GLfloat min = -1.0F / (2.0F * size);
+ const GLfloat max = 1.0F - min;
+ const GLfloat u = FABSF(s);
+ if (u < min)
+ i = -1;
+ else if (u > max)
+ i = size;
+ else
+ i = IFLOOR(u * size);
+ }
+ return i;
+ case GL_CLAMP:
+ /* s limited to [0,1] */
+ /* i limited to [0,size-1] */
+ if (s <= 0.0F)
+ i = 0;
+ else if (s >= 1.0F)
+ i = size - 1;
+ else
+ i = IFLOOR(s * size);
+ return i;
+ default:
+ _mesa_problem(NULL, "Bad wrap mode");
+ return 0;
+ }
+}
+
+
+/* Power of two image sizes only */
+static INLINE void
+linear_repeat_texel_location(GLuint size, GLfloat s,
+ GLint *i0, GLint *i1, GLfloat *weight)
+{
+ GLfloat u = s * size - 0.5F;
+ *i0 = IFLOOR(u) & (size - 1);
+ *i1 = (*i0 + 1) & (size - 1);
+ *weight = FRAC(u);
+}
+
+
+/**
+ * Do clamp/wrap for a texture rectangle coord, GL_NEAREST filter mode.
+ */
+static INLINE GLint
+clamp_rect_coord_nearest(GLenum wrapMode, GLfloat coord, GLint max)
+{
+ switch (wrapMode) {
+ case GL_CLAMP:
+ return IFLOOR( CLAMP(coord, 0.0F, max - 1) );
+ case GL_CLAMP_TO_EDGE:
+ return IFLOOR( CLAMP(coord, 0.5F, max - 0.5F) );
+ case GL_CLAMP_TO_BORDER:
+ return IFLOOR( CLAMP(coord, -0.5F, max + 0.5F) );
+ default:
+ _mesa_problem(NULL, "bad wrapMode in clamp_rect_coord_nearest");
+ return 0;
+ }
+}
+
+
+/**
+ * As above, but GL_LINEAR filtering.
+ */
+static INLINE void
+clamp_rect_coord_linear(GLenum wrapMode, GLfloat coord, GLint max,
+ GLint *i0out, GLint *i1out, GLfloat *weight)
+{
+ GLfloat fcol;
+ GLint i0, i1;
+ switch (wrapMode) {
+ case GL_CLAMP:
+ /* Not exactly what the spec says, but it matches NVIDIA output */
+ fcol = CLAMP(coord - 0.5F, 0.0F, max - 1);
+ i0 = IFLOOR(fcol);
+ i1 = i0 + 1;
+ break;
+ case GL_CLAMP_TO_EDGE:
+ fcol = CLAMP(coord, 0.5F, max - 0.5F);
+ fcol -= 0.5F;
+ i0 = IFLOOR(fcol);
+ i1 = i0 + 1;
+ if (i1 > max - 1)
+ i1 = max - 1;
+ break;
+ case GL_CLAMP_TO_BORDER:
+ fcol = CLAMP(coord, -0.5F, max + 0.5F);
+ fcol -= 0.5F;
+ i0 = IFLOOR(fcol);
+ i1 = i0 + 1;
+ break;
+ default:
+ _mesa_problem(NULL, "bad wrapMode in clamp_rect_coord_linear");
+ i0 = i1 = 0;
+ fcol = 0.0F;
+ }
+ *i0out = i0;
+ *i1out = i1;
+ *weight = FRAC(fcol);
+}
+
+
+/**
+ * Compute slice/image to use for 1D or 2D array texture.
+ */
+static INLINE GLint
+tex_array_slice(GLfloat coord, GLsizei size)
+{
+ GLint slice = IFLOOR(coord + 0.5f);
+ slice = CLAMP(slice, 0, size - 1);
+ return slice;
+}
+
+
+/**
+ * Compute nearest integer texcoords for given texobj and coordinate.
+ * NOTE: only used for depth texture sampling.
+ */
+static INLINE void
+nearest_texcoord(const struct gl_texture_object *texObj,
+ GLuint level,
+ const GLfloat texcoord[4],
+ GLint *i, GLint *j, GLint *k)
+{
+ const struct gl_texture_image *img = texObj->Image[0][level];
+ const GLint width = img->Width;
+ const GLint height = img->Height;
+ const GLint depth = img->Depth;
+
+ switch (texObj->Target) {
+ case GL_TEXTURE_RECTANGLE_ARB:
+ *i = clamp_rect_coord_nearest(texObj->WrapS, texcoord[0], width);
+ *j = clamp_rect_coord_nearest(texObj->WrapT, texcoord[1], height);
+ *k = 0;
+ break;
+ case GL_TEXTURE_1D:
+ *i = nearest_texel_location(texObj->WrapS, img, width, texcoord[0]);
+ *j = 0;
+ *k = 0;
+ break;
+ case GL_TEXTURE_2D:
+ *i = nearest_texel_location(texObj->WrapS, img, width, texcoord[0]);
+ *j = nearest_texel_location(texObj->WrapT, img, height, texcoord[1]);
+ *k = 0;
+ break;
+ case GL_TEXTURE_1D_ARRAY_EXT:
+ *i = nearest_texel_location(texObj->WrapS, img, width, texcoord[0]);
+ *j = tex_array_slice(texcoord[1], height);
+ *k = 0;
+ break;
+ case GL_TEXTURE_2D_ARRAY_EXT:
+ *i = nearest_texel_location(texObj->WrapS, img, width, texcoord[0]);
+ *j = nearest_texel_location(texObj->WrapT, img, height, texcoord[1]);
+ *k = tex_array_slice(texcoord[2], depth);
+ break;
+ default:
+ *i = *j = *k = 0;
+ }
+}
+
+
+/**
+ * Compute linear integer texcoords for given texobj and coordinate.
+ * NOTE: only used for depth texture sampling.
+ */
+static INLINE void
+linear_texcoord(const struct gl_texture_object *texObj,
+ GLuint level,
+ const GLfloat texcoord[4],
+ GLint *i0, GLint *i1, GLint *j0, GLint *j1, GLint *slice,
+ GLfloat *wi, GLfloat *wj)
+{
+ const struct gl_texture_image *img = texObj->Image[0][level];
+ const GLint width = img->Width;
+ const GLint height = img->Height;
+ const GLint depth = img->Depth;
+
+ switch (texObj->Target) {
+ case GL_TEXTURE_RECTANGLE_ARB:
+ clamp_rect_coord_linear(texObj->WrapS, texcoord[0],
+ width, i0, i1, wi);
+ clamp_rect_coord_linear(texObj->WrapT, texcoord[1],
+ height, j0, j1, wj);
+ *slice = 0;
+ break;
+
+ case GL_TEXTURE_1D:
+ case GL_TEXTURE_2D:
+ linear_texel_locations(texObj->WrapS, img, width,
+ texcoord[0], i0, i1, wi);
+ linear_texel_locations(texObj->WrapT, img, height,
+ texcoord[1], j0, j1, wj);
+ *slice = 0;
+ break;
+
+ case GL_TEXTURE_1D_ARRAY_EXT:
+ linear_texel_locations(texObj->WrapS, img, width,
+ texcoord[0], i0, i1, wi);
+ *j0 = tex_array_slice(texcoord[1], height);
+ *j1 = *j0;
+ *slice = 0;
+ break;
+
+ case GL_TEXTURE_2D_ARRAY_EXT:
+ linear_texel_locations(texObj->WrapS, img, width,
+ texcoord[0], i0, i1, wi);
+ linear_texel_locations(texObj->WrapT, img, height,
+ texcoord[1], j0, j1, wj);
+ *slice = tex_array_slice(texcoord[2], depth);
+ break;
+
+ default:
+ *slice = 0;
+ }
+}
+
+
+
+/**
+ * For linear interpolation between mipmap levels N and N+1, this function
+ * computes N.
+ */
+static INLINE GLint
+linear_mipmap_level(const struct gl_texture_object *tObj, GLfloat lambda)
+{
+ if (lambda < 0.0F)
+ return tObj->BaseLevel;
+ else if (lambda > tObj->_MaxLambda)
+ return (GLint) (tObj->BaseLevel + tObj->_MaxLambda);
+ else
+ return (GLint) (tObj->BaseLevel + lambda);
+}
+
+
+/**
+ * Compute the nearest mipmap level to take texels from.
+ */
+static INLINE GLint
+nearest_mipmap_level(const struct gl_texture_object *tObj, GLfloat lambda)
+{
+ GLfloat l;
+ GLint level;
+ if (lambda <= 0.5F)
+ l = 0.0F;
+ else if (lambda > tObj->_MaxLambda + 0.4999F)
+ l = tObj->_MaxLambda + 0.4999F;
+ else
+ l = lambda;
+ level = (GLint) (tObj->BaseLevel + l + 0.5F);
+ if (level > tObj->_MaxLevel)
+ level = tObj->_MaxLevel;
+ return level;
+}
+
+
+
+/*
+ * Bitflags for texture border color sampling.
+ */
+#define I0BIT 1
+#define I1BIT 2
+#define J0BIT 4
+#define J1BIT 8
+#define K0BIT 16
+#define K1BIT 32
+
+
+
+/**
+ * The lambda[] array values are always monotonic. Either the whole span
+ * will be minified, magnified, or split between the two. This function
+ * determines the subranges in [0, n-1] that are to be minified or magnified.
+ */
+static INLINE void
+compute_min_mag_ranges(const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat lambda[],
+ GLuint *minStart, GLuint *minEnd,
+ GLuint *magStart, GLuint *magEnd)
+{
+ GLfloat minMagThresh;
+
+ /* we shouldn't be here if minfilter == magfilter */
+ ASSERT(tObj->MinFilter != tObj->MagFilter);
+
+ /* This bit comes from the OpenGL spec: */
+ if (tObj->MagFilter == GL_LINEAR
+ && (tObj->MinFilter == GL_NEAREST_MIPMAP_NEAREST ||
+ tObj->MinFilter == GL_NEAREST_MIPMAP_LINEAR)) {
+ minMagThresh = 0.5F;
+ }
+ else {
+ minMagThresh = 0.0F;
+ }
+
+#if 0
+ /* DEBUG CODE: Verify that lambda[] is monotonic.
+ * We can't really use this because the inaccuracy in the LOG2 function
+ * causes this test to fail, yet the resulting texturing is correct.
+ */
+ if (n > 1) {
+ GLuint i;
+ printf("lambda delta = %g\n", lambda[0] - lambda[n-1]);
+ if (lambda[0] >= lambda[n-1]) { /* decreasing */
+ for (i = 0; i < n - 1; i++) {
+ ASSERT((GLint) (lambda[i] * 10) >= (GLint) (lambda[i+1] * 10));
+ }
+ }
+ else { /* increasing */
+ for (i = 0; i < n - 1; i++) {
+ ASSERT((GLint) (lambda[i] * 10) <= (GLint) (lambda[i+1] * 10));
+ }
+ }
+ }
+#endif /* DEBUG */
+
+ if (lambda[0] <= minMagThresh && (n <= 1 || lambda[n-1] <= minMagThresh)) {
+ /* magnification for whole span */
+ *magStart = 0;
+ *magEnd = n;
+ *minStart = *minEnd = 0;
+ }
+ else if (lambda[0] > minMagThresh && (n <=1 || lambda[n-1] > minMagThresh)) {
+ /* minification for whole span */
+ *minStart = 0;
+ *minEnd = n;
+ *magStart = *magEnd = 0;
+ }
+ else {
+ /* a mix of minification and magnification */
+ GLuint i;
+ if (lambda[0] > minMagThresh) {
+ /* start with minification */
+ for (i = 1; i < n; i++) {
+ if (lambda[i] <= minMagThresh)
+ break;
+ }
+ *minStart = 0;
+ *minEnd = i;
+ *magStart = i;
+ *magEnd = n;
+ }
+ else {
+ /* start with magnification */
+ for (i = 1; i < n; i++) {
+ if (lambda[i] > minMagThresh)
+ break;
+ }
+ *magStart = 0;
+ *magEnd = i;
+ *minStart = i;
+ *minEnd = n;
+ }
+ }
+
+#if 0
+ /* Verify the min/mag Start/End values
+ * We don't use this either (see above)
+ */
+ {
+ GLint i;
+ for (i = 0; i < n; i++) {
+ if (lambda[i] > minMagThresh) {
+ /* minification */
+ ASSERT(i >= *minStart);
+ ASSERT(i < *minEnd);
+ }
+ else {
+ /* magnification */
+ ASSERT(i >= *magStart);
+ ASSERT(i < *magEnd);
+ }
+ }
+ }
+#endif
+}
+
+
+/**
+ * When we sample the border color, it must be interpreted according to
+ * the base texture format. Ex: if the texture base format it GL_ALPHA,
+ * we return (0,0,0,BorderAlpha).
+ */
+static INLINE void
+get_border_color(const struct gl_texture_object *tObj,
+ const struct gl_texture_image *img,
+ GLfloat rgba[4])
+{
+ switch (img->_BaseFormat) {
+ case GL_RGB:
+ rgba[0] = tObj->BorderColor.f[0];
+ rgba[1] = tObj->BorderColor.f[1];
+ rgba[2] = tObj->BorderColor.f[2];
+ rgba[3] = 1.0F;
+ break;
+ case GL_ALPHA:
+ rgba[0] = rgba[1] = rgba[2] = 0.0;
+ rgba[3] = tObj->BorderColor.f[3];
+ break;
+ case GL_LUMINANCE:
+ rgba[0] = rgba[1] = rgba[2] = tObj->BorderColor.f[0];
+ rgba[3] = 1.0;
+ break;
+ case GL_LUMINANCE_ALPHA:
+ rgba[0] = rgba[1] = rgba[2] = tObj->BorderColor.f[0];
+ rgba[3] = tObj->BorderColor.f[3];
+ break;
+ case GL_INTENSITY:
+ rgba[0] = rgba[1] = rgba[2] = rgba[3] = tObj->BorderColor.f[0];
+ break;
+ default:
+ COPY_4V(rgba, tObj->BorderColor.f);
+ }
+}
+
+
+/**********************************************************************/
+/* 1-D Texture Sampling Functions */
+/**********************************************************************/
+
+/**
+ * Return the texture sample for coordinate (s) using GL_NEAREST filter.
+ */
+static INLINE void
+sample_1d_nearest(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ const struct gl_texture_image *img,
+ const GLfloat texcoord[4], GLfloat rgba[4])
+{
+ const GLint width = img->Width2; /* without border, power of two */
+ GLint i;
+ i = nearest_texel_location(tObj->WrapS, img, width, texcoord[0]);
+ /* skip over the border, if any */
+ i += img->Border;
+ if (i < 0 || i >= (GLint) img->Width) {
+ /* Need this test for GL_CLAMP_TO_BORDER mode */
+ get_border_color(tObj, img, rgba);
+ }
+ else {
+ img->FetchTexelf(img, i, 0, 0, rgba);
+ }
+}
+
+
+/**
+ * Return the texture sample for coordinate (s) using GL_LINEAR filter.
+ */
+static INLINE void
+sample_1d_linear(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ const struct gl_texture_image *img,
+ const GLfloat texcoord[4], GLfloat rgba[4])
+{
+ const GLint width = img->Width2;
+ GLint i0, i1;
+ GLbitfield useBorderColor = 0x0;
+ GLfloat a;
+ GLfloat t0[4], t1[4]; /* texels */
+
+ linear_texel_locations(tObj->WrapS, img, width, texcoord[0], &i0, &i1, &a);
+
+ if (img->Border) {
+ i0 += img->Border;
+ i1 += img->Border;
+ }
+ else {
+ if (i0 < 0 || i0 >= width) useBorderColor |= I0BIT;
+ if (i1 < 0 || i1 >= width) useBorderColor |= I1BIT;
+ }
+
+ /* fetch texel colors */
+ if (useBorderColor & I0BIT) {
+ get_border_color(tObj, img, t0);
+ }
+ else {
+ img->FetchTexelf(img, i0, 0, 0, t0);
+ }
+ if (useBorderColor & I1BIT) {
+ get_border_color(tObj, img, t1);
+ }
+ else {
+ img->FetchTexelf(img, i1, 0, 0, t1);
+ }
+
+ lerp_rgba(rgba, a, t0, t1);
+}
+
+
+static void
+sample_1d_nearest_mipmap_nearest(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat texcoord[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ GLuint i;
+ ASSERT(lambda != NULL);
+ for (i = 0; i < n; i++) {
+ GLint level = nearest_mipmap_level(tObj, lambda[i]);
+ sample_1d_nearest(ctx, tObj, tObj->Image[0][level], texcoord[i], rgba[i]);
+ }
+}
+
+
+static void
+sample_1d_linear_mipmap_nearest(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat texcoord[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ GLuint i;
+ ASSERT(lambda != NULL);
+ for (i = 0; i < n; i++) {
+ GLint level = nearest_mipmap_level(tObj, lambda[i]);
+ sample_1d_linear(ctx, tObj, tObj->Image[0][level], texcoord[i], rgba[i]);
+ }
+}
+
+
+static void
+sample_1d_nearest_mipmap_linear(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat texcoord[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ GLuint i;
+ ASSERT(lambda != NULL);
+ for (i = 0; i < n; i++) {
+ GLint level = linear_mipmap_level(tObj, lambda[i]);
+ if (level >= tObj->_MaxLevel) {
+ sample_1d_nearest(ctx, tObj, tObj->Image[0][tObj->_MaxLevel],
+ texcoord[i], rgba[i]);
+ }
+ else {
+ GLfloat t0[4], t1[4];
+ const GLfloat f = FRAC(lambda[i]);
+ sample_1d_nearest(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0);
+ sample_1d_nearest(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1);
+ lerp_rgba(rgba[i], f, t0, t1);
+ }
+ }
+}
+
+
+static void
+sample_1d_linear_mipmap_linear(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat texcoord[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ GLuint i;
+ ASSERT(lambda != NULL);
+ for (i = 0; i < n; i++) {
+ GLint level = linear_mipmap_level(tObj, lambda[i]);
+ if (level >= tObj->_MaxLevel) {
+ sample_1d_linear(ctx, tObj, tObj->Image[0][tObj->_MaxLevel],
+ texcoord[i], rgba[i]);
+ }
+ else {
+ GLfloat t0[4], t1[4];
+ const GLfloat f = FRAC(lambda[i]);
+ sample_1d_linear(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0);
+ sample_1d_linear(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1);
+ lerp_rgba(rgba[i], f, t0, t1);
+ }
+ }
+}
+
+
+/** Sample 1D texture, nearest filtering for both min/magnification */
+static void
+sample_nearest_1d( struct gl_context *ctx,
+ const struct gl_texture_object *tObj, GLuint n,
+ const GLfloat texcoords[][4], const GLfloat lambda[],
+ GLfloat rgba[][4] )
+{
+ GLuint i;
+ struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel];
+ (void) lambda;
+ for (i = 0; i < n; i++) {
+ sample_1d_nearest(ctx, tObj, image, texcoords[i], rgba[i]);
+ }
+}
+
+
+/** Sample 1D texture, linear filtering for both min/magnification */
+static void
+sample_linear_1d( struct gl_context *ctx,
+ const struct gl_texture_object *tObj, GLuint n,
+ const GLfloat texcoords[][4], const GLfloat lambda[],
+ GLfloat rgba[][4] )
+{
+ GLuint i;
+ struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel];
+ (void) lambda;
+ for (i = 0; i < n; i++) {
+ sample_1d_linear(ctx, tObj, image, texcoords[i], rgba[i]);
+ }
+}
+
+
+/** Sample 1D texture, using lambda to choose between min/magnification */
+static void
+sample_lambda_1d( struct gl_context *ctx,
+ const struct gl_texture_object *tObj, GLuint n,
+ const GLfloat texcoords[][4],
+ const GLfloat lambda[], GLfloat rgba[][4] )
+{
+ GLuint minStart, minEnd; /* texels with minification */
+ GLuint magStart, magEnd; /* texels with magnification */
+ GLuint i;
+
+ ASSERT(lambda != NULL);
+ compute_min_mag_ranges(tObj, n, lambda,
+ &minStart, &minEnd, &magStart, &magEnd);
+
+ if (minStart < minEnd) {
+ /* do the minified texels */
+ const GLuint m = minEnd - minStart;
+ switch (tObj->MinFilter) {
+ case GL_NEAREST:
+ for (i = minStart; i < minEnd; i++)
+ sample_1d_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
+ texcoords[i], rgba[i]);
+ break;
+ case GL_LINEAR:
+ for (i = minStart; i < minEnd; i++)
+ sample_1d_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
+ texcoords[i], rgba[i]);
+ break;
+ case GL_NEAREST_MIPMAP_NEAREST:
+ sample_1d_nearest_mipmap_nearest(ctx, tObj, m, texcoords + minStart,
+ lambda + minStart, rgba + minStart);
+ break;
+ case GL_LINEAR_MIPMAP_NEAREST:
+ sample_1d_linear_mipmap_nearest(ctx, tObj, m, texcoords + minStart,
+ lambda + minStart, rgba + minStart);
+ break;
+ case GL_NEAREST_MIPMAP_LINEAR:
+ sample_1d_nearest_mipmap_linear(ctx, tObj, m, texcoords + minStart,
+ lambda + minStart, rgba + minStart);
+ break;
+ case GL_LINEAR_MIPMAP_LINEAR:
+ sample_1d_linear_mipmap_linear(ctx, tObj, m, texcoords + minStart,
+ lambda + minStart, rgba + minStart);
+ break;
+ default:
+ _mesa_problem(ctx, "Bad min filter in sample_1d_texture");
+ return;
+ }
+ }
+
+ if (magStart < magEnd) {
+ /* do the magnified texels */
+ switch (tObj->MagFilter) {
+ case GL_NEAREST:
+ for (i = magStart; i < magEnd; i++)
+ sample_1d_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
+ texcoords[i], rgba[i]);
+ break;
+ case GL_LINEAR:
+ for (i = magStart; i < magEnd; i++)
+ sample_1d_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
+ texcoords[i], rgba[i]);
+ break;
+ default:
+ _mesa_problem(ctx, "Bad mag filter in sample_1d_texture");
+ return;
+ }
+ }
+}
+
+
+/**********************************************************************/
+/* 2-D Texture Sampling Functions */
+/**********************************************************************/
+
+
+/**
+ * Return the texture sample for coordinate (s,t) using GL_NEAREST filter.
+ */
+static INLINE void
+sample_2d_nearest(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ const struct gl_texture_image *img,
+ const GLfloat texcoord[4],
+ GLfloat rgba[])
+{
+ const GLint width = img->Width2; /* without border, power of two */
+ const GLint height = img->Height2; /* without border, power of two */
+ GLint i, j;
+ (void) ctx;
+
+ i = nearest_texel_location(tObj->WrapS, img, width, texcoord[0]);
+ j = nearest_texel_location(tObj->WrapT, img, height, texcoord[1]);
+
+ /* skip over the border, if any */
+ i += img->Border;
+ j += img->Border;
+
+ if (i < 0 || i >= (GLint) img->Width || j < 0 || j >= (GLint) img->Height) {
+ /* Need this test for GL_CLAMP_TO_BORDER mode */
+ get_border_color(tObj, img, rgba);
+ }
+ else {
+ img->FetchTexelf(img, i, j, 0, rgba);
+ }
+}
+
+
+/**
+ * Return the texture sample for coordinate (s,t) using GL_LINEAR filter.
+ * New sampling code contributed by Lynn Quam <quam@ai.sri.com>.
+ */
+static INLINE void
+sample_2d_linear(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ const struct gl_texture_image *img,
+ const GLfloat texcoord[4],
+ GLfloat rgba[])
+{
+ const GLint width = img->Width2;
+ const GLint height = img->Height2;
+ GLint i0, j0, i1, j1;
+ GLbitfield useBorderColor = 0x0;
+ GLfloat a, b;
+ GLfloat t00[4], t10[4], t01[4], t11[4]; /* sampled texel colors */
+
+ linear_texel_locations(tObj->WrapS, img, width, texcoord[0], &i0, &i1, &a);
+ linear_texel_locations(tObj->WrapT, img, height, texcoord[1], &j0, &j1, &b);
+
+ if (img->Border) {
+ i0 += img->Border;
+ i1 += img->Border;
+ j0 += img->Border;
+ j1 += img->Border;
+ }
+ else {
+ if (i0 < 0 || i0 >= width) useBorderColor |= I0BIT;
+ if (i1 < 0 || i1 >= width) useBorderColor |= I1BIT;
+ if (j0 < 0 || j0 >= height) useBorderColor |= J0BIT;
+ if (j1 < 0 || j1 >= height) useBorderColor |= J1BIT;
+ }
+
+ /* fetch four texel colors */
+ if (useBorderColor & (I0BIT | J0BIT)) {
+ get_border_color(tObj, img, t00);
+ }
+ else {
+ img->FetchTexelf(img, i0, j0, 0, t00);
+ }
+ if (useBorderColor & (I1BIT | J0BIT)) {
+ get_border_color(tObj, img, t10);
+ }
+ else {
+ img->FetchTexelf(img, i1, j0, 0, t10);
+ }
+ if (useBorderColor & (I0BIT | J1BIT)) {
+ get_border_color(tObj, img, t01);
+ }
+ else {
+ img->FetchTexelf(img, i0, j1, 0, t01);
+ }
+ if (useBorderColor & (I1BIT | J1BIT)) {
+ get_border_color(tObj, img, t11);
+ }
+ else {
+ img->FetchTexelf(img, i1, j1, 0, t11);
+ }
+
+ lerp_rgba_2d(rgba, a, b, t00, t10, t01, t11);
+}
+
+
+/**
+ * As above, but we know WRAP_S == REPEAT and WRAP_T == REPEAT.
+ * We don't have to worry about the texture border.
+ */
+static INLINE void
+sample_2d_linear_repeat(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ const struct gl_texture_image *img,
+ const GLfloat texcoord[4],
+ GLfloat rgba[])
+{
+ const GLint width = img->Width2;
+ const GLint height = img->Height2;
+ GLint i0, j0, i1, j1;
+ GLfloat wi, wj;
+ GLfloat t00[4], t10[4], t01[4], t11[4]; /* sampled texel colors */
+
+ (void) ctx;
+
+ ASSERT(tObj->WrapS == GL_REPEAT);
+ ASSERT(tObj->WrapT == GL_REPEAT);
+ ASSERT(img->Border == 0);
+ ASSERT(img->_BaseFormat != GL_COLOR_INDEX);
+ ASSERT(img->_IsPowerOfTwo);
+
+ linear_repeat_texel_location(width, texcoord[0], &i0, &i1, &wi);
+ linear_repeat_texel_location(height, texcoord[1], &j0, &j1, &wj);
+
+ img->FetchTexelf(img, i0, j0, 0, t00);
+ img->FetchTexelf(img, i1, j0, 0, t10);
+ img->FetchTexelf(img, i0, j1, 0, t01);
+ img->FetchTexelf(img, i1, j1, 0, t11);
+
+ lerp_rgba_2d(rgba, wi, wj, t00, t10, t01, t11);
+}
+
+
+static void
+sample_2d_nearest_mipmap_nearest(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat texcoord[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ GLuint i;
+ for (i = 0; i < n; i++) {
+ GLint level = nearest_mipmap_level(tObj, lambda[i]);
+ sample_2d_nearest(ctx, tObj, tObj->Image[0][level], texcoord[i], rgba[i]);
+ }
+}
+
+
+static void
+sample_2d_linear_mipmap_nearest(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat texcoord[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ GLuint i;
+ ASSERT(lambda != NULL);
+ for (i = 0; i < n; i++) {
+ GLint level = nearest_mipmap_level(tObj, lambda[i]);
+ sample_2d_linear(ctx, tObj, tObj->Image[0][level], texcoord[i], rgba[i]);
+ }
+}
+
+
+static void
+sample_2d_nearest_mipmap_linear(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat texcoord[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ GLuint i;
+ ASSERT(lambda != NULL);
+ for (i = 0; i < n; i++) {
+ GLint level = linear_mipmap_level(tObj, lambda[i]);
+ if (level >= tObj->_MaxLevel) {
+ sample_2d_nearest(ctx, tObj, tObj->Image[0][tObj->_MaxLevel],
+ texcoord[i], rgba[i]);
+ }
+ else {
+ GLfloat t0[4], t1[4]; /* texels */
+ const GLfloat f = FRAC(lambda[i]);
+ sample_2d_nearest(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0);
+ sample_2d_nearest(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1);
+ lerp_rgba(rgba[i], f, t0, t1);
+ }
+ }
+}
+
+
+static void
+sample_2d_linear_mipmap_linear( struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat texcoord[][4],
+ const GLfloat lambda[], GLfloat rgba[][4] )
+{
+ GLuint i;
+ ASSERT(lambda != NULL);
+ for (i = 0; i < n; i++) {
+ GLint level = linear_mipmap_level(tObj, lambda[i]);
+ if (level >= tObj->_MaxLevel) {
+ sample_2d_linear(ctx, tObj, tObj->Image[0][tObj->_MaxLevel],
+ texcoord[i], rgba[i]);
+ }
+ else {
+ GLfloat t0[4], t1[4]; /* texels */
+ const GLfloat f = FRAC(lambda[i]);
+ sample_2d_linear(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0);
+ sample_2d_linear(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1);
+ lerp_rgba(rgba[i], f, t0, t1);
+ }
+ }
+}
+
+
+static void
+sample_2d_linear_mipmap_linear_repeat(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat texcoord[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ GLuint i;
+ ASSERT(lambda != NULL);
+ ASSERT(tObj->WrapS == GL_REPEAT);
+ ASSERT(tObj->WrapT == GL_REPEAT);
+ for (i = 0; i < n; i++) {
+ GLint level = linear_mipmap_level(tObj, lambda[i]);
+ if (level >= tObj->_MaxLevel) {
+ sample_2d_linear_repeat(ctx, tObj, tObj->Image[0][tObj->_MaxLevel],
+ texcoord[i], rgba[i]);
+ }
+ else {
+ GLfloat t0[4], t1[4]; /* texels */
+ const GLfloat f = FRAC(lambda[i]);
+ sample_2d_linear_repeat(ctx, tObj, tObj->Image[0][level ],
+ texcoord[i], t0);
+ sample_2d_linear_repeat(ctx, tObj, tObj->Image[0][level+1],
+ texcoord[i], t1);
+ lerp_rgba(rgba[i], f, t0, t1);
+ }
+ }
+}
+
+
+/** Sample 2D texture, nearest filtering for both min/magnification */
+static void
+sample_nearest_2d(struct gl_context *ctx,
+ const struct gl_texture_object *tObj, GLuint n,
+ const GLfloat texcoords[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ GLuint i;
+ struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel];
+ (void) lambda;
+ for (i = 0; i < n; i++) {
+ sample_2d_nearest(ctx, tObj, image, texcoords[i], rgba[i]);
+ }
+}
+
+
+/** Sample 2D texture, linear filtering for both min/magnification */
+static void
+sample_linear_2d(struct gl_context *ctx,
+ const struct gl_texture_object *tObj, GLuint n,
+ const GLfloat texcoords[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ GLuint i;
+ struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel];
+ (void) lambda;
+ if (tObj->WrapS == GL_REPEAT &&
+ tObj->WrapT == GL_REPEAT &&
+ image->_IsPowerOfTwo &&
+ image->Border == 0) {
+ for (i = 0; i < n; i++) {
+ sample_2d_linear_repeat(ctx, tObj, image, texcoords[i], rgba[i]);
+ }
+ }
+ else {
+ for (i = 0; i < n; i++) {
+ sample_2d_linear(ctx, tObj, image, texcoords[i], rgba[i]);
+ }
+ }
+}
+
+
+/**
+ * Optimized 2-D texture sampling:
+ * S and T wrap mode == GL_REPEAT
+ * GL_NEAREST min/mag filter
+ * No border,
+ * RowStride == Width,
+ * Format = GL_RGB
+ */
+static void
+opt_sample_rgb_2d(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat texcoords[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ const struct gl_texture_image *img = tObj->Image[0][tObj->BaseLevel];
+ const GLfloat width = (GLfloat) img->Width;
+ const GLfloat height = (GLfloat) img->Height;
+ const GLint colMask = img->Width - 1;
+ const GLint rowMask = img->Height - 1;
+ const GLint shift = img->WidthLog2;
+ GLuint k;
+ (void) ctx;
+ (void) lambda;
+ ASSERT(tObj->WrapS==GL_REPEAT);
+ ASSERT(tObj->WrapT==GL_REPEAT);
+ ASSERT(img->Border==0);
+ ASSERT(img->TexFormat == MESA_FORMAT_RGB888);
+ ASSERT(img->_IsPowerOfTwo);
+
+ for (k=0; k<n; k++) {
+ GLint i = IFLOOR(texcoords[k][0] * width) & colMask;
+ GLint j = IFLOOR(texcoords[k][1] * height) & rowMask;
+ GLint pos = (j << shift) | i;
+ GLubyte *texel = ((GLubyte *) img->Data) + 3*pos;
+ rgba[k][RCOMP] = UBYTE_TO_FLOAT(texel[2]);
+ rgba[k][GCOMP] = UBYTE_TO_FLOAT(texel[1]);
+ rgba[k][BCOMP] = UBYTE_TO_FLOAT(texel[0]);
+ rgba[k][ACOMP] = 1.0F;
+ }
+}
+
+
+/**
+ * Optimized 2-D texture sampling:
+ * S and T wrap mode == GL_REPEAT
+ * GL_NEAREST min/mag filter
+ * No border
+ * RowStride == Width,
+ * Format = GL_RGBA
+ */
+static void
+opt_sample_rgba_2d(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat texcoords[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ const struct gl_texture_image *img = tObj->Image[0][tObj->BaseLevel];
+ const GLfloat width = (GLfloat) img->Width;
+ const GLfloat height = (GLfloat) img->Height;
+ const GLint colMask = img->Width - 1;
+ const GLint rowMask = img->Height - 1;
+ const GLint shift = img->WidthLog2;
+ GLuint i;
+ (void) ctx;
+ (void) lambda;
+ ASSERT(tObj->WrapS==GL_REPEAT);
+ ASSERT(tObj->WrapT==GL_REPEAT);
+ ASSERT(img->Border==0);
+ ASSERT(img->TexFormat == MESA_FORMAT_RGBA8888);
+ ASSERT(img->_IsPowerOfTwo);
+
+ for (i = 0; i < n; i++) {
+ const GLint col = IFLOOR(texcoords[i][0] * width) & colMask;
+ const GLint row = IFLOOR(texcoords[i][1] * height) & rowMask;
+ const GLint pos = (row << shift) | col;
+ const GLuint texel = *((GLuint *) img->Data + pos);
+ rgba[i][RCOMP] = UBYTE_TO_FLOAT( (texel >> 24) );
+ rgba[i][GCOMP] = UBYTE_TO_FLOAT( (texel >> 16) & 0xff );
+ rgba[i][BCOMP] = UBYTE_TO_FLOAT( (texel >> 8) & 0xff );
+ rgba[i][ACOMP] = UBYTE_TO_FLOAT( (texel ) & 0xff );
+ }
+}
+
+
+/** Sample 2D texture, using lambda to choose between min/magnification */
+static void
+sample_lambda_2d(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat texcoords[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ const struct gl_texture_image *tImg = tObj->Image[0][tObj->BaseLevel];
+ GLuint minStart, minEnd; /* texels with minification */
+ GLuint magStart, magEnd; /* texels with magnification */
+
+ const GLboolean repeatNoBorderPOT = (tObj->WrapS == GL_REPEAT)
+ && (tObj->WrapT == GL_REPEAT)
+ && (tImg->Border == 0 && (tImg->Width == tImg->RowStride))
+ && (tImg->_BaseFormat != GL_COLOR_INDEX)
+ && tImg->_IsPowerOfTwo;
+
+ ASSERT(lambda != NULL);
+ compute_min_mag_ranges(tObj, n, lambda,
+ &minStart, &minEnd, &magStart, &magEnd);
+
+ if (minStart < minEnd) {
+ /* do the minified texels */
+ const GLuint m = minEnd - minStart;
+ switch (tObj->MinFilter) {
+ case GL_NEAREST:
+ if (repeatNoBorderPOT) {
+ switch (tImg->TexFormat) {
+ case MESA_FORMAT_RGB888:
+ opt_sample_rgb_2d(ctx, tObj, m, texcoords + minStart,
+ NULL, rgba + minStart);
+ break;
+ case MESA_FORMAT_RGBA8888:
+ opt_sample_rgba_2d(ctx, tObj, m, texcoords + minStart,
+ NULL, rgba + minStart);
+ break;
+ default:
+ sample_nearest_2d(ctx, tObj, m, texcoords + minStart,
+ NULL, rgba + minStart );
+ }
+ }
+ else {
+ sample_nearest_2d(ctx, tObj, m, texcoords + minStart,
+ NULL, rgba + minStart);
+ }
+ break;
+ case GL_LINEAR:
+ sample_linear_2d(ctx, tObj, m, texcoords + minStart,
+ NULL, rgba + minStart);
+ break;
+ case GL_NEAREST_MIPMAP_NEAREST:
+ sample_2d_nearest_mipmap_nearest(ctx, tObj, m,
+ texcoords + minStart,
+ lambda + minStart, rgba + minStart);
+ break;
+ case GL_LINEAR_MIPMAP_NEAREST:
+ sample_2d_linear_mipmap_nearest(ctx, tObj, m, texcoords + minStart,
+ lambda + minStart, rgba + minStart);
+ break;
+ case GL_NEAREST_MIPMAP_LINEAR:
+ sample_2d_nearest_mipmap_linear(ctx, tObj, m, texcoords + minStart,
+ lambda + minStart, rgba + minStart);
+ break;
+ case GL_LINEAR_MIPMAP_LINEAR:
+ if (repeatNoBorderPOT)
+ sample_2d_linear_mipmap_linear_repeat(ctx, tObj, m,
+ texcoords + minStart, lambda + minStart, rgba + minStart);
+ else
+ sample_2d_linear_mipmap_linear(ctx, tObj, m, texcoords + minStart,
+ lambda + minStart, rgba + minStart);
+ break;
+ default:
+ _mesa_problem(ctx, "Bad min filter in sample_2d_texture");
+ return;
+ }
+ }
+
+ if (magStart < magEnd) {
+ /* do the magnified texels */
+ const GLuint m = magEnd - magStart;
+
+ switch (tObj->MagFilter) {
+ case GL_NEAREST:
+ if (repeatNoBorderPOT) {
+ switch (tImg->TexFormat) {
+ case MESA_FORMAT_RGB888:
+ opt_sample_rgb_2d(ctx, tObj, m, texcoords + magStart,
+ NULL, rgba + magStart);
+ break;
+ case MESA_FORMAT_RGBA8888:
+ opt_sample_rgba_2d(ctx, tObj, m, texcoords + magStart,
+ NULL, rgba + magStart);
+ break;
+ default:
+ sample_nearest_2d(ctx, tObj, m, texcoords + magStart,
+ NULL, rgba + magStart );
+ }
+ }
+ else {
+ sample_nearest_2d(ctx, tObj, m, texcoords + magStart,
+ NULL, rgba + magStart);
+ }
+ break;
+ case GL_LINEAR:
+ sample_linear_2d(ctx, tObj, m, texcoords + magStart,
+ NULL, rgba + magStart);
+ break;
+ default:
+ _mesa_problem(ctx, "Bad mag filter in sample_lambda_2d");
+ }
+ }
+}
+
+
+
+/**********************************************************************/
+/* 3-D Texture Sampling Functions */
+/**********************************************************************/
+
+/**
+ * Return the texture sample for coordinate (s,t,r) using GL_NEAREST filter.
+ */
+static INLINE void
+sample_3d_nearest(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ const struct gl_texture_image *img,
+ const GLfloat texcoord[4],
+ GLfloat rgba[4])
+{
+ const GLint width = img->Width2; /* without border, power of two */
+ const GLint height = img->Height2; /* without border, power of two */
+ const GLint depth = img->Depth2; /* without border, power of two */
+ GLint i, j, k;
+ (void) ctx;
+
+ i = nearest_texel_location(tObj->WrapS, img, width, texcoord[0]);
+ j = nearest_texel_location(tObj->WrapT, img, height, texcoord[1]);
+ k = nearest_texel_location(tObj->WrapR, img, depth, texcoord[2]);
+
+ if (i < 0 || i >= (GLint) img->Width ||
+ j < 0 || j >= (GLint) img->Height ||
+ k < 0 || k >= (GLint) img->Depth) {
+ /* Need this test for GL_CLAMP_TO_BORDER mode */
+ get_border_color(tObj, img, rgba);
+ }
+ else {
+ img->FetchTexelf(img, i, j, k, rgba);
+ }
+}
+
+
+/**
+ * Return the texture sample for coordinate (s,t,r) using GL_LINEAR filter.
+ */
+static void
+sample_3d_linear(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ const struct gl_texture_image *img,
+ const GLfloat texcoord[4],
+ GLfloat rgba[4])
+{
+ const GLint width = img->Width2;
+ const GLint height = img->Height2;
+ const GLint depth = img->Depth2;
+ GLint i0, j0, k0, i1, j1, k1;
+ GLbitfield useBorderColor = 0x0;
+ GLfloat a, b, c;
+ GLfloat t000[4], t010[4], t001[4], t011[4];
+ GLfloat t100[4], t110[4], t101[4], t111[4];
+
+ linear_texel_locations(tObj->WrapS, img, width, texcoord[0], &i0, &i1, &a);
+ linear_texel_locations(tObj->WrapT, img, height, texcoord[1], &j0, &j1, &b);
+ linear_texel_locations(tObj->WrapR, img, depth, texcoord[2], &k0, &k1, &c);
+
+ if (img->Border) {
+ i0 += img->Border;
+ i1 += img->Border;
+ j0 += img->Border;
+ j1 += img->Border;
+ k0 += img->Border;
+ k1 += img->Border;
+ }
+ else {
+ /* check if sampling texture border color */
+ if (i0 < 0 || i0 >= width) useBorderColor |= I0BIT;
+ if (i1 < 0 || i1 >= width) useBorderColor |= I1BIT;
+ if (j0 < 0 || j0 >= height) useBorderColor |= J0BIT;
+ if (j1 < 0 || j1 >= height) useBorderColor |= J1BIT;
+ if (k0 < 0 || k0 >= depth) useBorderColor |= K0BIT;
+ if (k1 < 0 || k1 >= depth) useBorderColor |= K1BIT;
+ }
+
+ /* Fetch texels */
+ if (useBorderColor & (I0BIT | J0BIT | K0BIT)) {
+ get_border_color(tObj, img, t000);
+ }
+ else {
+ img->FetchTexelf(img, i0, j0, k0, t000);
+ }
+ if (useBorderColor & (I1BIT | J0BIT | K0BIT)) {
+ get_border_color(tObj, img, t100);
+ }
+ else {
+ img->FetchTexelf(img, i1, j0, k0, t100);
+ }
+ if (useBorderColor & (I0BIT | J1BIT | K0BIT)) {
+ get_border_color(tObj, img, t010);
+ }
+ else {
+ img->FetchTexelf(img, i0, j1, k0, t010);
+ }
+ if (useBorderColor & (I1BIT | J1BIT | K0BIT)) {
+ get_border_color(tObj, img, t110);
+ }
+ else {
+ img->FetchTexelf(img, i1, j1, k0, t110);
+ }
+
+ if (useBorderColor & (I0BIT | J0BIT | K1BIT)) {
+ get_border_color(tObj, img, t001);
+ }
+ else {
+ img->FetchTexelf(img, i0, j0, k1, t001);
+ }
+ if (useBorderColor & (I1BIT | J0BIT | K1BIT)) {
+ get_border_color(tObj, img, t101);
+ }
+ else {
+ img->FetchTexelf(img, i1, j0, k1, t101);
+ }
+ if (useBorderColor & (I0BIT | J1BIT | K1BIT)) {
+ get_border_color(tObj, img, t011);
+ }
+ else {
+ img->FetchTexelf(img, i0, j1, k1, t011);
+ }
+ if (useBorderColor & (I1BIT | J1BIT | K1BIT)) {
+ get_border_color(tObj, img, t111);
+ }
+ else {
+ img->FetchTexelf(img, i1, j1, k1, t111);
+ }
+
+ /* trilinear interpolation of samples */
+ lerp_rgba_3d(rgba, a, b, c, t000, t100, t010, t110, t001, t101, t011, t111);
+}
+
+
+static void
+sample_3d_nearest_mipmap_nearest(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat texcoord[][4],
+ const GLfloat lambda[], GLfloat rgba[][4] )
+{
+ GLuint i;
+ for (i = 0; i < n; i++) {
+ GLint level = nearest_mipmap_level(tObj, lambda[i]);
+ sample_3d_nearest(ctx, tObj, tObj->Image[0][level], texcoord[i], rgba[i]);
+ }
+}
+
+
+static void
+sample_3d_linear_mipmap_nearest(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat texcoord[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ GLuint i;
+ ASSERT(lambda != NULL);
+ for (i = 0; i < n; i++) {
+ GLint level = nearest_mipmap_level(tObj, lambda[i]);
+ sample_3d_linear(ctx, tObj, tObj->Image[0][level], texcoord[i], rgba[i]);
+ }
+}
+
+
+static void
+sample_3d_nearest_mipmap_linear(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat texcoord[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ GLuint i;
+ ASSERT(lambda != NULL);
+ for (i = 0; i < n; i++) {
+ GLint level = linear_mipmap_level(tObj, lambda[i]);
+ if (level >= tObj->_MaxLevel) {
+ sample_3d_nearest(ctx, tObj, tObj->Image[0][tObj->_MaxLevel],
+ texcoord[i], rgba[i]);
+ }
+ else {
+ GLfloat t0[4], t1[4]; /* texels */
+ const GLfloat f = FRAC(lambda[i]);
+ sample_3d_nearest(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0);
+ sample_3d_nearest(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1);
+ lerp_rgba(rgba[i], f, t0, t1);
+ }
+ }
+}
+
+
+static void
+sample_3d_linear_mipmap_linear(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat texcoord[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ GLuint i;
+ ASSERT(lambda != NULL);
+ for (i = 0; i < n; i++) {
+ GLint level = linear_mipmap_level(tObj, lambda[i]);
+ if (level >= tObj->_MaxLevel) {
+ sample_3d_linear(ctx, tObj, tObj->Image[0][tObj->_MaxLevel],
+ texcoord[i], rgba[i]);
+ }
+ else {
+ GLfloat t0[4], t1[4]; /* texels */
+ const GLfloat f = FRAC(lambda[i]);
+ sample_3d_linear(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0);
+ sample_3d_linear(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1);
+ lerp_rgba(rgba[i], f, t0, t1);
+ }
+ }
+}
+
+
+/** Sample 3D texture, nearest filtering for both min/magnification */
+static void
+sample_nearest_3d(struct gl_context *ctx,
+ const struct gl_texture_object *tObj, GLuint n,
+ const GLfloat texcoords[][4], const GLfloat lambda[],
+ GLfloat rgba[][4])
+{
+ GLuint i;
+ struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel];
+ (void) lambda;
+ for (i = 0; i < n; i++) {
+ sample_3d_nearest(ctx, tObj, image, texcoords[i], rgba[i]);
+ }
+}
+
+
+/** Sample 3D texture, linear filtering for both min/magnification */
+static void
+sample_linear_3d(struct gl_context *ctx,
+ const struct gl_texture_object *tObj, GLuint n,
+ const GLfloat texcoords[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ GLuint i;
+ struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel];
+ (void) lambda;
+ for (i = 0; i < n; i++) {
+ sample_3d_linear(ctx, tObj, image, texcoords[i], rgba[i]);
+ }
+}
+
+
+/** Sample 3D texture, using lambda to choose between min/magnification */
+static void
+sample_lambda_3d(struct gl_context *ctx,
+ const struct gl_texture_object *tObj, GLuint n,
+ const GLfloat texcoords[][4], const GLfloat lambda[],
+ GLfloat rgba[][4])
+{
+ GLuint minStart, minEnd; /* texels with minification */
+ GLuint magStart, magEnd; /* texels with magnification */
+ GLuint i;
+
+ ASSERT(lambda != NULL);
+ compute_min_mag_ranges(tObj, n, lambda,
+ &minStart, &minEnd, &magStart, &magEnd);
+
+ if (minStart < minEnd) {
+ /* do the minified texels */
+ GLuint m = minEnd - minStart;
+ switch (tObj->MinFilter) {
+ case GL_NEAREST:
+ for (i = minStart; i < minEnd; i++)
+ sample_3d_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
+ texcoords[i], rgba[i]);
+ break;
+ case GL_LINEAR:
+ for (i = minStart; i < minEnd; i++)
+ sample_3d_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
+ texcoords[i], rgba[i]);
+ break;
+ case GL_NEAREST_MIPMAP_NEAREST:
+ sample_3d_nearest_mipmap_nearest(ctx, tObj, m, texcoords + minStart,
+ lambda + minStart, rgba + minStart);
+ break;
+ case GL_LINEAR_MIPMAP_NEAREST:
+ sample_3d_linear_mipmap_nearest(ctx, tObj, m, texcoords + minStart,
+ lambda + minStart, rgba + minStart);
+ break;
+ case GL_NEAREST_MIPMAP_LINEAR:
+ sample_3d_nearest_mipmap_linear(ctx, tObj, m, texcoords + minStart,
+ lambda + minStart, rgba + minStart);
+ break;
+ case GL_LINEAR_MIPMAP_LINEAR:
+ sample_3d_linear_mipmap_linear(ctx, tObj, m, texcoords + minStart,
+ lambda + minStart, rgba + minStart);
+ break;
+ default:
+ _mesa_problem(ctx, "Bad min filter in sample_3d_texture");
+ return;
+ }
+ }
+
+ if (magStart < magEnd) {
+ /* do the magnified texels */
+ switch (tObj->MagFilter) {
+ case GL_NEAREST:
+ for (i = magStart; i < magEnd; i++)
+ sample_3d_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
+ texcoords[i], rgba[i]);
+ break;
+ case GL_LINEAR:
+ for (i = magStart; i < magEnd; i++)
+ sample_3d_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
+ texcoords[i], rgba[i]);
+ break;
+ default:
+ _mesa_problem(ctx, "Bad mag filter in sample_3d_texture");
+ return;
+ }
+ }
+}
+
+
+/**********************************************************************/
+/* Texture Cube Map Sampling Functions */
+/**********************************************************************/
+
+/**
+ * Choose one of six sides of a texture cube map given the texture
+ * coord (rx,ry,rz). Return pointer to corresponding array of texture
+ * images.
+ */
+static const struct gl_texture_image **
+choose_cube_face(const struct gl_texture_object *texObj,
+ const GLfloat texcoord[4], GLfloat newCoord[4])
+{
+ /*
+ major axis
+ direction target sc tc ma
+ ---------- ------------------------------- --- --- ---
+ +rx TEXTURE_CUBE_MAP_POSITIVE_X_EXT -rz -ry rx
+ -rx TEXTURE_CUBE_MAP_NEGATIVE_X_EXT +rz -ry rx
+ +ry TEXTURE_CUBE_MAP_POSITIVE_Y_EXT +rx +rz ry
+ -ry TEXTURE_CUBE_MAP_NEGATIVE_Y_EXT +rx -rz ry
+ +rz TEXTURE_CUBE_MAP_POSITIVE_Z_EXT +rx -ry rz
+ -rz TEXTURE_CUBE_MAP_NEGATIVE_Z_EXT -rx -ry rz
+ */
+ const GLfloat rx = texcoord[0];
+ const GLfloat ry = texcoord[1];
+ const GLfloat rz = texcoord[2];
+ const GLfloat arx = FABSF(rx), ary = FABSF(ry), arz = FABSF(rz);
+ GLuint face;
+ GLfloat sc, tc, ma;
+
+ if (arx >= ary && arx >= arz) {
+ if (rx >= 0.0F) {
+ face = FACE_POS_X;
+ sc = -rz;
+ tc = -ry;
+ ma = arx;
+ }
+ else {
+ face = FACE_NEG_X;
+ sc = rz;
+ tc = -ry;
+ ma = arx;
+ }
+ }
+ else if (ary >= arx && ary >= arz) {
+ if (ry >= 0.0F) {
+ face = FACE_POS_Y;
+ sc = rx;
+ tc = rz;
+ ma = ary;
+ }
+ else {
+ face = FACE_NEG_Y;
+ sc = rx;
+ tc = -rz;
+ ma = ary;
+ }
+ }
+ else {
+ if (rz > 0.0F) {
+ face = FACE_POS_Z;
+ sc = rx;
+ tc = -ry;
+ ma = arz;
+ }
+ else {
+ face = FACE_NEG_Z;
+ sc = -rx;
+ tc = -ry;
+ ma = arz;
+ }
+ }
+
+ {
+ const float ima = 1.0F / ma;
+ newCoord[0] = ( sc * ima + 1.0F ) * 0.5F;
+ newCoord[1] = ( tc * ima + 1.0F ) * 0.5F;
+ }
+
+ return (const struct gl_texture_image **) texObj->Image[face];
+}
+
+
+static void
+sample_nearest_cube(struct gl_context *ctx,
+ const struct gl_texture_object *tObj, GLuint n,
+ const GLfloat texcoords[][4], const GLfloat lambda[],
+ GLfloat rgba[][4])
+{
+ GLuint i;
+ (void) lambda;
+ for (i = 0; i < n; i++) {
+ const struct gl_texture_image **images;
+ GLfloat newCoord[4];
+ images = choose_cube_face(tObj, texcoords[i], newCoord);
+ sample_2d_nearest(ctx, tObj, images[tObj->BaseLevel],
+ newCoord, rgba[i]);
+ }
+}
+
+
+static void
+sample_linear_cube(struct gl_context *ctx,
+ const struct gl_texture_object *tObj, GLuint n,
+ const GLfloat texcoords[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ GLuint i;
+ (void) lambda;
+ for (i = 0; i < n; i++) {
+ const struct gl_texture_image **images;
+ GLfloat newCoord[4];
+ images = choose_cube_face(tObj, texcoords[i], newCoord);
+ sample_2d_linear(ctx, tObj, images[tObj->BaseLevel],
+ newCoord, rgba[i]);
+ }
+}
+
+
+static void
+sample_cube_nearest_mipmap_nearest(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat texcoord[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ GLuint i;
+ ASSERT(lambda != NULL);
+ for (i = 0; i < n; i++) {
+ const struct gl_texture_image **images;
+ GLfloat newCoord[4];
+ GLint level;
+ images = choose_cube_face(tObj, texcoord[i], newCoord);
+
+ /* XXX we actually need to recompute lambda here based on the newCoords.
+ * But we would need the texcoords of adjacent fragments to compute that
+ * properly, and we don't have those here.
+ * For now, do an approximation: subtracting 1 from the chosen mipmap
+ * level seems to work in some test cases.
+ * The same adjustment is done in the next few functions.
+ */
+ level = nearest_mipmap_level(tObj, lambda[i]);
+ level = MAX2(level - 1, 0);
+
+ sample_2d_nearest(ctx, tObj, images[level], newCoord, rgba[i]);
+ }
+}
+
+
+static void
+sample_cube_linear_mipmap_nearest(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat texcoord[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ GLuint i;
+ ASSERT(lambda != NULL);
+ for (i = 0; i < n; i++) {
+ const struct gl_texture_image **images;
+ GLfloat newCoord[4];
+ GLint level = nearest_mipmap_level(tObj, lambda[i]);
+ level = MAX2(level - 1, 0); /* see comment above */
+ images = choose_cube_face(tObj, texcoord[i], newCoord);
+ sample_2d_linear(ctx, tObj, images[level], newCoord, rgba[i]);
+ }
+}
+
+
+static void
+sample_cube_nearest_mipmap_linear(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat texcoord[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ GLuint i;
+ ASSERT(lambda != NULL);
+ for (i = 0; i < n; i++) {
+ const struct gl_texture_image **images;
+ GLfloat newCoord[4];
+ GLint level = linear_mipmap_level(tObj, lambda[i]);
+ level = MAX2(level - 1, 0); /* see comment above */
+ images = choose_cube_face(tObj, texcoord[i], newCoord);
+ if (level >= tObj->_MaxLevel) {
+ sample_2d_nearest(ctx, tObj, images[tObj->_MaxLevel],
+ newCoord, rgba[i]);
+ }
+ else {
+ GLfloat t0[4], t1[4]; /* texels */
+ const GLfloat f = FRAC(lambda[i]);
+ sample_2d_nearest(ctx, tObj, images[level ], newCoord, t0);
+ sample_2d_nearest(ctx, tObj, images[level+1], newCoord, t1);
+ lerp_rgba(rgba[i], f, t0, t1);
+ }
+ }
+}
+
+
+static void
+sample_cube_linear_mipmap_linear(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat texcoord[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ GLuint i;
+ ASSERT(lambda != NULL);
+ for (i = 0; i < n; i++) {
+ const struct gl_texture_image **images;
+ GLfloat newCoord[4];
+ GLint level = linear_mipmap_level(tObj, lambda[i]);
+ level = MAX2(level - 1, 0); /* see comment above */
+ images = choose_cube_face(tObj, texcoord[i], newCoord);
+ if (level >= tObj->_MaxLevel) {
+ sample_2d_linear(ctx, tObj, images[tObj->_MaxLevel],
+ newCoord, rgba[i]);
+ }
+ else {
+ GLfloat t0[4], t1[4];
+ const GLfloat f = FRAC(lambda[i]);
+ sample_2d_linear(ctx, tObj, images[level ], newCoord, t0);
+ sample_2d_linear(ctx, tObj, images[level+1], newCoord, t1);
+ lerp_rgba(rgba[i], f, t0, t1);
+ }
+ }
+}
+
+
+/** Sample cube texture, using lambda to choose between min/magnification */
+static void
+sample_lambda_cube(struct gl_context *ctx,
+ const struct gl_texture_object *tObj, GLuint n,
+ const GLfloat texcoords[][4], const GLfloat lambda[],
+ GLfloat rgba[][4])
+{
+ GLuint minStart, minEnd; /* texels with minification */
+ GLuint magStart, magEnd; /* texels with magnification */
+
+ ASSERT(lambda != NULL);
+ compute_min_mag_ranges(tObj, n, lambda,
+ &minStart, &minEnd, &magStart, &magEnd);
+
+ if (minStart < minEnd) {
+ /* do the minified texels */
+ const GLuint m = minEnd - minStart;
+ switch (tObj->MinFilter) {
+ case GL_NEAREST:
+ sample_nearest_cube(ctx, tObj, m, texcoords + minStart,
+ lambda + minStart, rgba + minStart);
+ break;
+ case GL_LINEAR:
+ sample_linear_cube(ctx, tObj, m, texcoords + minStart,
+ lambda + minStart, rgba + minStart);
+ break;
+ case GL_NEAREST_MIPMAP_NEAREST:
+ sample_cube_nearest_mipmap_nearest(ctx, tObj, m,
+ texcoords + minStart,
+ lambda + minStart, rgba + minStart);
+ break;
+ case GL_LINEAR_MIPMAP_NEAREST:
+ sample_cube_linear_mipmap_nearest(ctx, tObj, m,
+ texcoords + minStart,
+ lambda + minStart, rgba + minStart);
+ break;
+ case GL_NEAREST_MIPMAP_LINEAR:
+ sample_cube_nearest_mipmap_linear(ctx, tObj, m,
+ texcoords + minStart,
+ lambda + minStart, rgba + minStart);
+ break;
+ case GL_LINEAR_MIPMAP_LINEAR:
+ sample_cube_linear_mipmap_linear(ctx, tObj, m,
+ texcoords + minStart,
+ lambda + minStart, rgba + minStart);
+ break;
+ default:
+ _mesa_problem(ctx, "Bad min filter in sample_lambda_cube");
+ }
+ }
+
+ if (magStart < magEnd) {
+ /* do the magnified texels */
+ const GLuint m = magEnd - magStart;
+ switch (tObj->MagFilter) {
+ case GL_NEAREST:
+ sample_nearest_cube(ctx, tObj, m, texcoords + magStart,
+ lambda + magStart, rgba + magStart);
+ break;
+ case GL_LINEAR:
+ sample_linear_cube(ctx, tObj, m, texcoords + magStart,
+ lambda + magStart, rgba + magStart);
+ break;
+ default:
+ _mesa_problem(ctx, "Bad mag filter in sample_lambda_cube");
+ }
+ }
+}
+
+
+/**********************************************************************/
+/* Texture Rectangle Sampling Functions */
+/**********************************************************************/
+
+
+static void
+sample_nearest_rect(struct gl_context *ctx,
+ const struct gl_texture_object *tObj, GLuint n,
+ const GLfloat texcoords[][4], const GLfloat lambda[],
+ GLfloat rgba[][4])
+{
+ const struct gl_texture_image *img = tObj->Image[0][0];
+ const GLint width = img->Width;
+ const GLint height = img->Height;
+ GLuint i;
+
+ (void) ctx;
+ (void) lambda;
+
+ ASSERT(tObj->WrapS == GL_CLAMP ||
+ tObj->WrapS == GL_CLAMP_TO_EDGE ||
+ tObj->WrapS == GL_CLAMP_TO_BORDER);
+ ASSERT(tObj->WrapT == GL_CLAMP ||
+ tObj->WrapT == GL_CLAMP_TO_EDGE ||
+ tObj->WrapT == GL_CLAMP_TO_BORDER);
+ ASSERT(img->_BaseFormat != GL_COLOR_INDEX);
+
+ for (i = 0; i < n; i++) {
+ GLint row, col;
+ col = clamp_rect_coord_nearest(tObj->WrapS, texcoords[i][0], width);
+ row = clamp_rect_coord_nearest(tObj->WrapT, texcoords[i][1], height);
+ if (col < 0 || col >= width || row < 0 || row >= height)
+ get_border_color(tObj, img, rgba[i]);
+ else
+ img->FetchTexelf(img, col, row, 0, rgba[i]);
+ }
+}
+
+
+static void
+sample_linear_rect(struct gl_context *ctx,
+ const struct gl_texture_object *tObj, GLuint n,
+ const GLfloat texcoords[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ const struct gl_texture_image *img = tObj->Image[0][0];
+ const GLint width = img->Width;
+ const GLint height = img->Height;
+ GLuint i;
+
+ (void) ctx;
+ (void) lambda;
+
+ ASSERT(tObj->WrapS == GL_CLAMP ||
+ tObj->WrapS == GL_CLAMP_TO_EDGE ||
+ tObj->WrapS == GL_CLAMP_TO_BORDER);
+ ASSERT(tObj->WrapT == GL_CLAMP ||
+ tObj->WrapT == GL_CLAMP_TO_EDGE ||
+ tObj->WrapT == GL_CLAMP_TO_BORDER);
+ ASSERT(img->_BaseFormat != GL_COLOR_INDEX);
+
+ for (i = 0; i < n; i++) {
+ GLint i0, j0, i1, j1;
+ GLfloat t00[4], t01[4], t10[4], t11[4];
+ GLfloat a, b;
+ GLbitfield useBorderColor = 0x0;
+
+ clamp_rect_coord_linear(tObj->WrapS, texcoords[i][0], width,
+ &i0, &i1, &a);
+ clamp_rect_coord_linear(tObj->WrapT, texcoords[i][1], height,
+ &j0, &j1, &b);
+
+ /* compute integer rows/columns */
+ if (i0 < 0 || i0 >= width) useBorderColor |= I0BIT;
+ if (i1 < 0 || i1 >= width) useBorderColor |= I1BIT;
+ if (j0 < 0 || j0 >= height) useBorderColor |= J0BIT;
+ if (j1 < 0 || j1 >= height) useBorderColor |= J1BIT;
+
+ /* get four texel samples */
+ if (useBorderColor & (I0BIT | J0BIT))
+ get_border_color(tObj, img, t00);
+ else
+ img->FetchTexelf(img, i0, j0, 0, t00);
+
+ if (useBorderColor & (I1BIT | J0BIT))
+ get_border_color(tObj, img, t10);
+ else
+ img->FetchTexelf(img, i1, j0, 0, t10);
+
+ if (useBorderColor & (I0BIT | J1BIT))
+ get_border_color(tObj, img, t01);
+ else
+ img->FetchTexelf(img, i0, j1, 0, t01);
+
+ if (useBorderColor & (I1BIT | J1BIT))
+ get_border_color(tObj, img, t11);
+ else
+ img->FetchTexelf(img, i1, j1, 0, t11);
+
+ lerp_rgba_2d(rgba[i], a, b, t00, t10, t01, t11);
+ }
+}
+
+
+/** Sample Rect texture, using lambda to choose between min/magnification */
+static void
+sample_lambda_rect(struct gl_context *ctx,
+ const struct gl_texture_object *tObj, GLuint n,
+ const GLfloat texcoords[][4], const GLfloat lambda[],
+ GLfloat rgba[][4])
+{
+ GLuint minStart, minEnd, magStart, magEnd;
+
+ /* We only need lambda to decide between minification and magnification.
+ * There is no mipmapping with rectangular textures.
+ */
+ compute_min_mag_ranges(tObj, n, lambda,
+ &minStart, &minEnd, &magStart, &magEnd);
+
+ if (minStart < minEnd) {
+ if (tObj->MinFilter == GL_NEAREST) {
+ sample_nearest_rect(ctx, tObj, minEnd - minStart,
+ texcoords + minStart, NULL, rgba + minStart);
+ }
+ else {
+ sample_linear_rect(ctx, tObj, minEnd - minStart,
+ texcoords + minStart, NULL, rgba + minStart);
+ }
+ }
+ if (magStart < magEnd) {
+ if (tObj->MagFilter == GL_NEAREST) {
+ sample_nearest_rect(ctx, tObj, magEnd - magStart,
+ texcoords + magStart, NULL, rgba + magStart);
+ }
+ else {
+ sample_linear_rect(ctx, tObj, magEnd - magStart,
+ texcoords + magStart, NULL, rgba + magStart);
+ }
+ }
+}
+
+
+/**********************************************************************/
+/* 2D Texture Array Sampling Functions */
+/**********************************************************************/
+
+/**
+ * Return the texture sample for coordinate (s,t,r) using GL_NEAREST filter.
+ */
+static void
+sample_2d_array_nearest(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ const struct gl_texture_image *img,
+ const GLfloat texcoord[4],
+ GLfloat rgba[4])
+{
+ const GLint width = img->Width2; /* without border, power of two */
+ const GLint height = img->Height2; /* without border, power of two */
+ const GLint depth = img->Depth;
+ GLint i, j;
+ GLint array;
+ (void) ctx;
+
+ i = nearest_texel_location(tObj->WrapS, img, width, texcoord[0]);
+ j = nearest_texel_location(tObj->WrapT, img, height, texcoord[1]);
+ array = tex_array_slice(texcoord[2], depth);
+
+ if (i < 0 || i >= (GLint) img->Width ||
+ j < 0 || j >= (GLint) img->Height ||
+ array < 0 || array >= (GLint) img->Depth) {
+ /* Need this test for GL_CLAMP_TO_BORDER mode */
+ get_border_color(tObj, img, rgba);
+ }
+ else {
+ img->FetchTexelf(img, i, j, array, rgba);
+ }
+}
+
+
+/**
+ * Return the texture sample for coordinate (s,t,r) using GL_LINEAR filter.
+ */
+static void
+sample_2d_array_linear(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ const struct gl_texture_image *img,
+ const GLfloat texcoord[4],
+ GLfloat rgba[4])
+{
+ const GLint width = img->Width2;
+ const GLint height = img->Height2;
+ const GLint depth = img->Depth;
+ GLint i0, j0, i1, j1;
+ GLint array;
+ GLbitfield useBorderColor = 0x0;
+ GLfloat a, b;
+ GLfloat t00[4], t01[4], t10[4], t11[4];
+
+ linear_texel_locations(tObj->WrapS, img, width, texcoord[0], &i0, &i1, &a);
+ linear_texel_locations(tObj->WrapT, img, height, texcoord[1], &j0, &j1, &b);
+ array = tex_array_slice(texcoord[2], depth);
+
+ if (array < 0 || array >= depth) {
+ COPY_4V(rgba, tObj->BorderColor.f);
+ }
+ else {
+ if (img->Border) {
+ i0 += img->Border;
+ i1 += img->Border;
+ j0 += img->Border;
+ j1 += img->Border;
+ }
+ else {
+ /* check if sampling texture border color */
+ if (i0 < 0 || i0 >= width) useBorderColor |= I0BIT;
+ if (i1 < 0 || i1 >= width) useBorderColor |= I1BIT;
+ if (j0 < 0 || j0 >= height) useBorderColor |= J0BIT;
+ if (j1 < 0 || j1 >= height) useBorderColor |= J1BIT;
+ }
+
+ /* Fetch texels */
+ if (useBorderColor & (I0BIT | J0BIT)) {
+ get_border_color(tObj, img, t00);
+ }
+ else {
+ img->FetchTexelf(img, i0, j0, array, t00);
+ }
+ if (useBorderColor & (I1BIT | J0BIT)) {
+ get_border_color(tObj, img, t10);
+ }
+ else {
+ img->FetchTexelf(img, i1, j0, array, t10);
+ }
+ if (useBorderColor & (I0BIT | J1BIT)) {
+ get_border_color(tObj, img, t01);
+ }
+ else {
+ img->FetchTexelf(img, i0, j1, array, t01);
+ }
+ if (useBorderColor & (I1BIT | J1BIT)) {
+ get_border_color(tObj, img, t11);
+ }
+ else {
+ img->FetchTexelf(img, i1, j1, array, t11);
+ }
+
+ /* trilinear interpolation of samples */
+ lerp_rgba_2d(rgba, a, b, t00, t10, t01, t11);
+ }
+}
+
+
+static void
+sample_2d_array_nearest_mipmap_nearest(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat texcoord[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ GLuint i;
+ for (i = 0; i < n; i++) {
+ GLint level = nearest_mipmap_level(tObj, lambda[i]);
+ sample_2d_array_nearest(ctx, tObj, tObj->Image[0][level], texcoord[i],
+ rgba[i]);
+ }
+}
+
+
+static void
+sample_2d_array_linear_mipmap_nearest(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat texcoord[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ GLuint i;
+ ASSERT(lambda != NULL);
+ for (i = 0; i < n; i++) {
+ GLint level = nearest_mipmap_level(tObj, lambda[i]);
+ sample_2d_array_linear(ctx, tObj, tObj->Image[0][level],
+ texcoord[i], rgba[i]);
+ }
+}
+
+
+static void
+sample_2d_array_nearest_mipmap_linear(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat texcoord[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ GLuint i;
+ ASSERT(lambda != NULL);
+ for (i = 0; i < n; i++) {
+ GLint level = linear_mipmap_level(tObj, lambda[i]);
+ if (level >= tObj->_MaxLevel) {
+ sample_2d_array_nearest(ctx, tObj, tObj->Image[0][tObj->_MaxLevel],
+ texcoord[i], rgba[i]);
+ }
+ else {
+ GLfloat t0[4], t1[4]; /* texels */
+ const GLfloat f = FRAC(lambda[i]);
+ sample_2d_array_nearest(ctx, tObj, tObj->Image[0][level ],
+ texcoord[i], t0);
+ sample_2d_array_nearest(ctx, tObj, tObj->Image[0][level+1],
+ texcoord[i], t1);
+ lerp_rgba(rgba[i], f, t0, t1);
+ }
+ }
+}
+
+
+static void
+sample_2d_array_linear_mipmap_linear(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat texcoord[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ GLuint i;
+ ASSERT(lambda != NULL);
+ for (i = 0; i < n; i++) {
+ GLint level = linear_mipmap_level(tObj, lambda[i]);
+ if (level >= tObj->_MaxLevel) {
+ sample_2d_array_linear(ctx, tObj, tObj->Image[0][tObj->_MaxLevel],
+ texcoord[i], rgba[i]);
+ }
+ else {
+ GLfloat t0[4], t1[4]; /* texels */
+ const GLfloat f = FRAC(lambda[i]);
+ sample_2d_array_linear(ctx, tObj, tObj->Image[0][level ],
+ texcoord[i], t0);
+ sample_2d_array_linear(ctx, tObj, tObj->Image[0][level+1],
+ texcoord[i], t1);
+ lerp_rgba(rgba[i], f, t0, t1);
+ }
+ }
+}
+
+
+/** Sample 2D Array texture, nearest filtering for both min/magnification */
+static void
+sample_nearest_2d_array(struct gl_context *ctx,
+ const struct gl_texture_object *tObj, GLuint n,
+ const GLfloat texcoords[][4], const GLfloat lambda[],
+ GLfloat rgba[][4])
+{
+ GLuint i;
+ struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel];
+ (void) lambda;
+ for (i = 0; i < n; i++) {
+ sample_2d_array_nearest(ctx, tObj, image, texcoords[i], rgba[i]);
+ }
+}
+
+
+
+/** Sample 2D Array texture, linear filtering for both min/magnification */
+static void
+sample_linear_2d_array(struct gl_context *ctx,
+ const struct gl_texture_object *tObj, GLuint n,
+ const GLfloat texcoords[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ GLuint i;
+ struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel];
+ (void) lambda;
+ for (i = 0; i < n; i++) {
+ sample_2d_array_linear(ctx, tObj, image, texcoords[i], rgba[i]);
+ }
+}
+
+
+/** Sample 2D Array texture, using lambda to choose between min/magnification */
+static void
+sample_lambda_2d_array(struct gl_context *ctx,
+ const struct gl_texture_object *tObj, GLuint n,
+ const GLfloat texcoords[][4], const GLfloat lambda[],
+ GLfloat rgba[][4])
+{
+ GLuint minStart, minEnd; /* texels with minification */
+ GLuint magStart, magEnd; /* texels with magnification */
+ GLuint i;
+
+ ASSERT(lambda != NULL);
+ compute_min_mag_ranges(tObj, n, lambda,
+ &minStart, &minEnd, &magStart, &magEnd);
+
+ if (minStart < minEnd) {
+ /* do the minified texels */
+ GLuint m = minEnd - minStart;
+ switch (tObj->MinFilter) {
+ case GL_NEAREST:
+ for (i = minStart; i < minEnd; i++)
+ sample_2d_array_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
+ texcoords[i], rgba[i]);
+ break;
+ case GL_LINEAR:
+ for (i = minStart; i < minEnd; i++)
+ sample_2d_array_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
+ texcoords[i], rgba[i]);
+ break;
+ case GL_NEAREST_MIPMAP_NEAREST:
+ sample_2d_array_nearest_mipmap_nearest(ctx, tObj, m,
+ texcoords + minStart,
+ lambda + minStart,
+ rgba + minStart);
+ break;
+ case GL_LINEAR_MIPMAP_NEAREST:
+ sample_2d_array_linear_mipmap_nearest(ctx, tObj, m,
+ texcoords + minStart,
+ lambda + minStart,
+ rgba + minStart);
+ break;
+ case GL_NEAREST_MIPMAP_LINEAR:
+ sample_2d_array_nearest_mipmap_linear(ctx, tObj, m,
+ texcoords + minStart,
+ lambda + minStart,
+ rgba + minStart);
+ break;
+ case GL_LINEAR_MIPMAP_LINEAR:
+ sample_2d_array_linear_mipmap_linear(ctx, tObj, m,
+ texcoords + minStart,
+ lambda + minStart,
+ rgba + minStart);
+ break;
+ default:
+ _mesa_problem(ctx, "Bad min filter in sample_2d_array_texture");
+ return;
+ }
+ }
+
+ if (magStart < magEnd) {
+ /* do the magnified texels */
+ switch (tObj->MagFilter) {
+ case GL_NEAREST:
+ for (i = magStart; i < magEnd; i++)
+ sample_2d_array_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
+ texcoords[i], rgba[i]);
+ break;
+ case GL_LINEAR:
+ for (i = magStart; i < magEnd; i++)
+ sample_2d_array_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
+ texcoords[i], rgba[i]);
+ break;
+ default:
+ _mesa_problem(ctx, "Bad mag filter in sample_2d_array_texture");
+ return;
+ }
+ }
+}
+
+
+
+
+/**********************************************************************/
+/* 1D Texture Array Sampling Functions */
+/**********************************************************************/
+
+/**
+ * Return the texture sample for coordinate (s,t,r) using GL_NEAREST filter.
+ */
+static void
+sample_1d_array_nearest(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ const struct gl_texture_image *img,
+ const GLfloat texcoord[4],
+ GLfloat rgba[4])
+{
+ const GLint width = img->Width2; /* without border, power of two */
+ const GLint height = img->Height;
+ GLint i;
+ GLint array;
+ (void) ctx;
+
+ i = nearest_texel_location(tObj->WrapS, img, width, texcoord[0]);
+ array = tex_array_slice(texcoord[1], height);
+
+ if (i < 0 || i >= (GLint) img->Width ||
+ array < 0 || array >= (GLint) img->Height) {
+ /* Need this test for GL_CLAMP_TO_BORDER mode */
+ get_border_color(tObj, img, rgba);
+ }
+ else {
+ img->FetchTexelf(img, i, array, 0, rgba);
+ }
+}
+
+
+/**
+ * Return the texture sample for coordinate (s,t,r) using GL_LINEAR filter.
+ */
+static void
+sample_1d_array_linear(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ const struct gl_texture_image *img,
+ const GLfloat texcoord[4],
+ GLfloat rgba[4])
+{
+ const GLint width = img->Width2;
+ const GLint height = img->Height;
+ GLint i0, i1;
+ GLint array;
+ GLbitfield useBorderColor = 0x0;
+ GLfloat a;
+ GLfloat t0[4], t1[4];
+
+ linear_texel_locations(tObj->WrapS, img, width, texcoord[0], &i0, &i1, &a);
+ array = tex_array_slice(texcoord[1], height);
+
+ if (img->Border) {
+ i0 += img->Border;
+ i1 += img->Border;
+ }
+ else {
+ /* check if sampling texture border color */
+ if (i0 < 0 || i0 >= width) useBorderColor |= I0BIT;
+ if (i1 < 0 || i1 >= width) useBorderColor |= I1BIT;
+ }
+
+ if (array < 0 || array >= height) useBorderColor |= K0BIT;
+
+ /* Fetch texels */
+ if (useBorderColor & (I0BIT | K0BIT)) {
+ get_border_color(tObj, img, t0);
+ }
+ else {
+ img->FetchTexelf(img, i0, array, 0, t0);
+ }
+ if (useBorderColor & (I1BIT | K0BIT)) {
+ get_border_color(tObj, img, t1);
+ }
+ else {
+ img->FetchTexelf(img, i1, array, 0, t1);
+ }
+
+ /* bilinear interpolation of samples */
+ lerp_rgba(rgba, a, t0, t1);
+}
+
+
+static void
+sample_1d_array_nearest_mipmap_nearest(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat texcoord[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ GLuint i;
+ for (i = 0; i < n; i++) {
+ GLint level = nearest_mipmap_level(tObj, lambda[i]);
+ sample_1d_array_nearest(ctx, tObj, tObj->Image[0][level], texcoord[i],
+ rgba[i]);
+ }
+}
+
+
+static void
+sample_1d_array_linear_mipmap_nearest(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat texcoord[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ GLuint i;
+ ASSERT(lambda != NULL);
+ for (i = 0; i < n; i++) {
+ GLint level = nearest_mipmap_level(tObj, lambda[i]);
+ sample_1d_array_linear(ctx, tObj, tObj->Image[0][level],
+ texcoord[i], rgba[i]);
+ }
+}
+
+
+static void
+sample_1d_array_nearest_mipmap_linear(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat texcoord[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ GLuint i;
+ ASSERT(lambda != NULL);
+ for (i = 0; i < n; i++) {
+ GLint level = linear_mipmap_level(tObj, lambda[i]);
+ if (level >= tObj->_MaxLevel) {
+ sample_1d_array_nearest(ctx, tObj, tObj->Image[0][tObj->_MaxLevel],
+ texcoord[i], rgba[i]);
+ }
+ else {
+ GLfloat t0[4], t1[4]; /* texels */
+ const GLfloat f = FRAC(lambda[i]);
+ sample_1d_array_nearest(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0);
+ sample_1d_array_nearest(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1);
+ lerp_rgba(rgba[i], f, t0, t1);
+ }
+ }
+}
+
+
+static void
+sample_1d_array_linear_mipmap_linear(struct gl_context *ctx,
+ const struct gl_texture_object *tObj,
+ GLuint n, const GLfloat texcoord[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ GLuint i;
+ ASSERT(lambda != NULL);
+ for (i = 0; i < n; i++) {
+ GLint level = linear_mipmap_level(tObj, lambda[i]);
+ if (level >= tObj->_MaxLevel) {
+ sample_1d_array_linear(ctx, tObj, tObj->Image[0][tObj->_MaxLevel],
+ texcoord[i], rgba[i]);
+ }
+ else {
+ GLfloat t0[4], t1[4]; /* texels */
+ const GLfloat f = FRAC(lambda[i]);
+ sample_1d_array_linear(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0);
+ sample_1d_array_linear(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1);
+ lerp_rgba(rgba[i], f, t0, t1);
+ }
+ }
+}
+
+
+/** Sample 1D Array texture, nearest filtering for both min/magnification */
+static void
+sample_nearest_1d_array(struct gl_context *ctx,
+ const struct gl_texture_object *tObj, GLuint n,
+ const GLfloat texcoords[][4], const GLfloat lambda[],
+ GLfloat rgba[][4])
+{
+ GLuint i;
+ struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel];
+ (void) lambda;
+ for (i = 0; i < n; i++) {
+ sample_1d_array_nearest(ctx, tObj, image, texcoords[i], rgba[i]);
+ }
+}
+
+
+/** Sample 1D Array texture, linear filtering for both min/magnification */
+static void
+sample_linear_1d_array(struct gl_context *ctx,
+ const struct gl_texture_object *tObj, GLuint n,
+ const GLfloat texcoords[][4],
+ const GLfloat lambda[], GLfloat rgba[][4])
+{
+ GLuint i;
+ struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel];
+ (void) lambda;
+ for (i = 0; i < n; i++) {
+ sample_1d_array_linear(ctx, tObj, image, texcoords[i], rgba[i]);
+ }
+}
+
+
+/** Sample 1D Array texture, using lambda to choose between min/magnification */
+static void
+sample_lambda_1d_array(struct gl_context *ctx,
+ const struct gl_texture_object *tObj, GLuint n,
+ const GLfloat texcoords[][4], const GLfloat lambda[],
+ GLfloat rgba[][4])
+{
+ GLuint minStart, minEnd; /* texels with minification */
+ GLuint magStart, magEnd; /* texels with magnification */
+ GLuint i;
+
+ ASSERT(lambda != NULL);
+ compute_min_mag_ranges(tObj, n, lambda,
+ &minStart, &minEnd, &magStart, &magEnd);
+
+ if (minStart < minEnd) {
+ /* do the minified texels */
+ GLuint m = minEnd - minStart;
+ switch (tObj->MinFilter) {
+ case GL_NEAREST:
+ for (i = minStart; i < minEnd; i++)
+ sample_1d_array_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
+ texcoords[i], rgba[i]);
+ break;
+ case GL_LINEAR:
+ for (i = minStart; i < minEnd; i++)
+ sample_1d_array_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
+ texcoords[i], rgba[i]);
+ break;
+ case GL_NEAREST_MIPMAP_NEAREST:
+ sample_1d_array_nearest_mipmap_nearest(ctx, tObj, m, texcoords + minStart,
+ lambda + minStart, rgba + minStart);
+ break;
+ case GL_LINEAR_MIPMAP_NEAREST:
+ sample_1d_array_linear_mipmap_nearest(ctx, tObj, m,
+ texcoords + minStart,
+ lambda + minStart,
+ rgba + minStart);
+ break;
+ case GL_NEAREST_MIPMAP_LINEAR:
+ sample_1d_array_nearest_mipmap_linear(ctx, tObj, m, texcoords + minStart,
+ lambda + minStart, rgba + minStart);
+ break;
+ case GL_LINEAR_MIPMAP_LINEAR:
+ sample_1d_array_linear_mipmap_linear(ctx, tObj, m,
+ texcoords + minStart,
+ lambda + minStart,
+ rgba + minStart);
+ break;
+ default:
+ _mesa_problem(ctx, "Bad min filter in sample_1d_array_texture");
+ return;
+ }
+ }
+
+ if (magStart < magEnd) {
+ /* do the magnified texels */
+ switch (tObj->MagFilter) {
+ case GL_NEAREST:
+ for (i = magStart; i < magEnd; i++)
+ sample_1d_array_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
+ texcoords[i], rgba[i]);
+ break;
+ case GL_LINEAR:
+ for (i = magStart; i < magEnd; i++)
+ sample_1d_array_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
+ texcoords[i], rgba[i]);
+ break;
+ default:
+ _mesa_problem(ctx, "Bad mag filter in sample_1d_array_texture");
+ return;
+ }
+ }
+}
+
+
+/**
+ * Compare texcoord against depth sample. Return 1.0 or the ambient value.
+ */
+static INLINE GLfloat
+shadow_compare(GLenum function, GLfloat coord, GLfloat depthSample,
+ GLfloat ambient)
+{
+ switch (function) {
+ case GL_LEQUAL:
+ return (coord <= depthSample) ? 1.0F : ambient;
+ case GL_GEQUAL:
+ return (coord >= depthSample) ? 1.0F : ambient;
+ case GL_LESS:
+ return (coord < depthSample) ? 1.0F : ambient;
+ case GL_GREATER:
+ return (coord > depthSample) ? 1.0F : ambient;
+ case GL_EQUAL:
+ return (coord == depthSample) ? 1.0F : ambient;
+ case GL_NOTEQUAL:
+ return (coord != depthSample) ? 1.0F : ambient;
+ case GL_ALWAYS:
+ return 1.0F;
+ case GL_NEVER:
+ return ambient;
+ case GL_NONE:
+ return depthSample;
+ default:
+ _mesa_problem(NULL, "Bad compare func in shadow_compare");
+ return ambient;
+ }
+}
+
+
+/**
+ * Compare texcoord against four depth samples.
+ */
+static INLINE GLfloat
+shadow_compare4(GLenum function, GLfloat coord,
+ GLfloat depth00, GLfloat depth01,
+ GLfloat depth10, GLfloat depth11,
+ GLfloat ambient, GLfloat wi, GLfloat wj)
+{
+ const GLfloat d = (1.0F - (GLfloat) ambient) * 0.25F;
+ GLfloat luminance = 1.0F;
+
+ switch (function) {
+ case GL_LEQUAL:
+ if (coord > depth00) luminance -= d;
+ if (coord > depth01) luminance -= d;
+ if (coord > depth10) luminance -= d;
+ if (coord > depth11) luminance -= d;
+ return luminance;
+ case GL_GEQUAL:
+ if (coord < depth00) luminance -= d;
+ if (coord < depth01) luminance -= d;
+ if (coord < depth10) luminance -= d;
+ if (coord < depth11) luminance -= d;
+ return luminance;
+ case GL_LESS:
+ if (coord >= depth00) luminance -= d;
+ if (coord >= depth01) luminance -= d;
+ if (coord >= depth10) luminance -= d;
+ if (coord >= depth11) luminance -= d;
+ return luminance;
+ case GL_GREATER:
+ if (coord <= depth00) luminance -= d;
+ if (coord <= depth01) luminance -= d;
+ if (coord <= depth10) luminance -= d;
+ if (coord <= depth11) luminance -= d;
+ return luminance;
+ case GL_EQUAL:
+ if (coord != depth00) luminance -= d;
+ if (coord != depth01) luminance -= d;
+ if (coord != depth10) luminance -= d;
+ if (coord != depth11) luminance -= d;
+ return luminance;
+ case GL_NOTEQUAL:
+ if (coord == depth00) luminance -= d;
+ if (coord == depth01) luminance -= d;
+ if (coord == depth10) luminance -= d;
+ if (coord == depth11) luminance -= d;
+ return luminance;
+ case GL_ALWAYS:
+ return 1.0F;
+ case GL_NEVER:
+ return ambient;
+ case GL_NONE:
+ /* ordinary bilinear filtering */
+ return lerp_2d(wi, wj, depth00, depth10, depth01, depth11);
+ default:
+ _mesa_problem(NULL, "Bad compare func in sample_compare4");
+ return ambient;
+ }
+}
+
+
+/**
+ * Choose the mipmap level to use when sampling from a depth texture.
+ */
+static int
+choose_depth_texture_level(const struct gl_texture_object *tObj, GLfloat lambda)
+{
+ GLint level;
+
+ if (tObj->MinFilter == GL_NEAREST || tObj->MinFilter == GL_LINEAR) {
+ /* no mipmapping - use base level */
+ level = tObj->BaseLevel;
+ }
+ else {
+ /* choose mipmap level */
+ lambda = CLAMP(lambda, tObj->MinLod, tObj->MaxLod);
+ level = (GLint) lambda;
+ level = CLAMP(level, tObj->BaseLevel, tObj->_MaxLevel);
+ }
+
+ return level;
+}
+
+
+/**
+ * Sample a shadow/depth texture. This function is incomplete. It doesn't
+ * check for minification vs. magnification, etc.
+ */
+static void
+sample_depth_texture( struct gl_context *ctx,
+ const struct gl_texture_object *tObj, GLuint n,
+ const GLfloat texcoords[][4], const GLfloat lambda[],
+ GLfloat texel[][4] )
+{
+ const GLint level = choose_depth_texture_level(tObj, lambda[0]);
+ const struct gl_texture_image *img = tObj->Image[0][level];
+ const GLint width = img->Width;
+ const GLint height = img->Height;
+ const GLint depth = img->Depth;
+ const GLuint compare_coord = (tObj->Target == GL_TEXTURE_2D_ARRAY_EXT)
+ ? 3 : 2;
+ GLfloat ambient;
+ GLenum function;
+ GLfloat result;
+
+ ASSERT(img->_BaseFormat == GL_DEPTH_COMPONENT ||
+ img->_BaseFormat == GL_DEPTH_STENCIL_EXT);
+
+ ASSERT(tObj->Target == GL_TEXTURE_1D ||
+ tObj->Target == GL_TEXTURE_2D ||
+ tObj->Target == GL_TEXTURE_RECTANGLE_NV ||
+ tObj->Target == GL_TEXTURE_1D_ARRAY_EXT ||
+ tObj->Target == GL_TEXTURE_2D_ARRAY_EXT);
+
+ ambient = tObj->CompareFailValue;
+
+ /* XXXX if tObj->MinFilter != tObj->MagFilter, we're ignoring lambda */
+
+ function = (tObj->CompareMode == GL_COMPARE_R_TO_TEXTURE_ARB) ?
+ tObj->CompareFunc : GL_NONE;
+
+ if (tObj->MagFilter == GL_NEAREST) {
+ GLuint i;
+ for (i = 0; i < n; i++) {
+ GLfloat depthSample, depthRef;
+ GLint col, row, slice;
+
+ nearest_texcoord(tObj, level, texcoords[i], &col, &row, &slice);
+
+ if (col >= 0 && row >= 0 && col < width && row < height &&
+ slice >= 0 && slice < depth) {
+ img->FetchTexelf(img, col, row, slice, &depthSample);
+ }
+ else {
+ depthSample = tObj->BorderColor.f[0];
+ }
+
+ depthRef = CLAMP(texcoords[i][compare_coord], 0.0F, 1.0F);
+
+ result = shadow_compare(function, depthRef, depthSample, ambient);
+
+ switch (tObj->DepthMode) {
+ case GL_LUMINANCE:
+ ASSIGN_4V(texel[i], result, result, result, 1.0F);
+ break;
+ case GL_INTENSITY:
+ ASSIGN_4V(texel[i], result, result, result, result);
+ break;
+ case GL_ALPHA:
+ ASSIGN_4V(texel[i], 0.0F, 0.0F, 0.0F, result);
+ break;
+ case GL_RED:
+ ASSIGN_4V(texel[i], result, 0.0F, 0.0F, 1.0F);
+ break;
+ default:
+ _mesa_problem(ctx, "Bad depth texture mode");
+ }
+ }
+ }
+ else {
+ GLuint i;
+ ASSERT(tObj->MagFilter == GL_LINEAR);
+ for (i = 0; i < n; i++) {
+ GLfloat depth00, depth01, depth10, depth11, depthRef;
+ GLint i0, i1, j0, j1;
+ GLint slice;
+ GLfloat wi, wj;
+ GLuint useBorderTexel;
+
+ linear_texcoord(tObj, level, texcoords[i], &i0, &i1, &j0, &j1, &slice,
+ &wi, &wj);
+
+ useBorderTexel = 0;
+ if (img->Border) {
+ i0 += img->Border;
+ i1 += img->Border;
+ if (tObj->Target != GL_TEXTURE_1D_ARRAY_EXT) {
+ j0 += img->Border;
+ j1 += img->Border;
+ }
+ }
+ else {
+ if (i0 < 0 || i0 >= (GLint) width) useBorderTexel |= I0BIT;
+ if (i1 < 0 || i1 >= (GLint) width) useBorderTexel |= I1BIT;
+ if (j0 < 0 || j0 >= (GLint) height) useBorderTexel |= J0BIT;
+ if (j1 < 0 || j1 >= (GLint) height) useBorderTexel |= J1BIT;
+ }
+
+ if (slice < 0 || slice >= (GLint) depth) {
+ depth00 = tObj->BorderColor.f[0];
+ depth01 = tObj->BorderColor.f[0];
+ depth10 = tObj->BorderColor.f[0];
+ depth11 = tObj->BorderColor.f[0];
+ }
+ else {
+ /* get four depth samples from the texture */
+ if (useBorderTexel & (I0BIT | J0BIT)) {
+ depth00 = tObj->BorderColor.f[0];
+ }
+ else {
+ img->FetchTexelf(img, i0, j0, slice, &depth00);
+ }
+ if (useBorderTexel & (I1BIT | J0BIT)) {
+ depth10 = tObj->BorderColor.f[0];
+ }
+ else {
+ img->FetchTexelf(img, i1, j0, slice, &depth10);
+ }
+
+ if (tObj->Target != GL_TEXTURE_1D_ARRAY_EXT) {
+ if (useBorderTexel & (I0BIT | J1BIT)) {
+ depth01 = tObj->BorderColor.f[0];
+ }
+ else {
+ img->FetchTexelf(img, i0, j1, slice, &depth01);
+ }
+ if (useBorderTexel & (I1BIT | J1BIT)) {
+ depth11 = tObj->BorderColor.f[0];
+ }
+ else {
+ img->FetchTexelf(img, i1, j1, slice, &depth11);
+ }
+ }
+ else {
+ depth01 = depth00;
+ depth11 = depth10;
+ }
+ }
+
+ depthRef = CLAMP(texcoords[i][compare_coord], 0.0F, 1.0F);
+
+ result = shadow_compare4(function, depthRef,
+ depth00, depth01, depth10, depth11,
+ ambient, wi, wj);
+
+ switch (tObj->DepthMode) {
+ case GL_LUMINANCE:
+ ASSIGN_4V(texel[i], result, result, result, 1.0F);
+ break;
+ case GL_INTENSITY:
+ ASSIGN_4V(texel[i], result, result, result, result);
+ break;
+ case GL_ALPHA:
+ ASSIGN_4V(texel[i], 0.0F, 0.0F, 0.0F, result);
+ break;
+ default:
+ _mesa_problem(ctx, "Bad depth texture mode");
+ }
+
+ } /* for */
+ } /* if filter */
+}
+
+
+/**
+ * We use this function when a texture object is in an "incomplete" state.
+ * When a fragment program attempts to sample an incomplete texture we
+ * return black (see issue 23 in GL_ARB_fragment_program spec).
+ * Note: fragment programs don't observe the texture enable/disable flags.
+ */
+static void
+null_sample_func( struct gl_context *ctx,
+ const struct gl_texture_object *tObj, GLuint n,
+ const GLfloat texcoords[][4], const GLfloat lambda[],
+ GLfloat rgba[][4])
+{
+ GLuint i;
+ (void) ctx;
+ (void) tObj;
+ (void) texcoords;
+ (void) lambda;
+ for (i = 0; i < n; i++) {
+ rgba[i][RCOMP] = 0;
+ rgba[i][GCOMP] = 0;
+ rgba[i][BCOMP] = 0;
+ rgba[i][ACOMP] = 1.0;
+ }
+}
+
+
+/**
+ * Choose the texture sampling function for the given texture object.
+ */
+texture_sample_func
+_swrast_choose_texture_sample_func( struct gl_context *ctx,
+ const struct gl_texture_object *t )
+{
+ if (!t || !t->_Complete) {
+ return &null_sample_func;
+ }
+ else {
+ const GLboolean needLambda = (GLboolean) (t->MinFilter != t->MagFilter);
+ const GLenum format = t->Image[0][t->BaseLevel]->_BaseFormat;
+
+ switch (t->Target) {
+ case GL_TEXTURE_1D:
+ if (format == GL_DEPTH_COMPONENT || format == GL_DEPTH_STENCIL_EXT) {
+ return &sample_depth_texture;
+ }
+ else if (needLambda) {
+ return &sample_lambda_1d;
+ }
+ else if (t->MinFilter == GL_LINEAR) {
+ return &sample_linear_1d;
+ }
+ else {
+ ASSERT(t->MinFilter == GL_NEAREST);
+ return &sample_nearest_1d;
+ }
+ case GL_TEXTURE_2D:
+ if (format == GL_DEPTH_COMPONENT || format == GL_DEPTH_STENCIL_EXT) {
+ return &sample_depth_texture;
+ }
+ else if (needLambda) {
+ return &sample_lambda_2d;
+ }
+ else if (t->MinFilter == GL_LINEAR) {
+ return &sample_linear_2d;
+ }
+ else {
+ /* check for a few optimized cases */
+ const struct gl_texture_image *img = t->Image[0][t->BaseLevel];
+ ASSERT(t->MinFilter == GL_NEAREST);
+ if (t->WrapS == GL_REPEAT &&
+ t->WrapT == GL_REPEAT &&
+ img->_IsPowerOfTwo &&
+ img->Border == 0 &&
+ img->TexFormat == MESA_FORMAT_RGB888) {
+ return &opt_sample_rgb_2d;
+ }
+ else if (t->WrapS == GL_REPEAT &&
+ t->WrapT == GL_REPEAT &&
+ img->_IsPowerOfTwo &&
+ img->Border == 0 &&
+ img->TexFormat == MESA_FORMAT_RGBA8888) {
+ return &opt_sample_rgba_2d;
+ }
+ else {
+ return &sample_nearest_2d;
+ }
+ }
+ case GL_TEXTURE_3D:
+ if (needLambda) {
+ return &sample_lambda_3d;
+ }
+ else if (t->MinFilter == GL_LINEAR) {
+ return &sample_linear_3d;
+ }
+ else {
+ ASSERT(t->MinFilter == GL_NEAREST);
+ return &sample_nearest_3d;
+ }
+ case GL_TEXTURE_CUBE_MAP:
+ if (needLambda) {
+ return &sample_lambda_cube;
+ }
+ else if (t->MinFilter == GL_LINEAR) {
+ return &sample_linear_cube;
+ }
+ else {
+ ASSERT(t->MinFilter == GL_NEAREST);
+ return &sample_nearest_cube;
+ }
+ case GL_TEXTURE_RECTANGLE_NV:
+ if (format == GL_DEPTH_COMPONENT || format == GL_DEPTH_STENCIL_EXT) {
+ return &sample_depth_texture;
+ }
+ else if (needLambda) {
+ return &sample_lambda_rect;
+ }
+ else if (t->MinFilter == GL_LINEAR) {
+ return &sample_linear_rect;
+ }
+ else {
+ ASSERT(t->MinFilter == GL_NEAREST);
+ return &sample_nearest_rect;
+ }
+ case GL_TEXTURE_1D_ARRAY_EXT:
+ if (needLambda) {
+ return &sample_lambda_1d_array;
+ }
+ else if (t->MinFilter == GL_LINEAR) {
+ return &sample_linear_1d_array;
+ }
+ else {
+ ASSERT(t->MinFilter == GL_NEAREST);
+ return &sample_nearest_1d_array;
+ }
+ case GL_TEXTURE_2D_ARRAY_EXT:
+ if (needLambda) {
+ return &sample_lambda_2d_array;
+ }
+ else if (t->MinFilter == GL_LINEAR) {
+ return &sample_linear_2d_array;
+ }
+ else {
+ ASSERT(t->MinFilter == GL_NEAREST);
+ return &sample_nearest_2d_array;
+ }
+ default:
+ _mesa_problem(ctx,
+ "invalid target in _swrast_choose_texture_sample_func");
+ return &null_sample_func;
+ }
+ }
+}