aboutsummaryrefslogtreecommitdiff
path: root/mesalib/src/mesa/swrast
diff options
context:
space:
mode:
Diffstat (limited to 'mesalib/src/mesa/swrast')
-rw-r--r--mesalib/src/mesa/swrast/s_fragprog.c554
-rw-r--r--mesalib/src/mesa/swrast/s_span.c3006
-rw-r--r--mesalib/src/mesa/swrast/s_texcombine.c22
-rw-r--r--mesalib/src/mesa/swrast/s_texfilter.c255
-rw-r--r--mesalib/src/mesa/swrast/s_triangle.c2286
5 files changed, 3063 insertions, 3060 deletions
diff --git a/mesalib/src/mesa/swrast/s_fragprog.c b/mesalib/src/mesa/swrast/s_fragprog.c
index 2608d5373..b6bfeaed4 100644
--- a/mesalib/src/mesa/swrast/s_fragprog.c
+++ b/mesalib/src/mesa/swrast/s_fragprog.c
@@ -1,277 +1,277 @@
-/*
- * Mesa 3-D graphics library
- * Version: 7.0.3
- *
- * Copyright (C) 1999-2007 Brian Paul All Rights Reserved.
- *
- * Permission is hereby granted, free of charge, to any person obtaining a
- * copy of this software and associated documentation files (the "Software"),
- * to deal in the Software without restriction, including without limitation
- * the rights to use, copy, modify, merge, publish, distribute, sublicense,
- * and/or sell copies of the Software, and to permit persons to whom the
- * Software is furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included
- * in all copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
- * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
- * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
- * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
- * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
- */
-
-#include "main/glheader.h"
-#include "main/colormac.h"
-#include "program/prog_instruction.h"
-
-#include "s_context.h"
-#include "s_fragprog.h"
-#include "s_span.h"
-
-
-/**
- * Apply texture object's swizzle (X/Y/Z/W/0/1) to incoming 'texel'
- * and return results in 'colorOut'.
- */
-static INLINE void
-swizzle_texel(const GLfloat texel[4], GLfloat colorOut[4], GLuint swizzle)
-{
- if (swizzle == SWIZZLE_NOOP) {
- COPY_4V(colorOut, texel);
- }
- else {
- GLfloat vector[6];
- vector[SWIZZLE_X] = texel[0];
- vector[SWIZZLE_Y] = texel[1];
- vector[SWIZZLE_Z] = texel[2];
- vector[SWIZZLE_W] = texel[3];
- vector[SWIZZLE_ZERO] = 0.0F;
- vector[SWIZZLE_ONE] = 1.0F;
- colorOut[0] = vector[GET_SWZ(swizzle, 0)];
- colorOut[1] = vector[GET_SWZ(swizzle, 1)];
- colorOut[2] = vector[GET_SWZ(swizzle, 2)];
- colorOut[3] = vector[GET_SWZ(swizzle, 3)];
- }
-}
-
-
-/**
- * Fetch a texel with given lod.
- * Called via machine->FetchTexelLod()
- */
-static void
-fetch_texel_lod( struct gl_context *ctx, const GLfloat texcoord[4], GLfloat lambda,
- GLuint unit, GLfloat color[4] )
-{
- const struct gl_texture_object *texObj = ctx->Texture.Unit[unit]._Current;
-
- if (texObj) {
- SWcontext *swrast = SWRAST_CONTEXT(ctx);
- GLfloat rgba[4];
-
- lambda = CLAMP(lambda, texObj->MinLod, texObj->MaxLod);
-
- swrast->TextureSample[unit](ctx, texObj, 1,
- (const GLfloat (*)[4]) texcoord,
- &lambda, &rgba);
- swizzle_texel(rgba, color, texObj->_Swizzle);
- }
- else {
- ASSIGN_4V(color, 0.0F, 0.0F, 0.0F, 1.0F);
- }
-}
-
-
-/**
- * Fetch a texel with the given partial derivatives to compute a level
- * of detail in the mipmap.
- * Called via machine->FetchTexelDeriv()
- * \param lodBias the lod bias which may be specified by a TXB instruction,
- * otherwise zero.
- */
-static void
-fetch_texel_deriv( struct gl_context *ctx, const GLfloat texcoord[4],
- const GLfloat texdx[4], const GLfloat texdy[4],
- GLfloat lodBias, GLuint unit, GLfloat color[4] )
-{
- SWcontext *swrast = SWRAST_CONTEXT(ctx);
- const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[unit];
- const struct gl_texture_object *texObj = texUnit->_Current;
-
- if (texObj) {
- const struct gl_texture_image *texImg =
- texObj->Image[0][texObj->BaseLevel];
- const GLfloat texW = (GLfloat) texImg->WidthScale;
- const GLfloat texH = (GLfloat) texImg->HeightScale;
- GLfloat lambda;
- GLfloat rgba[4];
-
- lambda = _swrast_compute_lambda(texdx[0], texdy[0], /* ds/dx, ds/dy */
- texdx[1], texdy[1], /* dt/dx, dt/dy */
- texdx[3], texdy[3], /* dq/dx, dq/dy */
- texW, texH,
- texcoord[0], texcoord[1], texcoord[3],
- 1.0F / texcoord[3]);
-
- lambda += lodBias + texUnit->LodBias + texObj->LodBias;
-
- lambda = CLAMP(lambda, texObj->MinLod, texObj->MaxLod);
-
- swrast->TextureSample[unit](ctx, texObj, 1,
- (const GLfloat (*)[4]) texcoord,
- &lambda, &rgba);
- swizzle_texel(rgba, color, texObj->_Swizzle);
- }
- else {
- ASSIGN_4V(color, 0.0F, 0.0F, 0.0F, 1.0F);
- }
-}
-
-
-/**
- * Initialize the virtual fragment program machine state prior to running
- * fragment program on a fragment. This involves initializing the input
- * registers, condition codes, etc.
- * \param machine the virtual machine state to init
- * \param program the fragment program we're about to run
- * \param span the span of pixels we'll operate on
- * \param col which element (column) of the span we'll operate on
- */
-static void
-init_machine(struct gl_context *ctx, struct gl_program_machine *machine,
- const struct gl_fragment_program *program,
- const SWspan *span, GLuint col)
-{
- GLfloat *wpos = span->array->attribs[FRAG_ATTRIB_WPOS][col];
-
- if (program->Base.Target == GL_FRAGMENT_PROGRAM_NV) {
- /* Clear temporary registers (undefined for ARB_f_p) */
- memset(machine->Temporaries, 0, MAX_PROGRAM_TEMPS * 4 * sizeof(GLfloat));
- }
-
- /* ARB_fragment_coord_conventions */
- if (program->OriginUpperLeft)
- wpos[1] = ctx->DrawBuffer->Height - 1 - wpos[1];
- if (!program->PixelCenterInteger) {
- wpos[0] += 0.5F;
- wpos[1] += 0.5F;
- }
-
- /* Setup pointer to input attributes */
- machine->Attribs = span->array->attribs;
-
- machine->DerivX = (GLfloat (*)[4]) span->attrStepX;
- machine->DerivY = (GLfloat (*)[4]) span->attrStepY;
- machine->NumDeriv = FRAG_ATTRIB_MAX;
-
- machine->Samplers = program->Base.SamplerUnits;
-
- /* if running a GLSL program (not ARB_fragment_program) */
- if (ctx->Shader.CurrentFragmentProgram) {
- /* Store front/back facing value */
- machine->Attribs[FRAG_ATTRIB_FACE][col][0] = 1.0F - span->facing;
- }
-
- machine->CurElement = col;
-
- /* init condition codes */
- machine->CondCodes[0] = COND_EQ;
- machine->CondCodes[1] = COND_EQ;
- machine->CondCodes[2] = COND_EQ;
- machine->CondCodes[3] = COND_EQ;
-
- /* init call stack */
- machine->StackDepth = 0;
-
- machine->FetchTexelLod = fetch_texel_lod;
- machine->FetchTexelDeriv = fetch_texel_deriv;
-}
-
-
-/**
- * Run fragment program on the pixels in span from 'start' to 'end' - 1.
- */
-static void
-run_program(struct gl_context *ctx, SWspan *span, GLuint start, GLuint end)
-{
- SWcontext *swrast = SWRAST_CONTEXT(ctx);
- const struct gl_fragment_program *program = ctx->FragmentProgram._Current;
- const GLbitfield64 outputsWritten = program->Base.OutputsWritten;
- struct gl_program_machine *machine = &swrast->FragProgMachine;
- GLuint i;
-
- for (i = start; i < end; i++) {
- if (span->array->mask[i]) {
- init_machine(ctx, machine, program, span, i);
-
- if (_mesa_execute_program(ctx, &program->Base, machine)) {
-
- /* Store result color */
- if (outputsWritten & BITFIELD64_BIT(FRAG_RESULT_COLOR)) {
- COPY_4V(span->array->attribs[FRAG_ATTRIB_COL0][i],
- machine->Outputs[FRAG_RESULT_COLOR]);
- }
- else {
- /* Multiple drawbuffers / render targets
- * Note that colors beyond 0 and 1 will overwrite other
- * attributes, such as FOGC, TEX0, TEX1, etc. That's OK.
- */
- GLuint buf;
- for (buf = 0; buf < ctx->DrawBuffer->_NumColorDrawBuffers; buf++) {
- if (outputsWritten & BITFIELD64_BIT(FRAG_RESULT_DATA0 + buf)) {
- COPY_4V(span->array->attribs[FRAG_ATTRIB_COL0 + buf][i],
- machine->Outputs[FRAG_RESULT_DATA0 + buf]);
- }
- }
- }
-
- /* Store result depth/z */
- if (outputsWritten & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
- const GLfloat depth = machine->Outputs[FRAG_RESULT_DEPTH][2];
- if (depth <= 0.0)
- span->array->z[i] = 0;
- else if (depth >= 1.0)
- span->array->z[i] = ctx->DrawBuffer->_DepthMax;
- else
- span->array->z[i] = IROUND(depth * ctx->DrawBuffer->_DepthMaxF);
- }
- }
- else {
- /* killed fragment */
- span->array->mask[i] = GL_FALSE;
- span->writeAll = GL_FALSE;
- }
- }
- }
-}
-
-
-/**
- * Execute the current fragment program for all the fragments
- * in the given span.
- */
-void
-_swrast_exec_fragment_program( struct gl_context *ctx, SWspan *span )
-{
- const struct gl_fragment_program *program = ctx->FragmentProgram._Current;
-
- /* incoming colors should be floats */
- if (program->Base.InputsRead & FRAG_BIT_COL0) {
- ASSERT(span->array->ChanType == GL_FLOAT);
- }
-
- run_program(ctx, span, 0, span->end);
-
- if (program->Base.OutputsWritten & BITFIELD64_BIT(FRAG_RESULT_COLOR)) {
- span->interpMask &= ~SPAN_RGBA;
- span->arrayMask |= SPAN_RGBA;
- }
-
- if (program->Base.OutputsWritten & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
- span->interpMask &= ~SPAN_Z;
- span->arrayMask |= SPAN_Z;
- }
-}
-
+/*
+ * Mesa 3-D graphics library
+ * Version: 7.0.3
+ *
+ * Copyright (C) 1999-2007 Brian Paul All Rights Reserved.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included
+ * in all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
+ * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
+ * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+ */
+
+#include "main/glheader.h"
+#include "main/colormac.h"
+#include "program/prog_instruction.h"
+
+#include "s_context.h"
+#include "s_fragprog.h"
+#include "s_span.h"
+
+
+/**
+ * Apply texture object's swizzle (X/Y/Z/W/0/1) to incoming 'texel'
+ * and return results in 'colorOut'.
+ */
+static INLINE void
+swizzle_texel(const GLfloat texel[4], GLfloat colorOut[4], GLuint swizzle)
+{
+ if (swizzle == SWIZZLE_NOOP) {
+ COPY_4V(colorOut, texel);
+ }
+ else {
+ GLfloat vector[6];
+ vector[SWIZZLE_X] = texel[0];
+ vector[SWIZZLE_Y] = texel[1];
+ vector[SWIZZLE_Z] = texel[2];
+ vector[SWIZZLE_W] = texel[3];
+ vector[SWIZZLE_ZERO] = 0.0F;
+ vector[SWIZZLE_ONE] = 1.0F;
+ colorOut[0] = vector[GET_SWZ(swizzle, 0)];
+ colorOut[1] = vector[GET_SWZ(swizzle, 1)];
+ colorOut[2] = vector[GET_SWZ(swizzle, 2)];
+ colorOut[3] = vector[GET_SWZ(swizzle, 3)];
+ }
+}
+
+
+/**
+ * Fetch a texel with given lod.
+ * Called via machine->FetchTexelLod()
+ */
+static void
+fetch_texel_lod( struct gl_context *ctx, const GLfloat texcoord[4], GLfloat lambda,
+ GLuint unit, GLfloat color[4] )
+{
+ const struct gl_texture_object *texObj = ctx->Texture.Unit[unit]._Current;
+
+ if (texObj) {
+ SWcontext *swrast = SWRAST_CONTEXT(ctx);
+ GLfloat rgba[4];
+
+ lambda = CLAMP(lambda, texObj->Sampler.MinLod, texObj->Sampler.MaxLod);
+
+ swrast->TextureSample[unit](ctx, texObj, 1,
+ (const GLfloat (*)[4]) texcoord,
+ &lambda, &rgba);
+ swizzle_texel(rgba, color, texObj->_Swizzle);
+ }
+ else {
+ ASSIGN_4V(color, 0.0F, 0.0F, 0.0F, 1.0F);
+ }
+}
+
+
+/**
+ * Fetch a texel with the given partial derivatives to compute a level
+ * of detail in the mipmap.
+ * Called via machine->FetchTexelDeriv()
+ * \param lodBias the lod bias which may be specified by a TXB instruction,
+ * otherwise zero.
+ */
+static void
+fetch_texel_deriv( struct gl_context *ctx, const GLfloat texcoord[4],
+ const GLfloat texdx[4], const GLfloat texdy[4],
+ GLfloat lodBias, GLuint unit, GLfloat color[4] )
+{
+ SWcontext *swrast = SWRAST_CONTEXT(ctx);
+ const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[unit];
+ const struct gl_texture_object *texObj = texUnit->_Current;
+
+ if (texObj) {
+ const struct gl_texture_image *texImg =
+ texObj->Image[0][texObj->BaseLevel];
+ const GLfloat texW = (GLfloat) texImg->WidthScale;
+ const GLfloat texH = (GLfloat) texImg->HeightScale;
+ GLfloat lambda;
+ GLfloat rgba[4];
+
+ lambda = _swrast_compute_lambda(texdx[0], texdy[0], /* ds/dx, ds/dy */
+ texdx[1], texdy[1], /* dt/dx, dt/dy */
+ texdx[3], texdy[3], /* dq/dx, dq/dy */
+ texW, texH,
+ texcoord[0], texcoord[1], texcoord[3],
+ 1.0F / texcoord[3]);
+
+ lambda += lodBias + texUnit->LodBias + texObj->Sampler.LodBias;
+
+ lambda = CLAMP(lambda, texObj->Sampler.MinLod, texObj->Sampler.MaxLod);
+
+ swrast->TextureSample[unit](ctx, texObj, 1,
+ (const GLfloat (*)[4]) texcoord,
+ &lambda, &rgba);
+ swizzle_texel(rgba, color, texObj->_Swizzle);
+ }
+ else {
+ ASSIGN_4V(color, 0.0F, 0.0F, 0.0F, 1.0F);
+ }
+}
+
+
+/**
+ * Initialize the virtual fragment program machine state prior to running
+ * fragment program on a fragment. This involves initializing the input
+ * registers, condition codes, etc.
+ * \param machine the virtual machine state to init
+ * \param program the fragment program we're about to run
+ * \param span the span of pixels we'll operate on
+ * \param col which element (column) of the span we'll operate on
+ */
+static void
+init_machine(struct gl_context *ctx, struct gl_program_machine *machine,
+ const struct gl_fragment_program *program,
+ const SWspan *span, GLuint col)
+{
+ GLfloat *wpos = span->array->attribs[FRAG_ATTRIB_WPOS][col];
+
+ if (program->Base.Target == GL_FRAGMENT_PROGRAM_NV) {
+ /* Clear temporary registers (undefined for ARB_f_p) */
+ memset(machine->Temporaries, 0, MAX_PROGRAM_TEMPS * 4 * sizeof(GLfloat));
+ }
+
+ /* ARB_fragment_coord_conventions */
+ if (program->OriginUpperLeft)
+ wpos[1] = ctx->DrawBuffer->Height - 1 - wpos[1];
+ if (!program->PixelCenterInteger) {
+ wpos[0] += 0.5F;
+ wpos[1] += 0.5F;
+ }
+
+ /* Setup pointer to input attributes */
+ machine->Attribs = span->array->attribs;
+
+ machine->DerivX = (GLfloat (*)[4]) span->attrStepX;
+ machine->DerivY = (GLfloat (*)[4]) span->attrStepY;
+ machine->NumDeriv = FRAG_ATTRIB_MAX;
+
+ machine->Samplers = program->Base.SamplerUnits;
+
+ /* if running a GLSL program (not ARB_fragment_program) */
+ if (ctx->Shader.CurrentFragmentProgram) {
+ /* Store front/back facing value */
+ machine->Attribs[FRAG_ATTRIB_FACE][col][0] = 1.0F - span->facing;
+ }
+
+ machine->CurElement = col;
+
+ /* init condition codes */
+ machine->CondCodes[0] = COND_EQ;
+ machine->CondCodes[1] = COND_EQ;
+ machine->CondCodes[2] = COND_EQ;
+ machine->CondCodes[3] = COND_EQ;
+
+ /* init call stack */
+ machine->StackDepth = 0;
+
+ machine->FetchTexelLod = fetch_texel_lod;
+ machine->FetchTexelDeriv = fetch_texel_deriv;
+}
+
+
+/**
+ * Run fragment program on the pixels in span from 'start' to 'end' - 1.
+ */
+static void
+run_program(struct gl_context *ctx, SWspan *span, GLuint start, GLuint end)
+{
+ SWcontext *swrast = SWRAST_CONTEXT(ctx);
+ const struct gl_fragment_program *program = ctx->FragmentProgram._Current;
+ const GLbitfield64 outputsWritten = program->Base.OutputsWritten;
+ struct gl_program_machine *machine = &swrast->FragProgMachine;
+ GLuint i;
+
+ for (i = start; i < end; i++) {
+ if (span->array->mask[i]) {
+ init_machine(ctx, machine, program, span, i);
+
+ if (_mesa_execute_program(ctx, &program->Base, machine)) {
+
+ /* Store result color */
+ if (outputsWritten & BITFIELD64_BIT(FRAG_RESULT_COLOR)) {
+ COPY_4V(span->array->attribs[FRAG_ATTRIB_COL0][i],
+ machine->Outputs[FRAG_RESULT_COLOR]);
+ }
+ else {
+ /* Multiple drawbuffers / render targets
+ * Note that colors beyond 0 and 1 will overwrite other
+ * attributes, such as FOGC, TEX0, TEX1, etc. That's OK.
+ */
+ GLuint buf;
+ for (buf = 0; buf < ctx->DrawBuffer->_NumColorDrawBuffers; buf++) {
+ if (outputsWritten & BITFIELD64_BIT(FRAG_RESULT_DATA0 + buf)) {
+ COPY_4V(span->array->attribs[FRAG_ATTRIB_COL0 + buf][i],
+ machine->Outputs[FRAG_RESULT_DATA0 + buf]);
+ }
+ }
+ }
+
+ /* Store result depth/z */
+ if (outputsWritten & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
+ const GLfloat depth = machine->Outputs[FRAG_RESULT_DEPTH][2];
+ if (depth <= 0.0)
+ span->array->z[i] = 0;
+ else if (depth >= 1.0)
+ span->array->z[i] = ctx->DrawBuffer->_DepthMax;
+ else
+ span->array->z[i] = IROUND(depth * ctx->DrawBuffer->_DepthMaxF);
+ }
+ }
+ else {
+ /* killed fragment */
+ span->array->mask[i] = GL_FALSE;
+ span->writeAll = GL_FALSE;
+ }
+ }
+ }
+}
+
+
+/**
+ * Execute the current fragment program for all the fragments
+ * in the given span.
+ */
+void
+_swrast_exec_fragment_program( struct gl_context *ctx, SWspan *span )
+{
+ const struct gl_fragment_program *program = ctx->FragmentProgram._Current;
+
+ /* incoming colors should be floats */
+ if (program->Base.InputsRead & FRAG_BIT_COL0) {
+ ASSERT(span->array->ChanType == GL_FLOAT);
+ }
+
+ run_program(ctx, span, 0, span->end);
+
+ if (program->Base.OutputsWritten & BITFIELD64_BIT(FRAG_RESULT_COLOR)) {
+ span->interpMask &= ~SPAN_RGBA;
+ span->arrayMask |= SPAN_RGBA;
+ }
+
+ if (program->Base.OutputsWritten & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
+ span->interpMask &= ~SPAN_Z;
+ span->arrayMask |= SPAN_Z;
+ }
+}
+
diff --git a/mesalib/src/mesa/swrast/s_span.c b/mesalib/src/mesa/swrast/s_span.c
index 75e3c53a1..9cfecc9e3 100644
--- a/mesalib/src/mesa/swrast/s_span.c
+++ b/mesalib/src/mesa/swrast/s_span.c
@@ -1,1503 +1,1503 @@
-/*
- * Mesa 3-D graphics library
- * Version: 7.5
- *
- * Copyright (C) 1999-2008 Brian Paul All Rights Reserved.
- * Copyright (C) 2009 VMware, Inc. All Rights Reserved.
- *
- * Permission is hereby granted, free of charge, to any person obtaining a
- * copy of this software and associated documentation files (the "Software"),
- * to deal in the Software without restriction, including without limitation
- * the rights to use, copy, modify, merge, publish, distribute, sublicense,
- * and/or sell copies of the Software, and to permit persons to whom the
- * Software is furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included
- * in all copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
- * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
- * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
- * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
- * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
- */
-
-
-/**
- * \file swrast/s_span.c
- * \brief Span processing functions used by all rasterization functions.
- * This is where all the per-fragment tests are performed
- * \author Brian Paul
- */
-
-#include "main/glheader.h"
-#include "main/colormac.h"
-#include "main/macros.h"
-#include "main/imports.h"
-#include "main/image.h"
-
-#include "s_atifragshader.h"
-#include "s_alpha.h"
-#include "s_blend.h"
-#include "s_context.h"
-#include "s_depth.h"
-#include "s_fog.h"
-#include "s_logic.h"
-#include "s_masking.h"
-#include "s_fragprog.h"
-#include "s_span.h"
-#include "s_stencil.h"
-#include "s_texcombine.h"
-
-
-/**
- * Set default fragment attributes for the span using the
- * current raster values. Used prior to glDraw/CopyPixels
- * and glBitmap.
- */
-void
-_swrast_span_default_attribs(struct gl_context *ctx, SWspan *span)
-{
- GLchan r, g, b, a;
- /* Z*/
- {
- const GLfloat depthMax = ctx->DrawBuffer->_DepthMaxF;
- if (ctx->DrawBuffer->Visual.depthBits <= 16)
- span->z = FloatToFixed(ctx->Current.RasterPos[2] * depthMax + 0.5F);
- else {
- GLfloat tmpf = ctx->Current.RasterPos[2] * depthMax;
- tmpf = MIN2(tmpf, depthMax);
- span->z = (GLint)tmpf;
- }
- span->zStep = 0;
- span->interpMask |= SPAN_Z;
- }
-
- /* W (for perspective correction) */
- span->attrStart[FRAG_ATTRIB_WPOS][3] = 1.0;
- span->attrStepX[FRAG_ATTRIB_WPOS][3] = 0.0;
- span->attrStepY[FRAG_ATTRIB_WPOS][3] = 0.0;
-
- /* primary color, or color index */
- UNCLAMPED_FLOAT_TO_CHAN(r, ctx->Current.RasterColor[0]);
- UNCLAMPED_FLOAT_TO_CHAN(g, ctx->Current.RasterColor[1]);
- UNCLAMPED_FLOAT_TO_CHAN(b, ctx->Current.RasterColor[2]);
- UNCLAMPED_FLOAT_TO_CHAN(a, ctx->Current.RasterColor[3]);
-#if CHAN_TYPE == GL_FLOAT
- span->red = r;
- span->green = g;
- span->blue = b;
- span->alpha = a;
-#else
- span->red = IntToFixed(r);
- span->green = IntToFixed(g);
- span->blue = IntToFixed(b);
- span->alpha = IntToFixed(a);
-#endif
- span->redStep = 0;
- span->greenStep = 0;
- span->blueStep = 0;
- span->alphaStep = 0;
- span->interpMask |= SPAN_RGBA;
-
- COPY_4V(span->attrStart[FRAG_ATTRIB_COL0], ctx->Current.RasterColor);
- ASSIGN_4V(span->attrStepX[FRAG_ATTRIB_COL0], 0.0, 0.0, 0.0, 0.0);
- ASSIGN_4V(span->attrStepY[FRAG_ATTRIB_COL0], 0.0, 0.0, 0.0, 0.0);
-
- /* Secondary color */
- if (ctx->Light.Enabled || ctx->Fog.ColorSumEnabled)
- {
- COPY_4V(span->attrStart[FRAG_ATTRIB_COL1], ctx->Current.RasterSecondaryColor);
- ASSIGN_4V(span->attrStepX[FRAG_ATTRIB_COL1], 0.0, 0.0, 0.0, 0.0);
- ASSIGN_4V(span->attrStepY[FRAG_ATTRIB_COL1], 0.0, 0.0, 0.0, 0.0);
- }
-
- /* fog */
- {
- const SWcontext *swrast = SWRAST_CONTEXT(ctx);
- GLfloat fogVal; /* a coord or a blend factor */
- if (swrast->_PreferPixelFog) {
- /* fog blend factors will be computed from fog coordinates per pixel */
- fogVal = ctx->Current.RasterDistance;
- }
- else {
- /* fog blend factor should be computed from fogcoord now */
- fogVal = _swrast_z_to_fogfactor(ctx, ctx->Current.RasterDistance);
- }
- span->attrStart[FRAG_ATTRIB_FOGC][0] = fogVal;
- span->attrStepX[FRAG_ATTRIB_FOGC][0] = 0.0;
- span->attrStepY[FRAG_ATTRIB_FOGC][0] = 0.0;
- }
-
- /* texcoords */
- {
- GLuint i;
- for (i = 0; i < ctx->Const.MaxTextureCoordUnits; i++) {
- const GLuint attr = FRAG_ATTRIB_TEX0 + i;
- const GLfloat *tc = ctx->Current.RasterTexCoords[i];
- if (ctx->FragmentProgram._Current || ctx->ATIFragmentShader._Enabled) {
- COPY_4V(span->attrStart[attr], tc);
- }
- else if (tc[3] > 0.0F) {
- /* use (s/q, t/q, r/q, 1) */
- span->attrStart[attr][0] = tc[0] / tc[3];
- span->attrStart[attr][1] = tc[1] / tc[3];
- span->attrStart[attr][2] = tc[2] / tc[3];
- span->attrStart[attr][3] = 1.0;
- }
- else {
- ASSIGN_4V(span->attrStart[attr], 0.0F, 0.0F, 0.0F, 1.0F);
- }
- ASSIGN_4V(span->attrStepX[attr], 0.0F, 0.0F, 0.0F, 0.0F);
- ASSIGN_4V(span->attrStepY[attr], 0.0F, 0.0F, 0.0F, 0.0F);
- }
- }
-}
-
-
-/**
- * Interpolate the active attributes (and'd with attrMask) to
- * fill in span->array->attribs[].
- * Perspective correction will be done. The point/line/triangle function
- * should have computed attrStart/Step values for FRAG_ATTRIB_WPOS[3]!
- */
-static INLINE void
-interpolate_active_attribs(struct gl_context *ctx, SWspan *span, GLbitfield attrMask)
-{
- const SWcontext *swrast = SWRAST_CONTEXT(ctx);
-
- /*
- * Don't overwrite existing array values, such as colors that may have
- * been produced by glDraw/CopyPixels.
- */
- attrMask &= ~span->arrayAttribs;
-
- ATTRIB_LOOP_BEGIN
- if (attrMask & (1 << attr)) {
- const GLfloat dwdx = span->attrStepX[FRAG_ATTRIB_WPOS][3];
- GLfloat w = span->attrStart[FRAG_ATTRIB_WPOS][3];
- const GLfloat dv0dx = span->attrStepX[attr][0];
- const GLfloat dv1dx = span->attrStepX[attr][1];
- const GLfloat dv2dx = span->attrStepX[attr][2];
- const GLfloat dv3dx = span->attrStepX[attr][3];
- GLfloat v0 = span->attrStart[attr][0] + span->leftClip * dv0dx;
- GLfloat v1 = span->attrStart[attr][1] + span->leftClip * dv1dx;
- GLfloat v2 = span->attrStart[attr][2] + span->leftClip * dv2dx;
- GLfloat v3 = span->attrStart[attr][3] + span->leftClip * dv3dx;
- GLuint k;
- for (k = 0; k < span->end; k++) {
- const GLfloat invW = 1.0f / w;
- span->array->attribs[attr][k][0] = v0 * invW;
- span->array->attribs[attr][k][1] = v1 * invW;
- span->array->attribs[attr][k][2] = v2 * invW;
- span->array->attribs[attr][k][3] = v3 * invW;
- v0 += dv0dx;
- v1 += dv1dx;
- v2 += dv2dx;
- v3 += dv3dx;
- w += dwdx;
- }
- ASSERT((span->arrayAttribs & (1 << attr)) == 0);
- span->arrayAttribs |= (1 << attr);
- }
- ATTRIB_LOOP_END
-}
-
-
-/**
- * Interpolate primary colors to fill in the span->array->rgba8 (or rgb16)
- * color array.
- */
-static INLINE void
-interpolate_int_colors(struct gl_context *ctx, SWspan *span)
-{
- const GLuint n = span->end;
- GLuint i;
-
-#if CHAN_BITS != 32
- ASSERT(!(span->arrayMask & SPAN_RGBA));
-#endif
-
- switch (span->array->ChanType) {
-#if CHAN_BITS != 32
- case GL_UNSIGNED_BYTE:
- {
- GLubyte (*rgba)[4] = span->array->rgba8;
- if (span->interpMask & SPAN_FLAT) {
- GLubyte color[4];
- color[RCOMP] = FixedToInt(span->red);
- color[GCOMP] = FixedToInt(span->green);
- color[BCOMP] = FixedToInt(span->blue);
- color[ACOMP] = FixedToInt(span->alpha);
- for (i = 0; i < n; i++) {
- COPY_4UBV(rgba[i], color);
- }
- }
- else {
- GLfixed r = span->red;
- GLfixed g = span->green;
- GLfixed b = span->blue;
- GLfixed a = span->alpha;
- GLint dr = span->redStep;
- GLint dg = span->greenStep;
- GLint db = span->blueStep;
- GLint da = span->alphaStep;
- for (i = 0; i < n; i++) {
- rgba[i][RCOMP] = FixedToChan(r);
- rgba[i][GCOMP] = FixedToChan(g);
- rgba[i][BCOMP] = FixedToChan(b);
- rgba[i][ACOMP] = FixedToChan(a);
- r += dr;
- g += dg;
- b += db;
- a += da;
- }
- }
- }
- break;
- case GL_UNSIGNED_SHORT:
- {
- GLushort (*rgba)[4] = span->array->rgba16;
- if (span->interpMask & SPAN_FLAT) {
- GLushort color[4];
- color[RCOMP] = FixedToInt(span->red);
- color[GCOMP] = FixedToInt(span->green);
- color[BCOMP] = FixedToInt(span->blue);
- color[ACOMP] = FixedToInt(span->alpha);
- for (i = 0; i < n; i++) {
- COPY_4V(rgba[i], color);
- }
- }
- else {
- GLushort (*rgba)[4] = span->array->rgba16;
- GLfixed r, g, b, a;
- GLint dr, dg, db, da;
- r = span->red;
- g = span->green;
- b = span->blue;
- a = span->alpha;
- dr = span->redStep;
- dg = span->greenStep;
- db = span->blueStep;
- da = span->alphaStep;
- for (i = 0; i < n; i++) {
- rgba[i][RCOMP] = FixedToChan(r);
- rgba[i][GCOMP] = FixedToChan(g);
- rgba[i][BCOMP] = FixedToChan(b);
- rgba[i][ACOMP] = FixedToChan(a);
- r += dr;
- g += dg;
- b += db;
- a += da;
- }
- }
- }
- break;
-#endif
- case GL_FLOAT:
- interpolate_active_attribs(ctx, span, FRAG_BIT_COL0);
- break;
- default:
- _mesa_problem(ctx, "bad datatype 0x%x in interpolate_int_colors",
- span->array->ChanType);
- }
- span->arrayMask |= SPAN_RGBA;
-}
-
-
-/**
- * Populate the FRAG_ATTRIB_COL0 array.
- */
-static INLINE void
-interpolate_float_colors(SWspan *span)
-{
- GLfloat (*col0)[4] = span->array->attribs[FRAG_ATTRIB_COL0];
- const GLuint n = span->end;
- GLuint i;
-
- assert(!(span->arrayAttribs & FRAG_BIT_COL0));
-
- if (span->arrayMask & SPAN_RGBA) {
- /* convert array of int colors */
- for (i = 0; i < n; i++) {
- col0[i][0] = UBYTE_TO_FLOAT(span->array->rgba8[i][0]);
- col0[i][1] = UBYTE_TO_FLOAT(span->array->rgba8[i][1]);
- col0[i][2] = UBYTE_TO_FLOAT(span->array->rgba8[i][2]);
- col0[i][3] = UBYTE_TO_FLOAT(span->array->rgba8[i][3]);
- }
- }
- else {
- /* interpolate red/green/blue/alpha to get float colors */
- ASSERT(span->interpMask & SPAN_RGBA);
- if (span->interpMask & SPAN_FLAT) {
- GLfloat r = FixedToFloat(span->red);
- GLfloat g = FixedToFloat(span->green);
- GLfloat b = FixedToFloat(span->blue);
- GLfloat a = FixedToFloat(span->alpha);
- for (i = 0; i < n; i++) {
- ASSIGN_4V(col0[i], r, g, b, a);
- }
- }
- else {
- GLfloat r = FixedToFloat(span->red);
- GLfloat g = FixedToFloat(span->green);
- GLfloat b = FixedToFloat(span->blue);
- GLfloat a = FixedToFloat(span->alpha);
- GLfloat dr = FixedToFloat(span->redStep);
- GLfloat dg = FixedToFloat(span->greenStep);
- GLfloat db = FixedToFloat(span->blueStep);
- GLfloat da = FixedToFloat(span->alphaStep);
- for (i = 0; i < n; i++) {
- col0[i][0] = r;
- col0[i][1] = g;
- col0[i][2] = b;
- col0[i][3] = a;
- r += dr;
- g += dg;
- b += db;
- a += da;
- }
- }
- }
-
- span->arrayAttribs |= FRAG_BIT_COL0;
- span->array->ChanType = GL_FLOAT;
-}
-
-
-
-/**
- * Fill in the span.zArray array from the span->z, zStep values.
- */
-void
-_swrast_span_interpolate_z( const struct gl_context *ctx, SWspan *span )
-{
- const GLuint n = span->end;
- GLuint i;
-
- ASSERT(!(span->arrayMask & SPAN_Z));
-
- if (ctx->DrawBuffer->Visual.depthBits <= 16) {
- GLfixed zval = span->z;
- GLuint *z = span->array->z;
- for (i = 0; i < n; i++) {
- z[i] = FixedToInt(zval);
- zval += span->zStep;
- }
- }
- else {
- /* Deep Z buffer, no fixed->int shift */
- GLuint zval = span->z;
- GLuint *z = span->array->z;
- for (i = 0; i < n; i++) {
- z[i] = zval;
- zval += span->zStep;
- }
- }
- span->interpMask &= ~SPAN_Z;
- span->arrayMask |= SPAN_Z;
-}
-
-
-/**
- * Compute mipmap LOD from partial derivatives.
- * This the ideal solution, as given in the OpenGL spec.
- */
-GLfloat
-_swrast_compute_lambda(GLfloat dsdx, GLfloat dsdy, GLfloat dtdx, GLfloat dtdy,
- GLfloat dqdx, GLfloat dqdy, GLfloat texW, GLfloat texH,
- GLfloat s, GLfloat t, GLfloat q, GLfloat invQ)
-{
- GLfloat dudx = texW * ((s + dsdx) / (q + dqdx) - s * invQ);
- GLfloat dvdx = texH * ((t + dtdx) / (q + dqdx) - t * invQ);
- GLfloat dudy = texW * ((s + dsdy) / (q + dqdy) - s * invQ);
- GLfloat dvdy = texH * ((t + dtdy) / (q + dqdy) - t * invQ);
- GLfloat x = SQRTF(dudx * dudx + dvdx * dvdx);
- GLfloat y = SQRTF(dudy * dudy + dvdy * dvdy);
- GLfloat rho = MAX2(x, y);
- GLfloat lambda = LOG2(rho);
- return lambda;
-}
-
-
-/**
- * Compute mipmap LOD from partial derivatives.
- * This is a faster approximation than above function.
- */
-#if 0
-GLfloat
-_swrast_compute_lambda(GLfloat dsdx, GLfloat dsdy, GLfloat dtdx, GLfloat dtdy,
- GLfloat dqdx, GLfloat dqdy, GLfloat texW, GLfloat texH,
- GLfloat s, GLfloat t, GLfloat q, GLfloat invQ)
-{
- GLfloat dsdx2 = (s + dsdx) / (q + dqdx) - s * invQ;
- GLfloat dtdx2 = (t + dtdx) / (q + dqdx) - t * invQ;
- GLfloat dsdy2 = (s + dsdy) / (q + dqdy) - s * invQ;
- GLfloat dtdy2 = (t + dtdy) / (q + dqdy) - t * invQ;
- GLfloat maxU, maxV, rho, lambda;
- dsdx2 = FABSF(dsdx2);
- dsdy2 = FABSF(dsdy2);
- dtdx2 = FABSF(dtdx2);
- dtdy2 = FABSF(dtdy2);
- maxU = MAX2(dsdx2, dsdy2) * texW;
- maxV = MAX2(dtdx2, dtdy2) * texH;
- rho = MAX2(maxU, maxV);
- lambda = LOG2(rho);
- return lambda;
-}
-#endif
-
-
-/**
- * Fill in the span.array->attrib[FRAG_ATTRIB_TEXn] arrays from the
- * using the attrStart/Step values.
- *
- * This function only used during fixed-function fragment processing.
- *
- * Note: in the places where we divide by Q (or mult by invQ) we're
- * really doing two things: perspective correction and texcoord
- * projection. Remember, for texcoord (s,t,r,q) we need to index
- * texels with (s/q, t/q, r/q).
- */
-static void
-interpolate_texcoords(struct gl_context *ctx, SWspan *span)
-{
- const GLuint maxUnit
- = (ctx->Texture._EnabledCoordUnits > 1) ? ctx->Const.MaxTextureUnits : 1;
- GLuint u;
-
- /* XXX CoordUnits vs. ImageUnits */
- for (u = 0; u < maxUnit; u++) {
- if (ctx->Texture._EnabledCoordUnits & (1 << u)) {
- const GLuint attr = FRAG_ATTRIB_TEX0 + u;
- const struct gl_texture_object *obj = ctx->Texture.Unit[u]._Current;
- GLfloat texW, texH;
- GLboolean needLambda;
- GLfloat (*texcoord)[4] = span->array->attribs[attr];
- GLfloat *lambda = span->array->lambda[u];
- const GLfloat dsdx = span->attrStepX[attr][0];
- const GLfloat dsdy = span->attrStepY[attr][0];
- const GLfloat dtdx = span->attrStepX[attr][1];
- const GLfloat dtdy = span->attrStepY[attr][1];
- const GLfloat drdx = span->attrStepX[attr][2];
- const GLfloat dqdx = span->attrStepX[attr][3];
- const GLfloat dqdy = span->attrStepY[attr][3];
- GLfloat s = span->attrStart[attr][0] + span->leftClip * dsdx;
- GLfloat t = span->attrStart[attr][1] + span->leftClip * dtdx;
- GLfloat r = span->attrStart[attr][2] + span->leftClip * drdx;
- GLfloat q = span->attrStart[attr][3] + span->leftClip * dqdx;
-
- if (obj) {
- const struct gl_texture_image *img = obj->Image[0][obj->BaseLevel];
- needLambda = (obj->MinFilter != obj->MagFilter)
- || ctx->FragmentProgram._Current;
- texW = img->WidthScale;
- texH = img->HeightScale;
- }
- else {
- /* using a fragment program */
- texW = 1.0;
- texH = 1.0;
- needLambda = GL_FALSE;
- }
-
- if (needLambda) {
- GLuint i;
- if (ctx->FragmentProgram._Current
- || ctx->ATIFragmentShader._Enabled) {
- /* do perspective correction but don't divide s, t, r by q */
- const GLfloat dwdx = span->attrStepX[FRAG_ATTRIB_WPOS][3];
- GLfloat w = span->attrStart[FRAG_ATTRIB_WPOS][3] + span->leftClip * dwdx;
- for (i = 0; i < span->end; i++) {
- const GLfloat invW = 1.0F / w;
- texcoord[i][0] = s * invW;
- texcoord[i][1] = t * invW;
- texcoord[i][2] = r * invW;
- texcoord[i][3] = q * invW;
- lambda[i] = _swrast_compute_lambda(dsdx, dsdy, dtdx, dtdy,
- dqdx, dqdy, texW, texH,
- s, t, q, invW);
- s += dsdx;
- t += dtdx;
- r += drdx;
- q += dqdx;
- w += dwdx;
- }
- }
- else {
- for (i = 0; i < span->end; i++) {
- const GLfloat invQ = (q == 0.0F) ? 1.0F : (1.0F / q);
- texcoord[i][0] = s * invQ;
- texcoord[i][1] = t * invQ;
- texcoord[i][2] = r * invQ;
- texcoord[i][3] = q;
- lambda[i] = _swrast_compute_lambda(dsdx, dsdy, dtdx, dtdy,
- dqdx, dqdy, texW, texH,
- s, t, q, invQ);
- s += dsdx;
- t += dtdx;
- r += drdx;
- q += dqdx;
- }
- }
- span->arrayMask |= SPAN_LAMBDA;
- }
- else {
- GLuint i;
- if (ctx->FragmentProgram._Current ||
- ctx->ATIFragmentShader._Enabled) {
- /* do perspective correction but don't divide s, t, r by q */
- const GLfloat dwdx = span->attrStepX[FRAG_ATTRIB_WPOS][3];
- GLfloat w = span->attrStart[FRAG_ATTRIB_WPOS][3] + span->leftClip * dwdx;
- for (i = 0; i < span->end; i++) {
- const GLfloat invW = 1.0F / w;
- texcoord[i][0] = s * invW;
- texcoord[i][1] = t * invW;
- texcoord[i][2] = r * invW;
- texcoord[i][3] = q * invW;
- lambda[i] = 0.0;
- s += dsdx;
- t += dtdx;
- r += drdx;
- q += dqdx;
- w += dwdx;
- }
- }
- else if (dqdx == 0.0F) {
- /* Ortho projection or polygon's parallel to window X axis */
- const GLfloat invQ = (q == 0.0F) ? 1.0F : (1.0F / q);
- for (i = 0; i < span->end; i++) {
- texcoord[i][0] = s * invQ;
- texcoord[i][1] = t * invQ;
- texcoord[i][2] = r * invQ;
- texcoord[i][3] = q;
- lambda[i] = 0.0;
- s += dsdx;
- t += dtdx;
- r += drdx;
- }
- }
- else {
- for (i = 0; i < span->end; i++) {
- const GLfloat invQ = (q == 0.0F) ? 1.0F : (1.0F / q);
- texcoord[i][0] = s * invQ;
- texcoord[i][1] = t * invQ;
- texcoord[i][2] = r * invQ;
- texcoord[i][3] = q;
- lambda[i] = 0.0;
- s += dsdx;
- t += dtdx;
- r += drdx;
- q += dqdx;
- }
- }
- } /* lambda */
- } /* if */
- } /* for */
-}
-
-
-/**
- * Fill in the arrays->attribs[FRAG_ATTRIB_WPOS] array.
- */
-static INLINE void
-interpolate_wpos(struct gl_context *ctx, SWspan *span)
-{
- GLfloat (*wpos)[4] = span->array->attribs[FRAG_ATTRIB_WPOS];
- GLuint i;
- const GLfloat zScale = 1.0F / ctx->DrawBuffer->_DepthMaxF;
- GLfloat w, dw;
-
- if (span->arrayMask & SPAN_XY) {
- for (i = 0; i < span->end; i++) {
- wpos[i][0] = (GLfloat) span->array->x[i];
- wpos[i][1] = (GLfloat) span->array->y[i];
- }
- }
- else {
- for (i = 0; i < span->end; i++) {
- wpos[i][0] = (GLfloat) span->x + i;
- wpos[i][1] = (GLfloat) span->y;
- }
- }
-
- dw = span->attrStepX[FRAG_ATTRIB_WPOS][3];
- w = span->attrStart[FRAG_ATTRIB_WPOS][3] + span->leftClip * dw;
- for (i = 0; i < span->end; i++) {
- wpos[i][2] = (GLfloat) span->array->z[i] * zScale;
- wpos[i][3] = w;
- w += dw;
- }
-}
-
-
-/**
- * Apply the current polygon stipple pattern to a span of pixels.
- */
-static INLINE void
-stipple_polygon_span(struct gl_context *ctx, SWspan *span)
-{
- GLubyte *mask = span->array->mask;
-
- ASSERT(ctx->Polygon.StippleFlag);
-
- if (span->arrayMask & SPAN_XY) {
- /* arrays of x/y pixel coords */
- GLuint i;
- for (i = 0; i < span->end; i++) {
- const GLint col = span->array->x[i] % 32;
- const GLint row = span->array->y[i] % 32;
- const GLuint stipple = ctx->PolygonStipple[row];
- if (((1 << col) & stipple) == 0) {
- mask[i] = 0;
- }
- }
- }
- else {
- /* horizontal span of pixels */
- const GLuint highBit = 1 << 31;
- const GLuint stipple = ctx->PolygonStipple[span->y % 32];
- GLuint i, m = highBit >> (GLuint) (span->x % 32);
- for (i = 0; i < span->end; i++) {
- if ((m & stipple) == 0) {
- mask[i] = 0;
- }
- m = m >> 1;
- if (m == 0) {
- m = highBit;
- }
- }
- }
- span->writeAll = GL_FALSE;
-}
-
-
-/**
- * Clip a pixel span to the current buffer/window boundaries:
- * DrawBuffer->_Xmin, _Xmax, _Ymin, _Ymax. This will accomplish
- * window clipping and scissoring.
- * Return: GL_TRUE some pixels still visible
- * GL_FALSE nothing visible
- */
-static INLINE GLuint
-clip_span( struct gl_context *ctx, SWspan *span )
-{
- const GLint xmin = ctx->DrawBuffer->_Xmin;
- const GLint xmax = ctx->DrawBuffer->_Xmax;
- const GLint ymin = ctx->DrawBuffer->_Ymin;
- const GLint ymax = ctx->DrawBuffer->_Ymax;
-
- span->leftClip = 0;
-
- if (span->arrayMask & SPAN_XY) {
- /* arrays of x/y pixel coords */
- const GLint *x = span->array->x;
- const GLint *y = span->array->y;
- const GLint n = span->end;
- GLubyte *mask = span->array->mask;
- GLint i;
- if (span->arrayMask & SPAN_MASK) {
- /* note: using & intead of && to reduce branches */
- for (i = 0; i < n; i++) {
- mask[i] &= (x[i] >= xmin) & (x[i] < xmax)
- & (y[i] >= ymin) & (y[i] < ymax);
- }
- }
- else {
- /* note: using & intead of && to reduce branches */
- for (i = 0; i < n; i++) {
- mask[i] = (x[i] >= xmin) & (x[i] < xmax)
- & (y[i] >= ymin) & (y[i] < ymax);
- }
- }
- return GL_TRUE; /* some pixels visible */
- }
- else {
- /* horizontal span of pixels */
- const GLint x = span->x;
- const GLint y = span->y;
- GLint n = span->end;
-
- /* Trivial rejection tests */
- if (y < ymin || y >= ymax || x + n <= xmin || x >= xmax) {
- span->end = 0;
- return GL_FALSE; /* all pixels clipped */
- }
-
- /* Clip to right */
- if (x + n > xmax) {
- ASSERT(x < xmax);
- n = span->end = xmax - x;
- }
-
- /* Clip to the left */
- if (x < xmin) {
- const GLint leftClip = xmin - x;
- GLuint i;
-
- ASSERT(leftClip > 0);
- ASSERT(x + n > xmin);
-
- /* Clip 'leftClip' pixels from the left side.
- * The span->leftClip field will be applied when we interpolate
- * fragment attributes.
- * For arrays of values, shift them left.
- */
- for (i = 0; i < FRAG_ATTRIB_MAX; i++) {
- if (span->interpMask & (1 << i)) {
- GLuint j;
- for (j = 0; j < 4; j++) {
- span->attrStart[i][j] += leftClip * span->attrStepX[i][j];
- }
- }
- }
-
- span->red += leftClip * span->redStep;
- span->green += leftClip * span->greenStep;
- span->blue += leftClip * span->blueStep;
- span->alpha += leftClip * span->alphaStep;
- span->index += leftClip * span->indexStep;
- span->z += leftClip * span->zStep;
- span->intTex[0] += leftClip * span->intTexStep[0];
- span->intTex[1] += leftClip * span->intTexStep[1];
-
-#define SHIFT_ARRAY(ARRAY, SHIFT, LEN) \
- memcpy(ARRAY, ARRAY + (SHIFT), (LEN) * sizeof(ARRAY[0]))
-
- for (i = 0; i < FRAG_ATTRIB_MAX; i++) {
- if (span->arrayAttribs & (1 << i)) {
- /* shift array elements left by 'leftClip' */
- SHIFT_ARRAY(span->array->attribs[i], leftClip, n - leftClip);
- }
- }
-
- SHIFT_ARRAY(span->array->mask, leftClip, n - leftClip);
- SHIFT_ARRAY(span->array->rgba8, leftClip, n - leftClip);
- SHIFT_ARRAY(span->array->rgba16, leftClip, n - leftClip);
- SHIFT_ARRAY(span->array->x, leftClip, n - leftClip);
- SHIFT_ARRAY(span->array->y, leftClip, n - leftClip);
- SHIFT_ARRAY(span->array->z, leftClip, n - leftClip);
- SHIFT_ARRAY(span->array->index, leftClip, n - leftClip);
- for (i = 0; i < MAX_TEXTURE_COORD_UNITS; i++) {
- SHIFT_ARRAY(span->array->lambda[i], leftClip, n - leftClip);
- }
- SHIFT_ARRAY(span->array->coverage, leftClip, n - leftClip);
-
-#undef SHIFT_ARRAY
-
- span->leftClip = leftClip;
- span->x = xmin;
- span->end -= leftClip;
- span->writeAll = GL_FALSE;
- }
-
- ASSERT(span->x >= xmin);
- ASSERT(span->x + span->end <= xmax);
- ASSERT(span->y >= ymin);
- ASSERT(span->y < ymax);
-
- return GL_TRUE; /* some pixels visible */
- }
-}
-
-
-/**
- * Add specular colors to primary colors.
- * Only called during fixed-function operation.
- * Result is float color array (FRAG_ATTRIB_COL0).
- */
-static INLINE void
-add_specular(struct gl_context *ctx, SWspan *span)
-{
- const SWcontext *swrast = SWRAST_CONTEXT(ctx);
- const GLubyte *mask = span->array->mask;
- GLfloat (*col0)[4] = span->array->attribs[FRAG_ATTRIB_COL0];
- GLfloat (*col1)[4] = span->array->attribs[FRAG_ATTRIB_COL1];
- GLuint i;
-
- ASSERT(!ctx->FragmentProgram._Current);
- ASSERT(span->arrayMask & SPAN_RGBA);
- ASSERT(swrast->_ActiveAttribMask & FRAG_BIT_COL1);
- (void) swrast; /* silence warning */
-
- if (span->array->ChanType == GL_FLOAT) {
- if ((span->arrayAttribs & FRAG_BIT_COL0) == 0) {
- interpolate_active_attribs(ctx, span, FRAG_BIT_COL0);
- }
- }
- else {
- /* need float colors */
- if ((span->arrayAttribs & FRAG_BIT_COL0) == 0) {
- interpolate_float_colors(span);
- }
- }
-
- if ((span->arrayAttribs & FRAG_BIT_COL1) == 0) {
- /* XXX could avoid this and interpolate COL1 in the loop below */
- interpolate_active_attribs(ctx, span, FRAG_BIT_COL1);
- }
-
- ASSERT(span->arrayAttribs & FRAG_BIT_COL0);
- ASSERT(span->arrayAttribs & FRAG_BIT_COL1);
-
- for (i = 0; i < span->end; i++) {
- if (mask[i]) {
- col0[i][0] += col1[i][0];
- col0[i][1] += col1[i][1];
- col0[i][2] += col1[i][2];
- }
- }
-
- span->array->ChanType = GL_FLOAT;
-}
-
-
-/**
- * Apply antialiasing coverage value to alpha values.
- */
-static INLINE void
-apply_aa_coverage(SWspan *span)
-{
- const GLfloat *coverage = span->array->coverage;
- GLuint i;
- if (span->array->ChanType == GL_UNSIGNED_BYTE) {
- GLubyte (*rgba)[4] = span->array->rgba8;
- for (i = 0; i < span->end; i++) {
- const GLfloat a = rgba[i][ACOMP] * coverage[i];
- rgba[i][ACOMP] = (GLubyte) CLAMP(a, 0.0, 255.0);
- ASSERT(coverage[i] >= 0.0);
- ASSERT(coverage[i] <= 1.0);
- }
- }
- else if (span->array->ChanType == GL_UNSIGNED_SHORT) {
- GLushort (*rgba)[4] = span->array->rgba16;
- for (i = 0; i < span->end; i++) {
- const GLfloat a = rgba[i][ACOMP] * coverage[i];
- rgba[i][ACOMP] = (GLushort) CLAMP(a, 0.0, 65535.0);
- }
- }
- else {
- GLfloat (*rgba)[4] = span->array->attribs[FRAG_ATTRIB_COL0];
- for (i = 0; i < span->end; i++) {
- rgba[i][ACOMP] = rgba[i][ACOMP] * coverage[i];
- /* clamp later */
- }
- }
-}
-
-
-/**
- * Clamp span's float colors to [0,1]
- */
-static INLINE void
-clamp_colors(SWspan *span)
-{
- GLfloat (*rgba)[4] = span->array->attribs[FRAG_ATTRIB_COL0];
- GLuint i;
- ASSERT(span->array->ChanType == GL_FLOAT);
- for (i = 0; i < span->end; i++) {
- rgba[i][RCOMP] = CLAMP(rgba[i][RCOMP], 0.0F, 1.0F);
- rgba[i][GCOMP] = CLAMP(rgba[i][GCOMP], 0.0F, 1.0F);
- rgba[i][BCOMP] = CLAMP(rgba[i][BCOMP], 0.0F, 1.0F);
- rgba[i][ACOMP] = CLAMP(rgba[i][ACOMP], 0.0F, 1.0F);
- }
-}
-
-
-/**
- * Convert the span's color arrays to the given type.
- * The only way 'output' can be greater than zero is when we have a fragment
- * program that writes to gl_FragData[1] or higher.
- * \param output which fragment program color output is being processed
- */
-static INLINE void
-convert_color_type(SWspan *span, GLenum newType, GLuint output)
-{
- GLvoid *src, *dst;
-
- if (output > 0 || span->array->ChanType == GL_FLOAT) {
- src = span->array->attribs[FRAG_ATTRIB_COL0 + output];
- span->array->ChanType = GL_FLOAT;
- }
- else if (span->array->ChanType == GL_UNSIGNED_BYTE) {
- src = span->array->rgba8;
- }
- else {
- ASSERT(span->array->ChanType == GL_UNSIGNED_SHORT);
- src = span->array->rgba16;
- }
-
- if (newType == GL_UNSIGNED_BYTE) {
- dst = span->array->rgba8;
- }
- else if (newType == GL_UNSIGNED_SHORT) {
- dst = span->array->rgba16;
- }
- else {
- dst = span->array->attribs[FRAG_ATTRIB_COL0];
- }
-
- _mesa_convert_colors(span->array->ChanType, src,
- newType, dst,
- span->end, span->array->mask);
-
- span->array->ChanType = newType;
- span->array->rgba = dst;
-}
-
-
-
-/**
- * Apply fragment shader, fragment program or normal texturing to span.
- */
-static INLINE void
-shade_texture_span(struct gl_context *ctx, SWspan *span)
-{
- GLbitfield inputsRead;
-
- /* Determine which fragment attributes are actually needed */
- if (ctx->FragmentProgram._Current) {
- inputsRead = ctx->FragmentProgram._Current->Base.InputsRead;
- }
- else {
- /* XXX we could be a bit smarter about this */
- inputsRead = ~0;
- }
-
- if (ctx->FragmentProgram._Current ||
- ctx->ATIFragmentShader._Enabled) {
- /* programmable shading */
- if (span->primitive == GL_BITMAP && span->array->ChanType != GL_FLOAT) {
- convert_color_type(span, GL_FLOAT, 0);
- }
- else {
- span->array->rgba = (void *) span->array->attribs[FRAG_ATTRIB_COL0];
- }
-
- if (span->primitive != GL_POINT ||
- (span->interpMask & SPAN_RGBA) ||
- ctx->Point.PointSprite) {
- /* for single-pixel points, we populated the arrays already */
- interpolate_active_attribs(ctx, span, ~0);
- }
- span->array->ChanType = GL_FLOAT;
-
- if (!(span->arrayMask & SPAN_Z))
- _swrast_span_interpolate_z (ctx, span);
-
-#if 0
- if (inputsRead & FRAG_BIT_WPOS)
-#else
- /* XXX always interpolate wpos so that DDX/DDY work */
-#endif
- interpolate_wpos(ctx, span);
-
- /* Run fragment program/shader now */
- if (ctx->FragmentProgram._Current) {
- _swrast_exec_fragment_program(ctx, span);
- }
- else {
- ASSERT(ctx->ATIFragmentShader._Enabled);
- _swrast_exec_fragment_shader(ctx, span);
- }
- }
- else if (ctx->Texture._EnabledCoordUnits) {
- /* conventional texturing */
-
-#if CHAN_BITS == 32
- if ((span->arrayAttribs & FRAG_BIT_COL0) == 0) {
- interpolate_int_colors(ctx, span);
- }
-#else
- if (!(span->arrayMask & SPAN_RGBA))
- interpolate_int_colors(ctx, span);
-#endif
- if ((span->arrayAttribs & FRAG_BITS_TEX_ANY) == 0x0)
- interpolate_texcoords(ctx, span);
-
- _swrast_texture_span(ctx, span);
- }
-}
-
-
-
-/**
- * Apply all the per-fragment operations to a span.
- * This now includes texturing (_swrast_write_texture_span() is history).
- * This function may modify any of the array values in the span.
- * span->interpMask and span->arrayMask may be changed but will be restored
- * to their original values before returning.
- */
-void
-_swrast_write_rgba_span( struct gl_context *ctx, SWspan *span)
-{
- const SWcontext *swrast = SWRAST_CONTEXT(ctx);
- const GLuint *colorMask = (GLuint *) ctx->Color.ColorMask;
- const GLbitfield origInterpMask = span->interpMask;
- const GLbitfield origArrayMask = span->arrayMask;
- const GLbitfield origArrayAttribs = span->arrayAttribs;
- const GLenum origChanType = span->array->ChanType;
- void * const origRgba = span->array->rgba;
- const GLboolean shader = (ctx->FragmentProgram._Current
- || ctx->ATIFragmentShader._Enabled);
- const GLboolean shaderOrTexture = shader || ctx->Texture._EnabledCoordUnits;
- struct gl_framebuffer *fb = ctx->DrawBuffer;
-
- /*
- printf("%s() interp 0x%x array 0x%x\n", __FUNCTION__,
- span->interpMask, span->arrayMask);
- */
-
- ASSERT(span->primitive == GL_POINT ||
- span->primitive == GL_LINE ||
- span->primitive == GL_POLYGON ||
- span->primitive == GL_BITMAP);
-
- /* Fragment write masks */
- if (span->arrayMask & SPAN_MASK) {
- /* mask was initialized by caller, probably glBitmap */
- span->writeAll = GL_FALSE;
- }
- else {
- memset(span->array->mask, 1, span->end);
- span->writeAll = GL_TRUE;
- }
-
- /* Clip to window/scissor box */
- if (!clip_span(ctx, span)) {
- return;
- }
-
- ASSERT(span->end <= MAX_WIDTH);
-
- /* Depth bounds test */
- if (ctx->Depth.BoundsTest && fb->Visual.depthBits > 0) {
- if (!_swrast_depth_bounds_test(ctx, span)) {
- return;
- }
- }
-
-#ifdef DEBUG
- /* Make sure all fragments are within window bounds */
- if (span->arrayMask & SPAN_XY) {
- /* array of pixel locations */
- GLuint i;
- for (i = 0; i < span->end; i++) {
- if (span->array->mask[i]) {
- assert(span->array->x[i] >= fb->_Xmin);
- assert(span->array->x[i] < fb->_Xmax);
- assert(span->array->y[i] >= fb->_Ymin);
- assert(span->array->y[i] < fb->_Ymax);
- }
- }
- }
-#endif
-
- /* Polygon Stippling */
- if (ctx->Polygon.StippleFlag && span->primitive == GL_POLYGON) {
- stipple_polygon_span(ctx, span);
- }
-
- /* This is the normal place to compute the fragment color/Z
- * from texturing or shading.
- */
- if (shaderOrTexture && !swrast->_DeferredTexture) {
- shade_texture_span(ctx, span);
- }
-
- /* Do the alpha test */
- if (ctx->Color.AlphaEnabled) {
- if (!_swrast_alpha_test(ctx, span)) {
- /* all fragments failed test */
- goto end;
- }
- }
-
- /* Stencil and Z testing */
- if (ctx->Stencil._Enabled || ctx->Depth.Test) {
- if (!(span->arrayMask & SPAN_Z))
- _swrast_span_interpolate_z(ctx, span);
-
- if (ctx->Transform.DepthClamp)
- _swrast_depth_clamp_span(ctx, span);
-
- if (ctx->Stencil._Enabled) {
- /* Combined Z/stencil tests */
- if (!_swrast_stencil_and_ztest_span(ctx, span)) {
- /* all fragments failed test */
- goto end;
- }
- }
- else if (fb->Visual.depthBits > 0) {
- /* Just regular depth testing */
- ASSERT(ctx->Depth.Test);
- ASSERT(span->arrayMask & SPAN_Z);
- if (!_swrast_depth_test_span(ctx, span)) {
- /* all fragments failed test */
- goto end;
- }
- }
- }
-
- if (ctx->Query.CurrentOcclusionObject) {
- /* update count of 'passed' fragments */
- struct gl_query_object *q = ctx->Query.CurrentOcclusionObject;
- GLuint i;
- for (i = 0; i < span->end; i++)
- q->Result += span->array->mask[i];
- }
-
- /* We had to wait until now to check for glColorMask(0,0,0,0) because of
- * the occlusion test.
- */
- if (fb->_NumColorDrawBuffers == 1 && colorMask[0] == 0x0) {
- /* no colors to write */
- goto end;
- }
-
- /* If we were able to defer fragment color computation to now, there's
- * a good chance that many fragments will have already been killed by
- * Z/stencil testing.
- */
- if (shaderOrTexture && swrast->_DeferredTexture) {
- shade_texture_span(ctx, span);
- }
-
-#if CHAN_BITS == 32
- if ((span->arrayAttribs & FRAG_BIT_COL0) == 0) {
- interpolate_active_attribs(ctx, span, FRAG_BIT_COL0);
- }
-#else
- if ((span->arrayMask & SPAN_RGBA) == 0) {
- interpolate_int_colors(ctx, span);
- }
-#endif
-
- ASSERT(span->arrayMask & SPAN_RGBA);
-
- if (span->primitive == GL_BITMAP || !swrast->SpecularVertexAdd) {
- /* Add primary and specular (diffuse + specular) colors */
- if (!shader) {
- if (ctx->Fog.ColorSumEnabled ||
- (ctx->Light.Enabled &&
- ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR)) {
- add_specular(ctx, span);
- }
- }
- }
-
- /* Fog */
- if (swrast->_FogEnabled) {
- _swrast_fog_rgba_span(ctx, span);
- }
-
- /* Antialias coverage application */
- if (span->arrayMask & SPAN_COVERAGE) {
- apply_aa_coverage(span);
- }
-
- /* Clamp color/alpha values over the range [0.0, 1.0] before storage */
- if (ctx->Color.ClampFragmentColor == GL_TRUE &&
- span->array->ChanType == GL_FLOAT) {
- clamp_colors(span);
- }
-
- /*
- * Write to renderbuffers.
- * Depending on glDrawBuffer() state and the which color outputs are
- * written by the fragment shader, we may either replicate one color to
- * all renderbuffers or write a different color to each renderbuffer.
- * multiFragOutputs=TRUE for the later case.
- */
- {
- const GLuint numBuffers = fb->_NumColorDrawBuffers;
- const struct gl_fragment_program *fp = ctx->FragmentProgram._Current;
- const GLboolean multiFragOutputs =
- (fp && fp->Base.OutputsWritten >= (1 << FRAG_RESULT_DATA0));
- GLuint buf;
-
- for (buf = 0; buf < numBuffers; buf++) {
- struct gl_renderbuffer *rb = fb->_ColorDrawBuffers[buf];
-
- /* color[fragOutput] will be written to buffer[buf] */
-
- if (rb) {
- GLchan rgbaSave[MAX_WIDTH][4];
- const GLuint fragOutput = multiFragOutputs ? buf : 0;
-
- /* set span->array->rgba to colors for render buffer's datatype */
- if (rb->DataType != span->array->ChanType || fragOutput > 0) {
- convert_color_type(span, rb->DataType, fragOutput);
- }
- else {
- if (rb->DataType == GL_UNSIGNED_BYTE) {
- span->array->rgba = span->array->rgba8;
- }
- else if (rb->DataType == GL_UNSIGNED_SHORT) {
- span->array->rgba = (void *) span->array->rgba16;
- }
- else {
- span->array->rgba = (void *)
- span->array->attribs[FRAG_ATTRIB_COL0];
- }
- }
-
- if (!multiFragOutputs && numBuffers > 1) {
- /* save colors for second, third renderbuffer writes */
- memcpy(rgbaSave, span->array->rgba,
- 4 * span->end * sizeof(GLchan));
- }
-
- ASSERT(rb->_BaseFormat == GL_RGBA || rb->_BaseFormat == GL_RGB ||
- rb->_BaseFormat == GL_ALPHA);
-
- if (ctx->Color._LogicOpEnabled) {
- _swrast_logicop_rgba_span(ctx, rb, span);
- }
- else if ((ctx->Color.BlendEnabled >> buf) & 1) {
- _swrast_blend_span(ctx, rb, span);
- }
-
- if (colorMask[buf] != 0xffffffff) {
- _swrast_mask_rgba_span(ctx, rb, span, buf);
- }
-
- if (span->arrayMask & SPAN_XY) {
- /* array of pixel coords */
- ASSERT(rb->PutValues);
- rb->PutValues(ctx, rb, span->end,
- span->array->x, span->array->y,
- span->array->rgba, span->array->mask);
- }
- else {
- /* horizontal run of pixels */
- ASSERT(rb->PutRow);
- rb->PutRow(ctx, rb, span->end, span->x, span->y,
- span->array->rgba,
- span->writeAll ? NULL: span->array->mask);
- }
-
- if (!multiFragOutputs && numBuffers > 1) {
- /* restore original span values */
- memcpy(span->array->rgba, rgbaSave,
- 4 * span->end * sizeof(GLchan));
- }
-
- } /* if rb */
- } /* for buf */
- }
-
-end:
- /* restore these values before returning */
- span->interpMask = origInterpMask;
- span->arrayMask = origArrayMask;
- span->arrayAttribs = origArrayAttribs;
- span->array->ChanType = origChanType;
- span->array->rgba = origRgba;
-}
-
-
-/**
- * Read RGBA pixels from a renderbuffer. Clipping will be done to prevent
- * reading ouside the buffer's boundaries.
- * \param dstType datatype for returned colors
- * \param rgba the returned colors
- */
-void
-_swrast_read_rgba_span( struct gl_context *ctx, struct gl_renderbuffer *rb,
- GLuint n, GLint x, GLint y, GLenum dstType,
- GLvoid *rgba)
-{
- const GLint bufWidth = (GLint) rb->Width;
- const GLint bufHeight = (GLint) rb->Height;
-
- if (y < 0 || y >= bufHeight || x + (GLint) n < 0 || x >= bufWidth) {
- /* completely above, below, or right */
- /* XXX maybe leave rgba values undefined? */
- memset(rgba, 0, 4 * n * sizeof(GLchan));
- }
- else {
- GLint skip, length;
- if (x < 0) {
- /* left edge clipping */
- skip = -x;
- length = (GLint) n - skip;
- if (length < 0) {
- /* completely left of window */
- return;
- }
- if (length > bufWidth) {
- length = bufWidth;
- }
- }
- else if ((GLint) (x + n) > bufWidth) {
- /* right edge clipping */
- skip = 0;
- length = bufWidth - x;
- if (length < 0) {
- /* completely to right of window */
- return;
- }
- }
- else {
- /* no clipping */
- skip = 0;
- length = (GLint) n;
- }
-
- ASSERT(rb);
- ASSERT(rb->GetRow);
- ASSERT(rb->_BaseFormat == GL_RGB || rb->_BaseFormat == GL_RGBA ||
- rb->_BaseFormat == GL_ALPHA);
-
- if (rb->DataType == dstType) {
- rb->GetRow(ctx, rb, length, x + skip, y,
- (GLubyte *) rgba + skip * RGBA_PIXEL_SIZE(rb->DataType));
- }
- else {
- GLuint temp[MAX_WIDTH * 4];
- rb->GetRow(ctx, rb, length, x + skip, y, temp);
- _mesa_convert_colors(rb->DataType, temp,
- dstType, (GLubyte *) rgba + skip * RGBA_PIXEL_SIZE(dstType),
- length, NULL);
- }
- }
-}
-
-
-/**
- * Wrapper for gl_renderbuffer::GetValues() which does clipping to avoid
- * reading values outside the buffer bounds.
- * We can use this for reading any format/type of renderbuffer.
- * \param valueSize is the size in bytes of each value (pixel) put into the
- * values array.
- */
-void
-_swrast_get_values(struct gl_context *ctx, struct gl_renderbuffer *rb,
- GLuint count, const GLint x[], const GLint y[],
- void *values, GLuint valueSize)
-{
- GLuint i, inCount = 0, inStart = 0;
-
- for (i = 0; i < count; i++) {
- if (x[i] >= 0 && y[i] >= 0 &&
- x[i] < (GLint) rb->Width && y[i] < (GLint) rb->Height) {
- /* inside */
- if (inCount == 0)
- inStart = i;
- inCount++;
- }
- else {
- if (inCount > 0) {
- /* read [inStart, inStart + inCount) */
- rb->GetValues(ctx, rb, inCount, x + inStart, y + inStart,
- (GLubyte *) values + inStart * valueSize);
- inCount = 0;
- }
- }
- }
- if (inCount > 0) {
- /* read last values */
- rb->GetValues(ctx, rb, inCount, x + inStart, y + inStart,
- (GLubyte *) values + inStart * valueSize);
- }
-}
-
-
-/**
- * Wrapper for gl_renderbuffer::PutRow() which does clipping.
- * \param valueSize size of each value (pixel) in bytes
- */
-void
-_swrast_put_row(struct gl_context *ctx, struct gl_renderbuffer *rb,
- GLuint count, GLint x, GLint y,
- const GLvoid *values, GLuint valueSize)
-{
- GLint skip = 0;
-
- if (y < 0 || y >= (GLint) rb->Height)
- return; /* above or below */
-
- if (x + (GLint) count <= 0 || x >= (GLint) rb->Width)
- return; /* entirely left or right */
-
- if ((GLint) (x + count) > (GLint) rb->Width) {
- /* right clip */
- GLint clip = x + count - rb->Width;
- count -= clip;
- }
-
- if (x < 0) {
- /* left clip */
- skip = -x;
- x = 0;
- count -= skip;
- }
-
- rb->PutRow(ctx, rb, count, x, y,
- (const GLubyte *) values + skip * valueSize, NULL);
-}
-
-
-/**
- * Wrapper for gl_renderbuffer::GetRow() which does clipping.
- * \param valueSize size of each value (pixel) in bytes
- */
-void
-_swrast_get_row(struct gl_context *ctx, struct gl_renderbuffer *rb,
- GLuint count, GLint x, GLint y,
- GLvoid *values, GLuint valueSize)
-{
- GLint skip = 0;
-
- if (y < 0 || y >= (GLint) rb->Height)
- return; /* above or below */
-
- if (x + (GLint) count <= 0 || x >= (GLint) rb->Width)
- return; /* entirely left or right */
-
- if (x + count > rb->Width) {
- /* right clip */
- GLint clip = x + count - rb->Width;
- count -= clip;
- }
-
- if (x < 0) {
- /* left clip */
- skip = -x;
- x = 0;
- count -= skip;
- }
-
- rb->GetRow(ctx, rb, count, x, y, (GLubyte *) values + skip * valueSize);
-}
-
-
-/**
- * Get RGBA pixels from the given renderbuffer.
- * Used by blending, logicop and masking functions.
- * \return pointer to the colors we read.
- */
-void *
-_swrast_get_dest_rgba(struct gl_context *ctx, struct gl_renderbuffer *rb,
- SWspan *span)
-{
- const GLuint pixelSize = RGBA_PIXEL_SIZE(span->array->ChanType);
- void *rbPixels;
-
- /* Point rbPixels to a temporary space */
- rbPixels = span->array->attribs[FRAG_ATTRIB_MAX - 1];
-
- /* Get destination values from renderbuffer */
- if (span->arrayMask & SPAN_XY) {
- _swrast_get_values(ctx, rb, span->end, span->array->x, span->array->y,
- rbPixels, pixelSize);
- }
- else {
- _swrast_get_row(ctx, rb, span->end, span->x, span->y,
- rbPixels, pixelSize);
- }
-
- return rbPixels;
-}
+/*
+ * Mesa 3-D graphics library
+ * Version: 7.5
+ *
+ * Copyright (C) 1999-2008 Brian Paul All Rights Reserved.
+ * Copyright (C) 2009 VMware, Inc. All Rights Reserved.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included
+ * in all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
+ * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
+ * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+ */
+
+
+/**
+ * \file swrast/s_span.c
+ * \brief Span processing functions used by all rasterization functions.
+ * This is where all the per-fragment tests are performed
+ * \author Brian Paul
+ */
+
+#include "main/glheader.h"
+#include "main/colormac.h"
+#include "main/macros.h"
+#include "main/imports.h"
+#include "main/image.h"
+
+#include "s_atifragshader.h"
+#include "s_alpha.h"
+#include "s_blend.h"
+#include "s_context.h"
+#include "s_depth.h"
+#include "s_fog.h"
+#include "s_logic.h"
+#include "s_masking.h"
+#include "s_fragprog.h"
+#include "s_span.h"
+#include "s_stencil.h"
+#include "s_texcombine.h"
+
+
+/**
+ * Set default fragment attributes for the span using the
+ * current raster values. Used prior to glDraw/CopyPixels
+ * and glBitmap.
+ */
+void
+_swrast_span_default_attribs(struct gl_context *ctx, SWspan *span)
+{
+ GLchan r, g, b, a;
+ /* Z*/
+ {
+ const GLfloat depthMax = ctx->DrawBuffer->_DepthMaxF;
+ if (ctx->DrawBuffer->Visual.depthBits <= 16)
+ span->z = FloatToFixed(ctx->Current.RasterPos[2] * depthMax + 0.5F);
+ else {
+ GLfloat tmpf = ctx->Current.RasterPos[2] * depthMax;
+ tmpf = MIN2(tmpf, depthMax);
+ span->z = (GLint)tmpf;
+ }
+ span->zStep = 0;
+ span->interpMask |= SPAN_Z;
+ }
+
+ /* W (for perspective correction) */
+ span->attrStart[FRAG_ATTRIB_WPOS][3] = 1.0;
+ span->attrStepX[FRAG_ATTRIB_WPOS][3] = 0.0;
+ span->attrStepY[FRAG_ATTRIB_WPOS][3] = 0.0;
+
+ /* primary color, or color index */
+ UNCLAMPED_FLOAT_TO_CHAN(r, ctx->Current.RasterColor[0]);
+ UNCLAMPED_FLOAT_TO_CHAN(g, ctx->Current.RasterColor[1]);
+ UNCLAMPED_FLOAT_TO_CHAN(b, ctx->Current.RasterColor[2]);
+ UNCLAMPED_FLOAT_TO_CHAN(a, ctx->Current.RasterColor[3]);
+#if CHAN_TYPE == GL_FLOAT
+ span->red = r;
+ span->green = g;
+ span->blue = b;
+ span->alpha = a;
+#else
+ span->red = IntToFixed(r);
+ span->green = IntToFixed(g);
+ span->blue = IntToFixed(b);
+ span->alpha = IntToFixed(a);
+#endif
+ span->redStep = 0;
+ span->greenStep = 0;
+ span->blueStep = 0;
+ span->alphaStep = 0;
+ span->interpMask |= SPAN_RGBA;
+
+ COPY_4V(span->attrStart[FRAG_ATTRIB_COL0], ctx->Current.RasterColor);
+ ASSIGN_4V(span->attrStepX[FRAG_ATTRIB_COL0], 0.0, 0.0, 0.0, 0.0);
+ ASSIGN_4V(span->attrStepY[FRAG_ATTRIB_COL0], 0.0, 0.0, 0.0, 0.0);
+
+ /* Secondary color */
+ if (ctx->Light.Enabled || ctx->Fog.ColorSumEnabled)
+ {
+ COPY_4V(span->attrStart[FRAG_ATTRIB_COL1], ctx->Current.RasterSecondaryColor);
+ ASSIGN_4V(span->attrStepX[FRAG_ATTRIB_COL1], 0.0, 0.0, 0.0, 0.0);
+ ASSIGN_4V(span->attrStepY[FRAG_ATTRIB_COL1], 0.0, 0.0, 0.0, 0.0);
+ }
+
+ /* fog */
+ {
+ const SWcontext *swrast = SWRAST_CONTEXT(ctx);
+ GLfloat fogVal; /* a coord or a blend factor */
+ if (swrast->_PreferPixelFog) {
+ /* fog blend factors will be computed from fog coordinates per pixel */
+ fogVal = ctx->Current.RasterDistance;
+ }
+ else {
+ /* fog blend factor should be computed from fogcoord now */
+ fogVal = _swrast_z_to_fogfactor(ctx, ctx->Current.RasterDistance);
+ }
+ span->attrStart[FRAG_ATTRIB_FOGC][0] = fogVal;
+ span->attrStepX[FRAG_ATTRIB_FOGC][0] = 0.0;
+ span->attrStepY[FRAG_ATTRIB_FOGC][0] = 0.0;
+ }
+
+ /* texcoords */
+ {
+ GLuint i;
+ for (i = 0; i < ctx->Const.MaxTextureCoordUnits; i++) {
+ const GLuint attr = FRAG_ATTRIB_TEX0 + i;
+ const GLfloat *tc = ctx->Current.RasterTexCoords[i];
+ if (ctx->FragmentProgram._Current || ctx->ATIFragmentShader._Enabled) {
+ COPY_4V(span->attrStart[attr], tc);
+ }
+ else if (tc[3] > 0.0F) {
+ /* use (s/q, t/q, r/q, 1) */
+ span->attrStart[attr][0] = tc[0] / tc[3];
+ span->attrStart[attr][1] = tc[1] / tc[3];
+ span->attrStart[attr][2] = tc[2] / tc[3];
+ span->attrStart[attr][3] = 1.0;
+ }
+ else {
+ ASSIGN_4V(span->attrStart[attr], 0.0F, 0.0F, 0.0F, 1.0F);
+ }
+ ASSIGN_4V(span->attrStepX[attr], 0.0F, 0.0F, 0.0F, 0.0F);
+ ASSIGN_4V(span->attrStepY[attr], 0.0F, 0.0F, 0.0F, 0.0F);
+ }
+ }
+}
+
+
+/**
+ * Interpolate the active attributes (and'd with attrMask) to
+ * fill in span->array->attribs[].
+ * Perspective correction will be done. The point/line/triangle function
+ * should have computed attrStart/Step values for FRAG_ATTRIB_WPOS[3]!
+ */
+static INLINE void
+interpolate_active_attribs(struct gl_context *ctx, SWspan *span, GLbitfield attrMask)
+{
+ const SWcontext *swrast = SWRAST_CONTEXT(ctx);
+
+ /*
+ * Don't overwrite existing array values, such as colors that may have
+ * been produced by glDraw/CopyPixels.
+ */
+ attrMask &= ~span->arrayAttribs;
+
+ ATTRIB_LOOP_BEGIN
+ if (attrMask & (1 << attr)) {
+ const GLfloat dwdx = span->attrStepX[FRAG_ATTRIB_WPOS][3];
+ GLfloat w = span->attrStart[FRAG_ATTRIB_WPOS][3];
+ const GLfloat dv0dx = span->attrStepX[attr][0];
+ const GLfloat dv1dx = span->attrStepX[attr][1];
+ const GLfloat dv2dx = span->attrStepX[attr][2];
+ const GLfloat dv3dx = span->attrStepX[attr][3];
+ GLfloat v0 = span->attrStart[attr][0] + span->leftClip * dv0dx;
+ GLfloat v1 = span->attrStart[attr][1] + span->leftClip * dv1dx;
+ GLfloat v2 = span->attrStart[attr][2] + span->leftClip * dv2dx;
+ GLfloat v3 = span->attrStart[attr][3] + span->leftClip * dv3dx;
+ GLuint k;
+ for (k = 0; k < span->end; k++) {
+ const GLfloat invW = 1.0f / w;
+ span->array->attribs[attr][k][0] = v0 * invW;
+ span->array->attribs[attr][k][1] = v1 * invW;
+ span->array->attribs[attr][k][2] = v2 * invW;
+ span->array->attribs[attr][k][3] = v3 * invW;
+ v0 += dv0dx;
+ v1 += dv1dx;
+ v2 += dv2dx;
+ v3 += dv3dx;
+ w += dwdx;
+ }
+ ASSERT((span->arrayAttribs & (1 << attr)) == 0);
+ span->arrayAttribs |= (1 << attr);
+ }
+ ATTRIB_LOOP_END
+}
+
+
+/**
+ * Interpolate primary colors to fill in the span->array->rgba8 (or rgb16)
+ * color array.
+ */
+static INLINE void
+interpolate_int_colors(struct gl_context *ctx, SWspan *span)
+{
+ const GLuint n = span->end;
+ GLuint i;
+
+#if CHAN_BITS != 32
+ ASSERT(!(span->arrayMask & SPAN_RGBA));
+#endif
+
+ switch (span->array->ChanType) {
+#if CHAN_BITS != 32
+ case GL_UNSIGNED_BYTE:
+ {
+ GLubyte (*rgba)[4] = span->array->rgba8;
+ if (span->interpMask & SPAN_FLAT) {
+ GLubyte color[4];
+ color[RCOMP] = FixedToInt(span->red);
+ color[GCOMP] = FixedToInt(span->green);
+ color[BCOMP] = FixedToInt(span->blue);
+ color[ACOMP] = FixedToInt(span->alpha);
+ for (i = 0; i < n; i++) {
+ COPY_4UBV(rgba[i], color);
+ }
+ }
+ else {
+ GLfixed r = span->red;
+ GLfixed g = span->green;
+ GLfixed b = span->blue;
+ GLfixed a = span->alpha;
+ GLint dr = span->redStep;
+ GLint dg = span->greenStep;
+ GLint db = span->blueStep;
+ GLint da = span->alphaStep;
+ for (i = 0; i < n; i++) {
+ rgba[i][RCOMP] = FixedToChan(r);
+ rgba[i][GCOMP] = FixedToChan(g);
+ rgba[i][BCOMP] = FixedToChan(b);
+ rgba[i][ACOMP] = FixedToChan(a);
+ r += dr;
+ g += dg;
+ b += db;
+ a += da;
+ }
+ }
+ }
+ break;
+ case GL_UNSIGNED_SHORT:
+ {
+ GLushort (*rgba)[4] = span->array->rgba16;
+ if (span->interpMask & SPAN_FLAT) {
+ GLushort color[4];
+ color[RCOMP] = FixedToInt(span->red);
+ color[GCOMP] = FixedToInt(span->green);
+ color[BCOMP] = FixedToInt(span->blue);
+ color[ACOMP] = FixedToInt(span->alpha);
+ for (i = 0; i < n; i++) {
+ COPY_4V(rgba[i], color);
+ }
+ }
+ else {
+ GLushort (*rgba)[4] = span->array->rgba16;
+ GLfixed r, g, b, a;
+ GLint dr, dg, db, da;
+ r = span->red;
+ g = span->green;
+ b = span->blue;
+ a = span->alpha;
+ dr = span->redStep;
+ dg = span->greenStep;
+ db = span->blueStep;
+ da = span->alphaStep;
+ for (i = 0; i < n; i++) {
+ rgba[i][RCOMP] = FixedToChan(r);
+ rgba[i][GCOMP] = FixedToChan(g);
+ rgba[i][BCOMP] = FixedToChan(b);
+ rgba[i][ACOMP] = FixedToChan(a);
+ r += dr;
+ g += dg;
+ b += db;
+ a += da;
+ }
+ }
+ }
+ break;
+#endif
+ case GL_FLOAT:
+ interpolate_active_attribs(ctx, span, FRAG_BIT_COL0);
+ break;
+ default:
+ _mesa_problem(ctx, "bad datatype 0x%x in interpolate_int_colors",
+ span->array->ChanType);
+ }
+ span->arrayMask |= SPAN_RGBA;
+}
+
+
+/**
+ * Populate the FRAG_ATTRIB_COL0 array.
+ */
+static INLINE void
+interpolate_float_colors(SWspan *span)
+{
+ GLfloat (*col0)[4] = span->array->attribs[FRAG_ATTRIB_COL0];
+ const GLuint n = span->end;
+ GLuint i;
+
+ assert(!(span->arrayAttribs & FRAG_BIT_COL0));
+
+ if (span->arrayMask & SPAN_RGBA) {
+ /* convert array of int colors */
+ for (i = 0; i < n; i++) {
+ col0[i][0] = UBYTE_TO_FLOAT(span->array->rgba8[i][0]);
+ col0[i][1] = UBYTE_TO_FLOAT(span->array->rgba8[i][1]);
+ col0[i][2] = UBYTE_TO_FLOAT(span->array->rgba8[i][2]);
+ col0[i][3] = UBYTE_TO_FLOAT(span->array->rgba8[i][3]);
+ }
+ }
+ else {
+ /* interpolate red/green/blue/alpha to get float colors */
+ ASSERT(span->interpMask & SPAN_RGBA);
+ if (span->interpMask & SPAN_FLAT) {
+ GLfloat r = FixedToFloat(span->red);
+ GLfloat g = FixedToFloat(span->green);
+ GLfloat b = FixedToFloat(span->blue);
+ GLfloat a = FixedToFloat(span->alpha);
+ for (i = 0; i < n; i++) {
+ ASSIGN_4V(col0[i], r, g, b, a);
+ }
+ }
+ else {
+ GLfloat r = FixedToFloat(span->red);
+ GLfloat g = FixedToFloat(span->green);
+ GLfloat b = FixedToFloat(span->blue);
+ GLfloat a = FixedToFloat(span->alpha);
+ GLfloat dr = FixedToFloat(span->redStep);
+ GLfloat dg = FixedToFloat(span->greenStep);
+ GLfloat db = FixedToFloat(span->blueStep);
+ GLfloat da = FixedToFloat(span->alphaStep);
+ for (i = 0; i < n; i++) {
+ col0[i][0] = r;
+ col0[i][1] = g;
+ col0[i][2] = b;
+ col0[i][3] = a;
+ r += dr;
+ g += dg;
+ b += db;
+ a += da;
+ }
+ }
+ }
+
+ span->arrayAttribs |= FRAG_BIT_COL0;
+ span->array->ChanType = GL_FLOAT;
+}
+
+
+
+/**
+ * Fill in the span.zArray array from the span->z, zStep values.
+ */
+void
+_swrast_span_interpolate_z( const struct gl_context *ctx, SWspan *span )
+{
+ const GLuint n = span->end;
+ GLuint i;
+
+ ASSERT(!(span->arrayMask & SPAN_Z));
+
+ if (ctx->DrawBuffer->Visual.depthBits <= 16) {
+ GLfixed zval = span->z;
+ GLuint *z = span->array->z;
+ for (i = 0; i < n; i++) {
+ z[i] = FixedToInt(zval);
+ zval += span->zStep;
+ }
+ }
+ else {
+ /* Deep Z buffer, no fixed->int shift */
+ GLuint zval = span->z;
+ GLuint *z = span->array->z;
+ for (i = 0; i < n; i++) {
+ z[i] = zval;
+ zval += span->zStep;
+ }
+ }
+ span->interpMask &= ~SPAN_Z;
+ span->arrayMask |= SPAN_Z;
+}
+
+
+/**
+ * Compute mipmap LOD from partial derivatives.
+ * This the ideal solution, as given in the OpenGL spec.
+ */
+GLfloat
+_swrast_compute_lambda(GLfloat dsdx, GLfloat dsdy, GLfloat dtdx, GLfloat dtdy,
+ GLfloat dqdx, GLfloat dqdy, GLfloat texW, GLfloat texH,
+ GLfloat s, GLfloat t, GLfloat q, GLfloat invQ)
+{
+ GLfloat dudx = texW * ((s + dsdx) / (q + dqdx) - s * invQ);
+ GLfloat dvdx = texH * ((t + dtdx) / (q + dqdx) - t * invQ);
+ GLfloat dudy = texW * ((s + dsdy) / (q + dqdy) - s * invQ);
+ GLfloat dvdy = texH * ((t + dtdy) / (q + dqdy) - t * invQ);
+ GLfloat x = SQRTF(dudx * dudx + dvdx * dvdx);
+ GLfloat y = SQRTF(dudy * dudy + dvdy * dvdy);
+ GLfloat rho = MAX2(x, y);
+ GLfloat lambda = LOG2(rho);
+ return lambda;
+}
+
+
+/**
+ * Compute mipmap LOD from partial derivatives.
+ * This is a faster approximation than above function.
+ */
+#if 0
+GLfloat
+_swrast_compute_lambda(GLfloat dsdx, GLfloat dsdy, GLfloat dtdx, GLfloat dtdy,
+ GLfloat dqdx, GLfloat dqdy, GLfloat texW, GLfloat texH,
+ GLfloat s, GLfloat t, GLfloat q, GLfloat invQ)
+{
+ GLfloat dsdx2 = (s + dsdx) / (q + dqdx) - s * invQ;
+ GLfloat dtdx2 = (t + dtdx) / (q + dqdx) - t * invQ;
+ GLfloat dsdy2 = (s + dsdy) / (q + dqdy) - s * invQ;
+ GLfloat dtdy2 = (t + dtdy) / (q + dqdy) - t * invQ;
+ GLfloat maxU, maxV, rho, lambda;
+ dsdx2 = FABSF(dsdx2);
+ dsdy2 = FABSF(dsdy2);
+ dtdx2 = FABSF(dtdx2);
+ dtdy2 = FABSF(dtdy2);
+ maxU = MAX2(dsdx2, dsdy2) * texW;
+ maxV = MAX2(dtdx2, dtdy2) * texH;
+ rho = MAX2(maxU, maxV);
+ lambda = LOG2(rho);
+ return lambda;
+}
+#endif
+
+
+/**
+ * Fill in the span.array->attrib[FRAG_ATTRIB_TEXn] arrays from the
+ * using the attrStart/Step values.
+ *
+ * This function only used during fixed-function fragment processing.
+ *
+ * Note: in the places where we divide by Q (or mult by invQ) we're
+ * really doing two things: perspective correction and texcoord
+ * projection. Remember, for texcoord (s,t,r,q) we need to index
+ * texels with (s/q, t/q, r/q).
+ */
+static void
+interpolate_texcoords(struct gl_context *ctx, SWspan *span)
+{
+ const GLuint maxUnit
+ = (ctx->Texture._EnabledCoordUnits > 1) ? ctx->Const.MaxTextureUnits : 1;
+ GLuint u;
+
+ /* XXX CoordUnits vs. ImageUnits */
+ for (u = 0; u < maxUnit; u++) {
+ if (ctx->Texture._EnabledCoordUnits & (1 << u)) {
+ const GLuint attr = FRAG_ATTRIB_TEX0 + u;
+ const struct gl_texture_object *obj = ctx->Texture.Unit[u]._Current;
+ GLfloat texW, texH;
+ GLboolean needLambda;
+ GLfloat (*texcoord)[4] = span->array->attribs[attr];
+ GLfloat *lambda = span->array->lambda[u];
+ const GLfloat dsdx = span->attrStepX[attr][0];
+ const GLfloat dsdy = span->attrStepY[attr][0];
+ const GLfloat dtdx = span->attrStepX[attr][1];
+ const GLfloat dtdy = span->attrStepY[attr][1];
+ const GLfloat drdx = span->attrStepX[attr][2];
+ const GLfloat dqdx = span->attrStepX[attr][3];
+ const GLfloat dqdy = span->attrStepY[attr][3];
+ GLfloat s = span->attrStart[attr][0] + span->leftClip * dsdx;
+ GLfloat t = span->attrStart[attr][1] + span->leftClip * dtdx;
+ GLfloat r = span->attrStart[attr][2] + span->leftClip * drdx;
+ GLfloat q = span->attrStart[attr][3] + span->leftClip * dqdx;
+
+ if (obj) {
+ const struct gl_texture_image *img = obj->Image[0][obj->BaseLevel];
+ needLambda = (obj->Sampler.MinFilter != obj->Sampler.MagFilter)
+ || ctx->FragmentProgram._Current;
+ texW = img->WidthScale;
+ texH = img->HeightScale;
+ }
+ else {
+ /* using a fragment program */
+ texW = 1.0;
+ texH = 1.0;
+ needLambda = GL_FALSE;
+ }
+
+ if (needLambda) {
+ GLuint i;
+ if (ctx->FragmentProgram._Current
+ || ctx->ATIFragmentShader._Enabled) {
+ /* do perspective correction but don't divide s, t, r by q */
+ const GLfloat dwdx = span->attrStepX[FRAG_ATTRIB_WPOS][3];
+ GLfloat w = span->attrStart[FRAG_ATTRIB_WPOS][3] + span->leftClip * dwdx;
+ for (i = 0; i < span->end; i++) {
+ const GLfloat invW = 1.0F / w;
+ texcoord[i][0] = s * invW;
+ texcoord[i][1] = t * invW;
+ texcoord[i][2] = r * invW;
+ texcoord[i][3] = q * invW;
+ lambda[i] = _swrast_compute_lambda(dsdx, dsdy, dtdx, dtdy,
+ dqdx, dqdy, texW, texH,
+ s, t, q, invW);
+ s += dsdx;
+ t += dtdx;
+ r += drdx;
+ q += dqdx;
+ w += dwdx;
+ }
+ }
+ else {
+ for (i = 0; i < span->end; i++) {
+ const GLfloat invQ = (q == 0.0F) ? 1.0F : (1.0F / q);
+ texcoord[i][0] = s * invQ;
+ texcoord[i][1] = t * invQ;
+ texcoord[i][2] = r * invQ;
+ texcoord[i][3] = q;
+ lambda[i] = _swrast_compute_lambda(dsdx, dsdy, dtdx, dtdy,
+ dqdx, dqdy, texW, texH,
+ s, t, q, invQ);
+ s += dsdx;
+ t += dtdx;
+ r += drdx;
+ q += dqdx;
+ }
+ }
+ span->arrayMask |= SPAN_LAMBDA;
+ }
+ else {
+ GLuint i;
+ if (ctx->FragmentProgram._Current ||
+ ctx->ATIFragmentShader._Enabled) {
+ /* do perspective correction but don't divide s, t, r by q */
+ const GLfloat dwdx = span->attrStepX[FRAG_ATTRIB_WPOS][3];
+ GLfloat w = span->attrStart[FRAG_ATTRIB_WPOS][3] + span->leftClip * dwdx;
+ for (i = 0; i < span->end; i++) {
+ const GLfloat invW = 1.0F / w;
+ texcoord[i][0] = s * invW;
+ texcoord[i][1] = t * invW;
+ texcoord[i][2] = r * invW;
+ texcoord[i][3] = q * invW;
+ lambda[i] = 0.0;
+ s += dsdx;
+ t += dtdx;
+ r += drdx;
+ q += dqdx;
+ w += dwdx;
+ }
+ }
+ else if (dqdx == 0.0F) {
+ /* Ortho projection or polygon's parallel to window X axis */
+ const GLfloat invQ = (q == 0.0F) ? 1.0F : (1.0F / q);
+ for (i = 0; i < span->end; i++) {
+ texcoord[i][0] = s * invQ;
+ texcoord[i][1] = t * invQ;
+ texcoord[i][2] = r * invQ;
+ texcoord[i][3] = q;
+ lambda[i] = 0.0;
+ s += dsdx;
+ t += dtdx;
+ r += drdx;
+ }
+ }
+ else {
+ for (i = 0; i < span->end; i++) {
+ const GLfloat invQ = (q == 0.0F) ? 1.0F : (1.0F / q);
+ texcoord[i][0] = s * invQ;
+ texcoord[i][1] = t * invQ;
+ texcoord[i][2] = r * invQ;
+ texcoord[i][3] = q;
+ lambda[i] = 0.0;
+ s += dsdx;
+ t += dtdx;
+ r += drdx;
+ q += dqdx;
+ }
+ }
+ } /* lambda */
+ } /* if */
+ } /* for */
+}
+
+
+/**
+ * Fill in the arrays->attribs[FRAG_ATTRIB_WPOS] array.
+ */
+static INLINE void
+interpolate_wpos(struct gl_context *ctx, SWspan *span)
+{
+ GLfloat (*wpos)[4] = span->array->attribs[FRAG_ATTRIB_WPOS];
+ GLuint i;
+ const GLfloat zScale = 1.0F / ctx->DrawBuffer->_DepthMaxF;
+ GLfloat w, dw;
+
+ if (span->arrayMask & SPAN_XY) {
+ for (i = 0; i < span->end; i++) {
+ wpos[i][0] = (GLfloat) span->array->x[i];
+ wpos[i][1] = (GLfloat) span->array->y[i];
+ }
+ }
+ else {
+ for (i = 0; i < span->end; i++) {
+ wpos[i][0] = (GLfloat) span->x + i;
+ wpos[i][1] = (GLfloat) span->y;
+ }
+ }
+
+ dw = span->attrStepX[FRAG_ATTRIB_WPOS][3];
+ w = span->attrStart[FRAG_ATTRIB_WPOS][3] + span->leftClip * dw;
+ for (i = 0; i < span->end; i++) {
+ wpos[i][2] = (GLfloat) span->array->z[i] * zScale;
+ wpos[i][3] = w;
+ w += dw;
+ }
+}
+
+
+/**
+ * Apply the current polygon stipple pattern to a span of pixels.
+ */
+static INLINE void
+stipple_polygon_span(struct gl_context *ctx, SWspan *span)
+{
+ GLubyte *mask = span->array->mask;
+
+ ASSERT(ctx->Polygon.StippleFlag);
+
+ if (span->arrayMask & SPAN_XY) {
+ /* arrays of x/y pixel coords */
+ GLuint i;
+ for (i = 0; i < span->end; i++) {
+ const GLint col = span->array->x[i] % 32;
+ const GLint row = span->array->y[i] % 32;
+ const GLuint stipple = ctx->PolygonStipple[row];
+ if (((1 << col) & stipple) == 0) {
+ mask[i] = 0;
+ }
+ }
+ }
+ else {
+ /* horizontal span of pixels */
+ const GLuint highBit = 1 << 31;
+ const GLuint stipple = ctx->PolygonStipple[span->y % 32];
+ GLuint i, m = highBit >> (GLuint) (span->x % 32);
+ for (i = 0; i < span->end; i++) {
+ if ((m & stipple) == 0) {
+ mask[i] = 0;
+ }
+ m = m >> 1;
+ if (m == 0) {
+ m = highBit;
+ }
+ }
+ }
+ span->writeAll = GL_FALSE;
+}
+
+
+/**
+ * Clip a pixel span to the current buffer/window boundaries:
+ * DrawBuffer->_Xmin, _Xmax, _Ymin, _Ymax. This will accomplish
+ * window clipping and scissoring.
+ * Return: GL_TRUE some pixels still visible
+ * GL_FALSE nothing visible
+ */
+static INLINE GLuint
+clip_span( struct gl_context *ctx, SWspan *span )
+{
+ const GLint xmin = ctx->DrawBuffer->_Xmin;
+ const GLint xmax = ctx->DrawBuffer->_Xmax;
+ const GLint ymin = ctx->DrawBuffer->_Ymin;
+ const GLint ymax = ctx->DrawBuffer->_Ymax;
+
+ span->leftClip = 0;
+
+ if (span->arrayMask & SPAN_XY) {
+ /* arrays of x/y pixel coords */
+ const GLint *x = span->array->x;
+ const GLint *y = span->array->y;
+ const GLint n = span->end;
+ GLubyte *mask = span->array->mask;
+ GLint i;
+ if (span->arrayMask & SPAN_MASK) {
+ /* note: using & intead of && to reduce branches */
+ for (i = 0; i < n; i++) {
+ mask[i] &= (x[i] >= xmin) & (x[i] < xmax)
+ & (y[i] >= ymin) & (y[i] < ymax);
+ }
+ }
+ else {
+ /* note: using & intead of && to reduce branches */
+ for (i = 0; i < n; i++) {
+ mask[i] = (x[i] >= xmin) & (x[i] < xmax)
+ & (y[i] >= ymin) & (y[i] < ymax);
+ }
+ }
+ return GL_TRUE; /* some pixels visible */
+ }
+ else {
+ /* horizontal span of pixels */
+ const GLint x = span->x;
+ const GLint y = span->y;
+ GLint n = span->end;
+
+ /* Trivial rejection tests */
+ if (y < ymin || y >= ymax || x + n <= xmin || x >= xmax) {
+ span->end = 0;
+ return GL_FALSE; /* all pixels clipped */
+ }
+
+ /* Clip to right */
+ if (x + n > xmax) {
+ ASSERT(x < xmax);
+ n = span->end = xmax - x;
+ }
+
+ /* Clip to the left */
+ if (x < xmin) {
+ const GLint leftClip = xmin - x;
+ GLuint i;
+
+ ASSERT(leftClip > 0);
+ ASSERT(x + n > xmin);
+
+ /* Clip 'leftClip' pixels from the left side.
+ * The span->leftClip field will be applied when we interpolate
+ * fragment attributes.
+ * For arrays of values, shift them left.
+ */
+ for (i = 0; i < FRAG_ATTRIB_MAX; i++) {
+ if (span->interpMask & (1 << i)) {
+ GLuint j;
+ for (j = 0; j < 4; j++) {
+ span->attrStart[i][j] += leftClip * span->attrStepX[i][j];
+ }
+ }
+ }
+
+ span->red += leftClip * span->redStep;
+ span->green += leftClip * span->greenStep;
+ span->blue += leftClip * span->blueStep;
+ span->alpha += leftClip * span->alphaStep;
+ span->index += leftClip * span->indexStep;
+ span->z += leftClip * span->zStep;
+ span->intTex[0] += leftClip * span->intTexStep[0];
+ span->intTex[1] += leftClip * span->intTexStep[1];
+
+#define SHIFT_ARRAY(ARRAY, SHIFT, LEN) \
+ memcpy(ARRAY, ARRAY + (SHIFT), (LEN) * sizeof(ARRAY[0]))
+
+ for (i = 0; i < FRAG_ATTRIB_MAX; i++) {
+ if (span->arrayAttribs & (1 << i)) {
+ /* shift array elements left by 'leftClip' */
+ SHIFT_ARRAY(span->array->attribs[i], leftClip, n - leftClip);
+ }
+ }
+
+ SHIFT_ARRAY(span->array->mask, leftClip, n - leftClip);
+ SHIFT_ARRAY(span->array->rgba8, leftClip, n - leftClip);
+ SHIFT_ARRAY(span->array->rgba16, leftClip, n - leftClip);
+ SHIFT_ARRAY(span->array->x, leftClip, n - leftClip);
+ SHIFT_ARRAY(span->array->y, leftClip, n - leftClip);
+ SHIFT_ARRAY(span->array->z, leftClip, n - leftClip);
+ SHIFT_ARRAY(span->array->index, leftClip, n - leftClip);
+ for (i = 0; i < MAX_TEXTURE_COORD_UNITS; i++) {
+ SHIFT_ARRAY(span->array->lambda[i], leftClip, n - leftClip);
+ }
+ SHIFT_ARRAY(span->array->coverage, leftClip, n - leftClip);
+
+#undef SHIFT_ARRAY
+
+ span->leftClip = leftClip;
+ span->x = xmin;
+ span->end -= leftClip;
+ span->writeAll = GL_FALSE;
+ }
+
+ ASSERT(span->x >= xmin);
+ ASSERT(span->x + span->end <= xmax);
+ ASSERT(span->y >= ymin);
+ ASSERT(span->y < ymax);
+
+ return GL_TRUE; /* some pixels visible */
+ }
+}
+
+
+/**
+ * Add specular colors to primary colors.
+ * Only called during fixed-function operation.
+ * Result is float color array (FRAG_ATTRIB_COL0).
+ */
+static INLINE void
+add_specular(struct gl_context *ctx, SWspan *span)
+{
+ const SWcontext *swrast = SWRAST_CONTEXT(ctx);
+ const GLubyte *mask = span->array->mask;
+ GLfloat (*col0)[4] = span->array->attribs[FRAG_ATTRIB_COL0];
+ GLfloat (*col1)[4] = span->array->attribs[FRAG_ATTRIB_COL1];
+ GLuint i;
+
+ ASSERT(!ctx->FragmentProgram._Current);
+ ASSERT(span->arrayMask & SPAN_RGBA);
+ ASSERT(swrast->_ActiveAttribMask & FRAG_BIT_COL1);
+ (void) swrast; /* silence warning */
+
+ if (span->array->ChanType == GL_FLOAT) {
+ if ((span->arrayAttribs & FRAG_BIT_COL0) == 0) {
+ interpolate_active_attribs(ctx, span, FRAG_BIT_COL0);
+ }
+ }
+ else {
+ /* need float colors */
+ if ((span->arrayAttribs & FRAG_BIT_COL0) == 0) {
+ interpolate_float_colors(span);
+ }
+ }
+
+ if ((span->arrayAttribs & FRAG_BIT_COL1) == 0) {
+ /* XXX could avoid this and interpolate COL1 in the loop below */
+ interpolate_active_attribs(ctx, span, FRAG_BIT_COL1);
+ }
+
+ ASSERT(span->arrayAttribs & FRAG_BIT_COL0);
+ ASSERT(span->arrayAttribs & FRAG_BIT_COL1);
+
+ for (i = 0; i < span->end; i++) {
+ if (mask[i]) {
+ col0[i][0] += col1[i][0];
+ col0[i][1] += col1[i][1];
+ col0[i][2] += col1[i][2];
+ }
+ }
+
+ span->array->ChanType = GL_FLOAT;
+}
+
+
+/**
+ * Apply antialiasing coverage value to alpha values.
+ */
+static INLINE void
+apply_aa_coverage(SWspan *span)
+{
+ const GLfloat *coverage = span->array->coverage;
+ GLuint i;
+ if (span->array->ChanType == GL_UNSIGNED_BYTE) {
+ GLubyte (*rgba)[4] = span->array->rgba8;
+ for (i = 0; i < span->end; i++) {
+ const GLfloat a = rgba[i][ACOMP] * coverage[i];
+ rgba[i][ACOMP] = (GLubyte) CLAMP(a, 0.0, 255.0);
+ ASSERT(coverage[i] >= 0.0);
+ ASSERT(coverage[i] <= 1.0);
+ }
+ }
+ else if (span->array->ChanType == GL_UNSIGNED_SHORT) {
+ GLushort (*rgba)[4] = span->array->rgba16;
+ for (i = 0; i < span->end; i++) {
+ const GLfloat a = rgba[i][ACOMP] * coverage[i];
+ rgba[i][ACOMP] = (GLushort) CLAMP(a, 0.0, 65535.0);
+ }
+ }
+ else {
+ GLfloat (*rgba)[4] = span->array->attribs[FRAG_ATTRIB_COL0];
+ for (i = 0; i < span->end; i++) {
+ rgba[i][ACOMP] = rgba[i][ACOMP] * coverage[i];
+ /* clamp later */
+ }
+ }
+}
+
+
+/**
+ * Clamp span's float colors to [0,1]
+ */
+static INLINE void
+clamp_colors(SWspan *span)
+{
+ GLfloat (*rgba)[4] = span->array->attribs[FRAG_ATTRIB_COL0];
+ GLuint i;
+ ASSERT(span->array->ChanType == GL_FLOAT);
+ for (i = 0; i < span->end; i++) {
+ rgba[i][RCOMP] = CLAMP(rgba[i][RCOMP], 0.0F, 1.0F);
+ rgba[i][GCOMP] = CLAMP(rgba[i][GCOMP], 0.0F, 1.0F);
+ rgba[i][BCOMP] = CLAMP(rgba[i][BCOMP], 0.0F, 1.0F);
+ rgba[i][ACOMP] = CLAMP(rgba[i][ACOMP], 0.0F, 1.0F);
+ }
+}
+
+
+/**
+ * Convert the span's color arrays to the given type.
+ * The only way 'output' can be greater than zero is when we have a fragment
+ * program that writes to gl_FragData[1] or higher.
+ * \param output which fragment program color output is being processed
+ */
+static INLINE void
+convert_color_type(SWspan *span, GLenum newType, GLuint output)
+{
+ GLvoid *src, *dst;
+
+ if (output > 0 || span->array->ChanType == GL_FLOAT) {
+ src = span->array->attribs[FRAG_ATTRIB_COL0 + output];
+ span->array->ChanType = GL_FLOAT;
+ }
+ else if (span->array->ChanType == GL_UNSIGNED_BYTE) {
+ src = span->array->rgba8;
+ }
+ else {
+ ASSERT(span->array->ChanType == GL_UNSIGNED_SHORT);
+ src = span->array->rgba16;
+ }
+
+ if (newType == GL_UNSIGNED_BYTE) {
+ dst = span->array->rgba8;
+ }
+ else if (newType == GL_UNSIGNED_SHORT) {
+ dst = span->array->rgba16;
+ }
+ else {
+ dst = span->array->attribs[FRAG_ATTRIB_COL0];
+ }
+
+ _mesa_convert_colors(span->array->ChanType, src,
+ newType, dst,
+ span->end, span->array->mask);
+
+ span->array->ChanType = newType;
+ span->array->rgba = dst;
+}
+
+
+
+/**
+ * Apply fragment shader, fragment program or normal texturing to span.
+ */
+static INLINE void
+shade_texture_span(struct gl_context *ctx, SWspan *span)
+{
+ GLbitfield inputsRead;
+
+ /* Determine which fragment attributes are actually needed */
+ if (ctx->FragmentProgram._Current) {
+ inputsRead = ctx->FragmentProgram._Current->Base.InputsRead;
+ }
+ else {
+ /* XXX we could be a bit smarter about this */
+ inputsRead = ~0;
+ }
+
+ if (ctx->FragmentProgram._Current ||
+ ctx->ATIFragmentShader._Enabled) {
+ /* programmable shading */
+ if (span->primitive == GL_BITMAP && span->array->ChanType != GL_FLOAT) {
+ convert_color_type(span, GL_FLOAT, 0);
+ }
+ else {
+ span->array->rgba = (void *) span->array->attribs[FRAG_ATTRIB_COL0];
+ }
+
+ if (span->primitive != GL_POINT ||
+ (span->interpMask & SPAN_RGBA) ||
+ ctx->Point.PointSprite) {
+ /* for single-pixel points, we populated the arrays already */
+ interpolate_active_attribs(ctx, span, ~0);
+ }
+ span->array->ChanType = GL_FLOAT;
+
+ if (!(span->arrayMask & SPAN_Z))
+ _swrast_span_interpolate_z (ctx, span);
+
+#if 0
+ if (inputsRead & FRAG_BIT_WPOS)
+#else
+ /* XXX always interpolate wpos so that DDX/DDY work */
+#endif
+ interpolate_wpos(ctx, span);
+
+ /* Run fragment program/shader now */
+ if (ctx->FragmentProgram._Current) {
+ _swrast_exec_fragment_program(ctx, span);
+ }
+ else {
+ ASSERT(ctx->ATIFragmentShader._Enabled);
+ _swrast_exec_fragment_shader(ctx, span);
+ }
+ }
+ else if (ctx->Texture._EnabledCoordUnits) {
+ /* conventional texturing */
+
+#if CHAN_BITS == 32
+ if ((span->arrayAttribs & FRAG_BIT_COL0) == 0) {
+ interpolate_int_colors(ctx, span);
+ }
+#else
+ if (!(span->arrayMask & SPAN_RGBA))
+ interpolate_int_colors(ctx, span);
+#endif
+ if ((span->arrayAttribs & FRAG_BITS_TEX_ANY) == 0x0)
+ interpolate_texcoords(ctx, span);
+
+ _swrast_texture_span(ctx, span);
+ }
+}
+
+
+
+/**
+ * Apply all the per-fragment operations to a span.
+ * This now includes texturing (_swrast_write_texture_span() is history).
+ * This function may modify any of the array values in the span.
+ * span->interpMask and span->arrayMask may be changed but will be restored
+ * to their original values before returning.
+ */
+void
+_swrast_write_rgba_span( struct gl_context *ctx, SWspan *span)
+{
+ const SWcontext *swrast = SWRAST_CONTEXT(ctx);
+ const GLuint *colorMask = (GLuint *) ctx->Color.ColorMask;
+ const GLbitfield origInterpMask = span->interpMask;
+ const GLbitfield origArrayMask = span->arrayMask;
+ const GLbitfield origArrayAttribs = span->arrayAttribs;
+ const GLenum origChanType = span->array->ChanType;
+ void * const origRgba = span->array->rgba;
+ const GLboolean shader = (ctx->FragmentProgram._Current
+ || ctx->ATIFragmentShader._Enabled);
+ const GLboolean shaderOrTexture = shader || ctx->Texture._EnabledCoordUnits;
+ struct gl_framebuffer *fb = ctx->DrawBuffer;
+
+ /*
+ printf("%s() interp 0x%x array 0x%x\n", __FUNCTION__,
+ span->interpMask, span->arrayMask);
+ */
+
+ ASSERT(span->primitive == GL_POINT ||
+ span->primitive == GL_LINE ||
+ span->primitive == GL_POLYGON ||
+ span->primitive == GL_BITMAP);
+
+ /* Fragment write masks */
+ if (span->arrayMask & SPAN_MASK) {
+ /* mask was initialized by caller, probably glBitmap */
+ span->writeAll = GL_FALSE;
+ }
+ else {
+ memset(span->array->mask, 1, span->end);
+ span->writeAll = GL_TRUE;
+ }
+
+ /* Clip to window/scissor box */
+ if (!clip_span(ctx, span)) {
+ return;
+ }
+
+ ASSERT(span->end <= MAX_WIDTH);
+
+ /* Depth bounds test */
+ if (ctx->Depth.BoundsTest && fb->Visual.depthBits > 0) {
+ if (!_swrast_depth_bounds_test(ctx, span)) {
+ return;
+ }
+ }
+
+#ifdef DEBUG
+ /* Make sure all fragments are within window bounds */
+ if (span->arrayMask & SPAN_XY) {
+ /* array of pixel locations */
+ GLuint i;
+ for (i = 0; i < span->end; i++) {
+ if (span->array->mask[i]) {
+ assert(span->array->x[i] >= fb->_Xmin);
+ assert(span->array->x[i] < fb->_Xmax);
+ assert(span->array->y[i] >= fb->_Ymin);
+ assert(span->array->y[i] < fb->_Ymax);
+ }
+ }
+ }
+#endif
+
+ /* Polygon Stippling */
+ if (ctx->Polygon.StippleFlag && span->primitive == GL_POLYGON) {
+ stipple_polygon_span(ctx, span);
+ }
+
+ /* This is the normal place to compute the fragment color/Z
+ * from texturing or shading.
+ */
+ if (shaderOrTexture && !swrast->_DeferredTexture) {
+ shade_texture_span(ctx, span);
+ }
+
+ /* Do the alpha test */
+ if (ctx->Color.AlphaEnabled) {
+ if (!_swrast_alpha_test(ctx, span)) {
+ /* all fragments failed test */
+ goto end;
+ }
+ }
+
+ /* Stencil and Z testing */
+ if (ctx->Stencil._Enabled || ctx->Depth.Test) {
+ if (!(span->arrayMask & SPAN_Z))
+ _swrast_span_interpolate_z(ctx, span);
+
+ if (ctx->Transform.DepthClamp)
+ _swrast_depth_clamp_span(ctx, span);
+
+ if (ctx->Stencil._Enabled) {
+ /* Combined Z/stencil tests */
+ if (!_swrast_stencil_and_ztest_span(ctx, span)) {
+ /* all fragments failed test */
+ goto end;
+ }
+ }
+ else if (fb->Visual.depthBits > 0) {
+ /* Just regular depth testing */
+ ASSERT(ctx->Depth.Test);
+ ASSERT(span->arrayMask & SPAN_Z);
+ if (!_swrast_depth_test_span(ctx, span)) {
+ /* all fragments failed test */
+ goto end;
+ }
+ }
+ }
+
+ if (ctx->Query.CurrentOcclusionObject) {
+ /* update count of 'passed' fragments */
+ struct gl_query_object *q = ctx->Query.CurrentOcclusionObject;
+ GLuint i;
+ for (i = 0; i < span->end; i++)
+ q->Result += span->array->mask[i];
+ }
+
+ /* We had to wait until now to check for glColorMask(0,0,0,0) because of
+ * the occlusion test.
+ */
+ if (fb->_NumColorDrawBuffers == 1 && colorMask[0] == 0x0) {
+ /* no colors to write */
+ goto end;
+ }
+
+ /* If we were able to defer fragment color computation to now, there's
+ * a good chance that many fragments will have already been killed by
+ * Z/stencil testing.
+ */
+ if (shaderOrTexture && swrast->_DeferredTexture) {
+ shade_texture_span(ctx, span);
+ }
+
+#if CHAN_BITS == 32
+ if ((span->arrayAttribs & FRAG_BIT_COL0) == 0) {
+ interpolate_active_attribs(ctx, span, FRAG_BIT_COL0);
+ }
+#else
+ if ((span->arrayMask & SPAN_RGBA) == 0) {
+ interpolate_int_colors(ctx, span);
+ }
+#endif
+
+ ASSERT(span->arrayMask & SPAN_RGBA);
+
+ if (span->primitive == GL_BITMAP || !swrast->SpecularVertexAdd) {
+ /* Add primary and specular (diffuse + specular) colors */
+ if (!shader) {
+ if (ctx->Fog.ColorSumEnabled ||
+ (ctx->Light.Enabled &&
+ ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR)) {
+ add_specular(ctx, span);
+ }
+ }
+ }
+
+ /* Fog */
+ if (swrast->_FogEnabled) {
+ _swrast_fog_rgba_span(ctx, span);
+ }
+
+ /* Antialias coverage application */
+ if (span->arrayMask & SPAN_COVERAGE) {
+ apply_aa_coverage(span);
+ }
+
+ /* Clamp color/alpha values over the range [0.0, 1.0] before storage */
+ if (ctx->Color.ClampFragmentColor == GL_TRUE &&
+ span->array->ChanType == GL_FLOAT) {
+ clamp_colors(span);
+ }
+
+ /*
+ * Write to renderbuffers.
+ * Depending on glDrawBuffer() state and the which color outputs are
+ * written by the fragment shader, we may either replicate one color to
+ * all renderbuffers or write a different color to each renderbuffer.
+ * multiFragOutputs=TRUE for the later case.
+ */
+ {
+ const GLuint numBuffers = fb->_NumColorDrawBuffers;
+ const struct gl_fragment_program *fp = ctx->FragmentProgram._Current;
+ const GLboolean multiFragOutputs =
+ (fp && fp->Base.OutputsWritten >= (1 << FRAG_RESULT_DATA0));
+ GLuint buf;
+
+ for (buf = 0; buf < numBuffers; buf++) {
+ struct gl_renderbuffer *rb = fb->_ColorDrawBuffers[buf];
+
+ /* color[fragOutput] will be written to buffer[buf] */
+
+ if (rb) {
+ GLchan rgbaSave[MAX_WIDTH][4];
+ const GLuint fragOutput = multiFragOutputs ? buf : 0;
+
+ /* set span->array->rgba to colors for render buffer's datatype */
+ if (rb->DataType != span->array->ChanType || fragOutput > 0) {
+ convert_color_type(span, rb->DataType, fragOutput);
+ }
+ else {
+ if (rb->DataType == GL_UNSIGNED_BYTE) {
+ span->array->rgba = span->array->rgba8;
+ }
+ else if (rb->DataType == GL_UNSIGNED_SHORT) {
+ span->array->rgba = (void *) span->array->rgba16;
+ }
+ else {
+ span->array->rgba = (void *)
+ span->array->attribs[FRAG_ATTRIB_COL0];
+ }
+ }
+
+ if (!multiFragOutputs && numBuffers > 1) {
+ /* save colors for second, third renderbuffer writes */
+ memcpy(rgbaSave, span->array->rgba,
+ 4 * span->end * sizeof(GLchan));
+ }
+
+ ASSERT(rb->_BaseFormat == GL_RGBA || rb->_BaseFormat == GL_RGB ||
+ rb->_BaseFormat == GL_ALPHA);
+
+ if (ctx->Color._LogicOpEnabled) {
+ _swrast_logicop_rgba_span(ctx, rb, span);
+ }
+ else if ((ctx->Color.BlendEnabled >> buf) & 1) {
+ _swrast_blend_span(ctx, rb, span);
+ }
+
+ if (colorMask[buf] != 0xffffffff) {
+ _swrast_mask_rgba_span(ctx, rb, span, buf);
+ }
+
+ if (span->arrayMask & SPAN_XY) {
+ /* array of pixel coords */
+ ASSERT(rb->PutValues);
+ rb->PutValues(ctx, rb, span->end,
+ span->array->x, span->array->y,
+ span->array->rgba, span->array->mask);
+ }
+ else {
+ /* horizontal run of pixels */
+ ASSERT(rb->PutRow);
+ rb->PutRow(ctx, rb, span->end, span->x, span->y,
+ span->array->rgba,
+ span->writeAll ? NULL: span->array->mask);
+ }
+
+ if (!multiFragOutputs && numBuffers > 1) {
+ /* restore original span values */
+ memcpy(span->array->rgba, rgbaSave,
+ 4 * span->end * sizeof(GLchan));
+ }
+
+ } /* if rb */
+ } /* for buf */
+ }
+
+end:
+ /* restore these values before returning */
+ span->interpMask = origInterpMask;
+ span->arrayMask = origArrayMask;
+ span->arrayAttribs = origArrayAttribs;
+ span->array->ChanType = origChanType;
+ span->array->rgba = origRgba;
+}
+
+
+/**
+ * Read RGBA pixels from a renderbuffer. Clipping will be done to prevent
+ * reading ouside the buffer's boundaries.
+ * \param dstType datatype for returned colors
+ * \param rgba the returned colors
+ */
+void
+_swrast_read_rgba_span( struct gl_context *ctx, struct gl_renderbuffer *rb,
+ GLuint n, GLint x, GLint y, GLenum dstType,
+ GLvoid *rgba)
+{
+ const GLint bufWidth = (GLint) rb->Width;
+ const GLint bufHeight = (GLint) rb->Height;
+
+ if (y < 0 || y >= bufHeight || x + (GLint) n < 0 || x >= bufWidth) {
+ /* completely above, below, or right */
+ /* XXX maybe leave rgba values undefined? */
+ memset(rgba, 0, 4 * n * sizeof(GLchan));
+ }
+ else {
+ GLint skip, length;
+ if (x < 0) {
+ /* left edge clipping */
+ skip = -x;
+ length = (GLint) n - skip;
+ if (length < 0) {
+ /* completely left of window */
+ return;
+ }
+ if (length > bufWidth) {
+ length = bufWidth;
+ }
+ }
+ else if ((GLint) (x + n) > bufWidth) {
+ /* right edge clipping */
+ skip = 0;
+ length = bufWidth - x;
+ if (length < 0) {
+ /* completely to right of window */
+ return;
+ }
+ }
+ else {
+ /* no clipping */
+ skip = 0;
+ length = (GLint) n;
+ }
+
+ ASSERT(rb);
+ ASSERT(rb->GetRow);
+ ASSERT(rb->_BaseFormat == GL_RGB || rb->_BaseFormat == GL_RGBA ||
+ rb->_BaseFormat == GL_ALPHA);
+
+ if (rb->DataType == dstType) {
+ rb->GetRow(ctx, rb, length, x + skip, y,
+ (GLubyte *) rgba + skip * RGBA_PIXEL_SIZE(rb->DataType));
+ }
+ else {
+ GLuint temp[MAX_WIDTH * 4];
+ rb->GetRow(ctx, rb, length, x + skip, y, temp);
+ _mesa_convert_colors(rb->DataType, temp,
+ dstType, (GLubyte *) rgba + skip * RGBA_PIXEL_SIZE(dstType),
+ length, NULL);
+ }
+ }
+}
+
+
+/**
+ * Wrapper for gl_renderbuffer::GetValues() which does clipping to avoid
+ * reading values outside the buffer bounds.
+ * We can use this for reading any format/type of renderbuffer.
+ * \param valueSize is the size in bytes of each value (pixel) put into the
+ * values array.
+ */
+void
+_swrast_get_values(struct gl_context *ctx, struct gl_renderbuffer *rb,
+ GLuint count, const GLint x[], const GLint y[],
+ void *values, GLuint valueSize)
+{
+ GLuint i, inCount = 0, inStart = 0;
+
+ for (i = 0; i < count; i++) {
+ if (x[i] >= 0 && y[i] >= 0 &&
+ x[i] < (GLint) rb->Width && y[i] < (GLint) rb->Height) {
+ /* inside */
+ if (inCount == 0)
+ inStart = i;
+ inCount++;
+ }
+ else {
+ if (inCount > 0) {
+ /* read [inStart, inStart + inCount) */
+ rb->GetValues(ctx, rb, inCount, x + inStart, y + inStart,
+ (GLubyte *) values + inStart * valueSize);
+ inCount = 0;
+ }
+ }
+ }
+ if (inCount > 0) {
+ /* read last values */
+ rb->GetValues(ctx, rb, inCount, x + inStart, y + inStart,
+ (GLubyte *) values + inStart * valueSize);
+ }
+}
+
+
+/**
+ * Wrapper for gl_renderbuffer::PutRow() which does clipping.
+ * \param valueSize size of each value (pixel) in bytes
+ */
+void
+_swrast_put_row(struct gl_context *ctx, struct gl_renderbuffer *rb,
+ GLuint count, GLint x, GLint y,
+ const GLvoid *values, GLuint valueSize)
+{
+ GLint skip = 0;
+
+ if (y < 0 || y >= (GLint) rb->Height)
+ return; /* above or below */
+
+ if (x + (GLint) count <= 0 || x >= (GLint) rb->Width)
+ return; /* entirely left or right */
+
+ if ((GLint) (x + count) > (GLint) rb->Width) {
+ /* right clip */
+ GLint clip = x + count - rb->Width;
+ count -= clip;
+ }
+
+ if (x < 0) {
+ /* left clip */
+ skip = -x;
+ x = 0;
+ count -= skip;
+ }
+
+ rb->PutRow(ctx, rb, count, x, y,
+ (const GLubyte *) values + skip * valueSize, NULL);
+}
+
+
+/**
+ * Wrapper for gl_renderbuffer::GetRow() which does clipping.
+ * \param valueSize size of each value (pixel) in bytes
+ */
+void
+_swrast_get_row(struct gl_context *ctx, struct gl_renderbuffer *rb,
+ GLuint count, GLint x, GLint y,
+ GLvoid *values, GLuint valueSize)
+{
+ GLint skip = 0;
+
+ if (y < 0 || y >= (GLint) rb->Height)
+ return; /* above or below */
+
+ if (x + (GLint) count <= 0 || x >= (GLint) rb->Width)
+ return; /* entirely left or right */
+
+ if (x + count > rb->Width) {
+ /* right clip */
+ GLint clip = x + count - rb->Width;
+ count -= clip;
+ }
+
+ if (x < 0) {
+ /* left clip */
+ skip = -x;
+ x = 0;
+ count -= skip;
+ }
+
+ rb->GetRow(ctx, rb, count, x, y, (GLubyte *) values + skip * valueSize);
+}
+
+
+/**
+ * Get RGBA pixels from the given renderbuffer.
+ * Used by blending, logicop and masking functions.
+ * \return pointer to the colors we read.
+ */
+void *
+_swrast_get_dest_rgba(struct gl_context *ctx, struct gl_renderbuffer *rb,
+ SWspan *span)
+{
+ const GLuint pixelSize = RGBA_PIXEL_SIZE(span->array->ChanType);
+ void *rbPixels;
+
+ /* Point rbPixels to a temporary space */
+ rbPixels = span->array->attribs[FRAG_ATTRIB_MAX - 1];
+
+ /* Get destination values from renderbuffer */
+ if (span->arrayMask & SPAN_XY) {
+ _swrast_get_values(ctx, rb, span->end, span->array->x, span->array->y,
+ rbPixels, pixelSize);
+ }
+ else {
+ _swrast_get_row(ctx, rb, span->end, span->x, span->y,
+ rbPixels, pixelSize);
+ }
+
+ return rbPixels;
+}
diff --git a/mesalib/src/mesa/swrast/s_texcombine.c b/mesalib/src/mesa/swrast/s_texcombine.c
index 0c8cc9ff3..7f49b6ffa 100644
--- a/mesalib/src/mesa/swrast/s_texcombine.c
+++ b/mesalib/src/mesa/swrast/s_texcombine.c
@@ -631,9 +631,9 @@ _swrast_texture_span( struct gl_context *ctx, SWspan *span )
/* adjust texture lod (lambda) */
if (span->arrayMask & SPAN_LAMBDA) {
- if (texUnit->LodBias + curObj->LodBias != 0.0F) {
+ if (texUnit->LodBias + curObj->Sampler.LodBias != 0.0F) {
/* apply LOD bias, but don't clamp yet */
- const GLfloat bias = CLAMP(texUnit->LodBias + curObj->LodBias,
+ const GLfloat bias = CLAMP(texUnit->LodBias + curObj->Sampler.LodBias,
-ctx->Const.MaxTextureLodBias,
ctx->Const.MaxTextureLodBias);
GLuint i;
@@ -642,10 +642,11 @@ _swrast_texture_span( struct gl_context *ctx, SWspan *span )
}
}
- if (curObj->MinLod != -1000.0 || curObj->MaxLod != 1000.0) {
+ if (curObj->Sampler.MinLod != -1000.0 ||
+ curObj->Sampler.MaxLod != 1000.0) {
/* apply LOD clamping to lambda */
- const GLfloat min = curObj->MinLod;
- const GLfloat max = curObj->MaxLod;
+ const GLfloat min = curObj->Sampler.MinLod;
+ const GLfloat max = curObj->Sampler.MaxLod;
GLuint i;
for (i = 0; i < span->end; i++) {
GLfloat l = lambda[i];
@@ -686,9 +687,9 @@ _swrast_texture_span( struct gl_context *ctx, SWspan *span )
/* adjust texture lod (lambda) */
if (span->arrayMask & SPAN_LAMBDA) {
- if (texUnit->LodBias + curObj->LodBias != 0.0F) {
+ if (texUnit->LodBias + curObj->Sampler.LodBias != 0.0F) {
/* apply LOD bias, but don't clamp yet */
- const GLfloat bias = CLAMP(texUnit->LodBias + curObj->LodBias,
+ const GLfloat bias = CLAMP(texUnit->LodBias + curObj->Sampler.LodBias,
-ctx->Const.MaxTextureLodBias,
ctx->Const.MaxTextureLodBias);
GLuint i;
@@ -697,10 +698,11 @@ _swrast_texture_span( struct gl_context *ctx, SWspan *span )
}
}
- if (curObj->MinLod != -1000.0 || curObj->MaxLod != 1000.0) {
+ if (curObj->Sampler.MinLod != -1000.0 ||
+ curObj->Sampler.MaxLod != 1000.0) {
/* apply LOD clamping to lambda */
- const GLfloat min = curObj->MinLod;
- const GLfloat max = curObj->MaxLod;
+ const GLfloat min = curObj->Sampler.MinLod;
+ const GLfloat max = curObj->Sampler.MaxLod;
GLuint i;
for (i = 0; i < span->end; i++) {
GLfloat l = lambda[i];
diff --git a/mesalib/src/mesa/swrast/s_texfilter.c b/mesalib/src/mesa/swrast/s_texfilter.c
index 42785400c..106f8b75f 100644
--- a/mesalib/src/mesa/swrast/s_texfilter.c
+++ b/mesalib/src/mesa/swrast/s_texfilter.c
@@ -505,28 +505,28 @@ nearest_texcoord(const struct gl_texture_object *texObj,
switch (texObj->Target) {
case GL_TEXTURE_RECTANGLE_ARB:
- *i = clamp_rect_coord_nearest(texObj->WrapS, texcoord[0], width);
- *j = clamp_rect_coord_nearest(texObj->WrapT, texcoord[1], height);
+ *i = clamp_rect_coord_nearest(texObj->Sampler.WrapS, texcoord[0], width);
+ *j = clamp_rect_coord_nearest(texObj->Sampler.WrapT, texcoord[1], height);
*k = 0;
break;
case GL_TEXTURE_1D:
- *i = nearest_texel_location(texObj->WrapS, img, width, texcoord[0]);
+ *i = nearest_texel_location(texObj->Sampler.WrapS, img, width, texcoord[0]);
*j = 0;
*k = 0;
break;
case GL_TEXTURE_2D:
- *i = nearest_texel_location(texObj->WrapS, img, width, texcoord[0]);
- *j = nearest_texel_location(texObj->WrapT, img, height, texcoord[1]);
+ *i = nearest_texel_location(texObj->Sampler.WrapS, img, width, texcoord[0]);
+ *j = nearest_texel_location(texObj->Sampler.WrapT, img, height, texcoord[1]);
*k = 0;
break;
case GL_TEXTURE_1D_ARRAY_EXT:
- *i = nearest_texel_location(texObj->WrapS, img, width, texcoord[0]);
+ *i = nearest_texel_location(texObj->Sampler.WrapS, img, width, texcoord[0]);
*j = tex_array_slice(texcoord[1], height);
*k = 0;
break;
case GL_TEXTURE_2D_ARRAY_EXT:
- *i = nearest_texel_location(texObj->WrapS, img, width, texcoord[0]);
- *j = nearest_texel_location(texObj->WrapT, img, height, texcoord[1]);
+ *i = nearest_texel_location(texObj->Sampler.WrapS, img, width, texcoord[0]);
+ *j = nearest_texel_location(texObj->Sampler.WrapT, img, height, texcoord[1]);
*k = tex_array_slice(texcoord[2], depth);
break;
default:
@@ -553,24 +553,24 @@ linear_texcoord(const struct gl_texture_object *texObj,
switch (texObj->Target) {
case GL_TEXTURE_RECTANGLE_ARB:
- clamp_rect_coord_linear(texObj->WrapS, texcoord[0],
+ clamp_rect_coord_linear(texObj->Sampler.WrapS, texcoord[0],
width, i0, i1, wi);
- clamp_rect_coord_linear(texObj->WrapT, texcoord[1],
+ clamp_rect_coord_linear(texObj->Sampler.WrapT, texcoord[1],
height, j0, j1, wj);
*slice = 0;
break;
case GL_TEXTURE_1D:
case GL_TEXTURE_2D:
- linear_texel_locations(texObj->WrapS, img, width,
+ linear_texel_locations(texObj->Sampler.WrapS, img, width,
texcoord[0], i0, i1, wi);
- linear_texel_locations(texObj->WrapT, img, height,
+ linear_texel_locations(texObj->Sampler.WrapT, img, height,
texcoord[1], j0, j1, wj);
*slice = 0;
break;
case GL_TEXTURE_1D_ARRAY_EXT:
- linear_texel_locations(texObj->WrapS, img, width,
+ linear_texel_locations(texObj->Sampler.WrapS, img, width,
texcoord[0], i0, i1, wi);
*j0 = tex_array_slice(texcoord[1], height);
*j1 = *j0;
@@ -578,9 +578,9 @@ linear_texcoord(const struct gl_texture_object *texObj,
break;
case GL_TEXTURE_2D_ARRAY_EXT:
- linear_texel_locations(texObj->WrapS, img, width,
+ linear_texel_locations(texObj->Sampler.WrapS, img, width,
texcoord[0], i0, i1, wi);
- linear_texel_locations(texObj->WrapT, img, height,
+ linear_texel_locations(texObj->Sampler.WrapT, img, height,
texcoord[1], j0, j1, wj);
*slice = tex_array_slice(texcoord[2], depth);
break;
@@ -656,12 +656,12 @@ compute_min_mag_ranges(const struct gl_texture_object *tObj,
GLfloat minMagThresh;
/* we shouldn't be here if minfilter == magfilter */
- ASSERT(tObj->MinFilter != tObj->MagFilter);
+ ASSERT(tObj->Sampler.MinFilter != tObj->Sampler.MagFilter);
/* This bit comes from the OpenGL spec: */
- if (tObj->MagFilter == GL_LINEAR
- && (tObj->MinFilter == GL_NEAREST_MIPMAP_NEAREST ||
- tObj->MinFilter == GL_NEAREST_MIPMAP_LINEAR)) {
+ if (tObj->Sampler.MagFilter == GL_LINEAR
+ && (tObj->Sampler.MinFilter == GL_NEAREST_MIPMAP_NEAREST ||
+ tObj->Sampler.MinFilter == GL_NEAREST_MIPMAP_LINEAR)) {
minMagThresh = 0.5F;
}
else {
@@ -763,28 +763,28 @@ get_border_color(const struct gl_texture_object *tObj,
{
switch (img->_BaseFormat) {
case GL_RGB:
- rgba[0] = tObj->BorderColor.f[0];
- rgba[1] = tObj->BorderColor.f[1];
- rgba[2] = tObj->BorderColor.f[2];
+ rgba[0] = tObj->Sampler.BorderColor.f[0];
+ rgba[1] = tObj->Sampler.BorderColor.f[1];
+ rgba[2] = tObj->Sampler.BorderColor.f[2];
rgba[3] = 1.0F;
break;
case GL_ALPHA:
rgba[0] = rgba[1] = rgba[2] = 0.0;
- rgba[3] = tObj->BorderColor.f[3];
+ rgba[3] = tObj->Sampler.BorderColor.f[3];
break;
case GL_LUMINANCE:
- rgba[0] = rgba[1] = rgba[2] = tObj->BorderColor.f[0];
+ rgba[0] = rgba[1] = rgba[2] = tObj->Sampler.BorderColor.f[0];
rgba[3] = 1.0;
break;
case GL_LUMINANCE_ALPHA:
- rgba[0] = rgba[1] = rgba[2] = tObj->BorderColor.f[0];
- rgba[3] = tObj->BorderColor.f[3];
+ rgba[0] = rgba[1] = rgba[2] = tObj->Sampler.BorderColor.f[0];
+ rgba[3] = tObj->Sampler.BorderColor.f[3];
break;
case GL_INTENSITY:
- rgba[0] = rgba[1] = rgba[2] = rgba[3] = tObj->BorderColor.f[0];
+ rgba[0] = rgba[1] = rgba[2] = rgba[3] = tObj->Sampler.BorderColor.f[0];
break;
default:
- COPY_4V(rgba, tObj->BorderColor.f);
+ COPY_4V(rgba, tObj->Sampler.BorderColor.f);
}
}
@@ -804,7 +804,7 @@ sample_1d_nearest(struct gl_context *ctx,
{
const GLint width = img->Width2; /* without border, power of two */
GLint i;
- i = nearest_texel_location(tObj->WrapS, img, width, texcoord[0]);
+ i = nearest_texel_location(tObj->Sampler.WrapS, img, width, texcoord[0]);
/* skip over the border, if any */
i += img->Border;
if (i < 0 || i >= (GLint) img->Width) {
@@ -832,7 +832,7 @@ sample_1d_linear(struct gl_context *ctx,
GLfloat a;
GLfloat t0[4], t1[4]; /* texels */
- linear_texel_locations(tObj->WrapS, img, width, texcoord[0], &i0, &i1, &a);
+ linear_texel_locations(tObj->Sampler.WrapS, img, width, texcoord[0], &i0, &i1, &a);
if (img->Border) {
i0 += img->Border;
@@ -991,7 +991,7 @@ sample_lambda_1d( struct gl_context *ctx,
if (minStart < minEnd) {
/* do the minified texels */
const GLuint m = minEnd - minStart;
- switch (tObj->MinFilter) {
+ switch (tObj->Sampler.MinFilter) {
case GL_NEAREST:
for (i = minStart; i < minEnd; i++)
sample_1d_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
@@ -1026,7 +1026,7 @@ sample_lambda_1d( struct gl_context *ctx,
if (magStart < magEnd) {
/* do the magnified texels */
- switch (tObj->MagFilter) {
+ switch (tObj->Sampler.MagFilter) {
case GL_NEAREST:
for (i = magStart; i < magEnd; i++)
sample_1d_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
@@ -1065,8 +1065,8 @@ sample_2d_nearest(struct gl_context *ctx,
GLint i, j;
(void) ctx;
- i = nearest_texel_location(tObj->WrapS, img, width, texcoord[0]);
- j = nearest_texel_location(tObj->WrapT, img, height, texcoord[1]);
+ i = nearest_texel_location(tObj->Sampler.WrapS, img, width, texcoord[0]);
+ j = nearest_texel_location(tObj->Sampler.WrapT, img, height, texcoord[1]);
/* skip over the border, if any */
i += img->Border;
@@ -1100,8 +1100,8 @@ sample_2d_linear(struct gl_context *ctx,
GLfloat a, b;
GLfloat t00[4], t10[4], t01[4], t11[4]; /* sampled texel colors */
- linear_texel_locations(tObj->WrapS, img, width, texcoord[0], &i0, &i1, &a);
- linear_texel_locations(tObj->WrapT, img, height, texcoord[1], &j0, &j1, &b);
+ linear_texel_locations(tObj->Sampler.WrapS, img, width, texcoord[0], &i0, &i1, &a);
+ linear_texel_locations(tObj->Sampler.WrapT, img, height, texcoord[1], &j0, &j1, &b);
if (img->Border) {
i0 += img->Border;
@@ -1165,8 +1165,8 @@ sample_2d_linear_repeat(struct gl_context *ctx,
(void) ctx;
- ASSERT(tObj->WrapS == GL_REPEAT);
- ASSERT(tObj->WrapT == GL_REPEAT);
+ ASSERT(tObj->Sampler.WrapS == GL_REPEAT);
+ ASSERT(tObj->Sampler.WrapT == GL_REPEAT);
ASSERT(img->Border == 0);
ASSERT(img->_BaseFormat != GL_COLOR_INDEX);
ASSERT(img->_IsPowerOfTwo);
@@ -1270,8 +1270,8 @@ sample_2d_linear_mipmap_linear_repeat(struct gl_context *ctx,
{
GLuint i;
ASSERT(lambda != NULL);
- ASSERT(tObj->WrapS == GL_REPEAT);
- ASSERT(tObj->WrapT == GL_REPEAT);
+ ASSERT(tObj->Sampler.WrapS == GL_REPEAT);
+ ASSERT(tObj->Sampler.WrapT == GL_REPEAT);
for (i = 0; i < n; i++) {
GLint level = linear_mipmap_level(tObj, lambda[i]);
if (level >= tObj->_MaxLevel) {
@@ -1317,8 +1317,8 @@ sample_linear_2d(struct gl_context *ctx,
GLuint i;
struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel];
(void) lambda;
- if (tObj->WrapS == GL_REPEAT &&
- tObj->WrapT == GL_REPEAT &&
+ if (tObj->Sampler.WrapS == GL_REPEAT &&
+ tObj->Sampler.WrapT == GL_REPEAT &&
image->_IsPowerOfTwo &&
image->Border == 0) {
for (i = 0; i < n; i++) {
@@ -1356,8 +1356,8 @@ opt_sample_rgb_2d(struct gl_context *ctx,
GLuint k;
(void) ctx;
(void) lambda;
- ASSERT(tObj->WrapS==GL_REPEAT);
- ASSERT(tObj->WrapT==GL_REPEAT);
+ ASSERT(tObj->Sampler.WrapS==GL_REPEAT);
+ ASSERT(tObj->Sampler.WrapT==GL_REPEAT);
ASSERT(img->Border==0);
ASSERT(img->TexFormat == MESA_FORMAT_RGB888);
ASSERT(img->_IsPowerOfTwo);
@@ -1398,8 +1398,8 @@ opt_sample_rgba_2d(struct gl_context *ctx,
GLuint i;
(void) ctx;
(void) lambda;
- ASSERT(tObj->WrapS==GL_REPEAT);
- ASSERT(tObj->WrapT==GL_REPEAT);
+ ASSERT(tObj->Sampler.WrapS==GL_REPEAT);
+ ASSERT(tObj->Sampler.WrapT==GL_REPEAT);
ASSERT(img->Border==0);
ASSERT(img->TexFormat == MESA_FORMAT_RGBA8888);
ASSERT(img->_IsPowerOfTwo);
@@ -1428,8 +1428,8 @@ sample_lambda_2d(struct gl_context *ctx,
GLuint minStart, minEnd; /* texels with minification */
GLuint magStart, magEnd; /* texels with magnification */
- const GLboolean repeatNoBorderPOT = (tObj->WrapS == GL_REPEAT)
- && (tObj->WrapT == GL_REPEAT)
+ const GLboolean repeatNoBorderPOT = (tObj->Sampler.WrapS == GL_REPEAT)
+ && (tObj->Sampler.WrapT == GL_REPEAT)
&& (tImg->Border == 0 && (tImg->Width == tImg->RowStride))
&& (tImg->_BaseFormat != GL_COLOR_INDEX)
&& tImg->_IsPowerOfTwo;
@@ -1441,7 +1441,7 @@ sample_lambda_2d(struct gl_context *ctx,
if (minStart < minEnd) {
/* do the minified texels */
const GLuint m = minEnd - minStart;
- switch (tObj->MinFilter) {
+ switch (tObj->Sampler.MinFilter) {
case GL_NEAREST:
if (repeatNoBorderPOT) {
switch (tImg->TexFormat) {
@@ -1498,7 +1498,7 @@ sample_lambda_2d(struct gl_context *ctx,
/* do the magnified texels */
const GLuint m = magEnd - magStart;
- switch (tObj->MagFilter) {
+ switch (tObj->Sampler.MagFilter) {
case GL_NEAREST:
if (repeatNoBorderPOT) {
switch (tImg->TexFormat) {
@@ -1552,9 +1552,9 @@ sample_3d_nearest(struct gl_context *ctx,
GLint i, j, k;
(void) ctx;
- i = nearest_texel_location(tObj->WrapS, img, width, texcoord[0]);
- j = nearest_texel_location(tObj->WrapT, img, height, texcoord[1]);
- k = nearest_texel_location(tObj->WrapR, img, depth, texcoord[2]);
+ i = nearest_texel_location(tObj->Sampler.WrapS, img, width, texcoord[0]);
+ j = nearest_texel_location(tObj->Sampler.WrapT, img, height, texcoord[1]);
+ k = nearest_texel_location(tObj->Sampler.WrapR, img, depth, texcoord[2]);
if (i < 0 || i >= (GLint) img->Width ||
j < 0 || j >= (GLint) img->Height ||
@@ -1587,9 +1587,9 @@ sample_3d_linear(struct gl_context *ctx,
GLfloat t000[4], t010[4], t001[4], t011[4];
GLfloat t100[4], t110[4], t101[4], t111[4];
- linear_texel_locations(tObj->WrapS, img, width, texcoord[0], &i0, &i1, &a);
- linear_texel_locations(tObj->WrapT, img, height, texcoord[1], &j0, &j1, &b);
- linear_texel_locations(tObj->WrapR, img, depth, texcoord[2], &k0, &k1, &c);
+ linear_texel_locations(tObj->Sampler.WrapS, img, width, texcoord[0], &i0, &i1, &a);
+ linear_texel_locations(tObj->Sampler.WrapT, img, height, texcoord[1], &j0, &j1, &b);
+ linear_texel_locations(tObj->Sampler.WrapR, img, depth, texcoord[2], &k0, &k1, &c);
if (img->Border) {
i0 += img->Border;
@@ -1794,7 +1794,7 @@ sample_lambda_3d(struct gl_context *ctx,
if (minStart < minEnd) {
/* do the minified texels */
GLuint m = minEnd - minStart;
- switch (tObj->MinFilter) {
+ switch (tObj->Sampler.MinFilter) {
case GL_NEAREST:
for (i = minStart; i < minEnd; i++)
sample_3d_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
@@ -1829,7 +1829,7 @@ sample_lambda_3d(struct gl_context *ctx,
if (magStart < magEnd) {
/* do the magnified texels */
- switch (tObj->MagFilter) {
+ switch (tObj->Sampler.MagFilter) {
case GL_NEAREST:
for (i = magStart; i < magEnd; i++)
sample_3d_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
@@ -2091,7 +2091,7 @@ sample_lambda_cube(struct gl_context *ctx,
if (minStart < minEnd) {
/* do the minified texels */
const GLuint m = minEnd - minStart;
- switch (tObj->MinFilter) {
+ switch (tObj->Sampler.MinFilter) {
case GL_NEAREST:
sample_nearest_cube(ctx, tObj, m, texcoords + minStart,
lambda + minStart, rgba + minStart);
@@ -2128,7 +2128,7 @@ sample_lambda_cube(struct gl_context *ctx,
if (magStart < magEnd) {
/* do the magnified texels */
const GLuint m = magEnd - magStart;
- switch (tObj->MagFilter) {
+ switch (tObj->Sampler.MagFilter) {
case GL_NEAREST:
sample_nearest_cube(ctx, tObj, m, texcoords + magStart,
lambda + magStart, rgba + magStart);
@@ -2163,18 +2163,18 @@ sample_nearest_rect(struct gl_context *ctx,
(void) ctx;
(void) lambda;
- ASSERT(tObj->WrapS == GL_CLAMP ||
- tObj->WrapS == GL_CLAMP_TO_EDGE ||
- tObj->WrapS == GL_CLAMP_TO_BORDER);
- ASSERT(tObj->WrapT == GL_CLAMP ||
- tObj->WrapT == GL_CLAMP_TO_EDGE ||
- tObj->WrapT == GL_CLAMP_TO_BORDER);
+ ASSERT(tObj->Sampler.WrapS == GL_CLAMP ||
+ tObj->Sampler.WrapS == GL_CLAMP_TO_EDGE ||
+ tObj->Sampler.WrapS == GL_CLAMP_TO_BORDER);
+ ASSERT(tObj->Sampler.WrapT == GL_CLAMP ||
+ tObj->Sampler.WrapT == GL_CLAMP_TO_EDGE ||
+ tObj->Sampler.WrapT == GL_CLAMP_TO_BORDER);
ASSERT(img->_BaseFormat != GL_COLOR_INDEX);
for (i = 0; i < n; i++) {
GLint row, col;
- col = clamp_rect_coord_nearest(tObj->WrapS, texcoords[i][0], width);
- row = clamp_rect_coord_nearest(tObj->WrapT, texcoords[i][1], height);
+ col = clamp_rect_coord_nearest(tObj->Sampler.WrapS, texcoords[i][0], width);
+ row = clamp_rect_coord_nearest(tObj->Sampler.WrapT, texcoords[i][1], height);
if (col < 0 || col >= width || row < 0 || row >= height)
get_border_color(tObj, img, rgba[i]);
else
@@ -2197,12 +2197,12 @@ sample_linear_rect(struct gl_context *ctx,
(void) ctx;
(void) lambda;
- ASSERT(tObj->WrapS == GL_CLAMP ||
- tObj->WrapS == GL_CLAMP_TO_EDGE ||
- tObj->WrapS == GL_CLAMP_TO_BORDER);
- ASSERT(tObj->WrapT == GL_CLAMP ||
- tObj->WrapT == GL_CLAMP_TO_EDGE ||
- tObj->WrapT == GL_CLAMP_TO_BORDER);
+ ASSERT(tObj->Sampler.WrapS == GL_CLAMP ||
+ tObj->Sampler.WrapS == GL_CLAMP_TO_EDGE ||
+ tObj->Sampler.WrapS == GL_CLAMP_TO_BORDER);
+ ASSERT(tObj->Sampler.WrapT == GL_CLAMP ||
+ tObj->Sampler.WrapT == GL_CLAMP_TO_EDGE ||
+ tObj->Sampler.WrapT == GL_CLAMP_TO_BORDER);
ASSERT(img->_BaseFormat != GL_COLOR_INDEX);
for (i = 0; i < n; i++) {
@@ -2211,9 +2211,9 @@ sample_linear_rect(struct gl_context *ctx,
GLfloat a, b;
GLbitfield useBorderColor = 0x0;
- clamp_rect_coord_linear(tObj->WrapS, texcoords[i][0], width,
+ clamp_rect_coord_linear(tObj->Sampler.WrapS, texcoords[i][0], width,
&i0, &i1, &a);
- clamp_rect_coord_linear(tObj->WrapT, texcoords[i][1], height,
+ clamp_rect_coord_linear(tObj->Sampler.WrapT, texcoords[i][1], height,
&j0, &j1, &b);
/* compute integer rows/columns */
@@ -2264,7 +2264,7 @@ sample_lambda_rect(struct gl_context *ctx,
&minStart, &minEnd, &magStart, &magEnd);
if (minStart < minEnd) {
- if (tObj->MinFilter == GL_NEAREST) {
+ if (tObj->Sampler.MinFilter == GL_NEAREST) {
sample_nearest_rect(ctx, tObj, minEnd - minStart,
texcoords + minStart, NULL, rgba + minStart);
}
@@ -2274,7 +2274,7 @@ sample_lambda_rect(struct gl_context *ctx,
}
}
if (magStart < magEnd) {
- if (tObj->MagFilter == GL_NEAREST) {
+ if (tObj->Sampler.MagFilter == GL_NEAREST) {
sample_nearest_rect(ctx, tObj, magEnd - magStart,
texcoords + magStart, NULL, rgba + magStart);
}
@@ -2307,8 +2307,8 @@ sample_2d_array_nearest(struct gl_context *ctx,
GLint array;
(void) ctx;
- i = nearest_texel_location(tObj->WrapS, img, width, texcoord[0]);
- j = nearest_texel_location(tObj->WrapT, img, height, texcoord[1]);
+ i = nearest_texel_location(tObj->Sampler.WrapS, img, width, texcoord[0]);
+ j = nearest_texel_location(tObj->Sampler.WrapT, img, height, texcoord[1]);
array = tex_array_slice(texcoord[2], depth);
if (i < 0 || i >= (GLint) img->Width ||
@@ -2342,12 +2342,12 @@ sample_2d_array_linear(struct gl_context *ctx,
GLfloat a, b;
GLfloat t00[4], t01[4], t10[4], t11[4];
- linear_texel_locations(tObj->WrapS, img, width, texcoord[0], &i0, &i1, &a);
- linear_texel_locations(tObj->WrapT, img, height, texcoord[1], &j0, &j1, &b);
+ linear_texel_locations(tObj->Sampler.WrapS, img, width, texcoord[0], &i0, &i1, &a);
+ linear_texel_locations(tObj->Sampler.WrapT, img, height, texcoord[1], &j0, &j1, &b);
array = tex_array_slice(texcoord[2], depth);
if (array < 0 || array >= depth) {
- COPY_4V(rgba, tObj->BorderColor.f);
+ COPY_4V(rgba, tObj->Sampler.BorderColor.f);
}
else {
if (img->Border) {
@@ -2532,7 +2532,7 @@ sample_lambda_2d_array(struct gl_context *ctx,
if (minStart < minEnd) {
/* do the minified texels */
GLuint m = minEnd - minStart;
- switch (tObj->MinFilter) {
+ switch (tObj->Sampler.MinFilter) {
case GL_NEAREST:
for (i = minStart; i < minEnd; i++)
sample_2d_array_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
@@ -2575,7 +2575,7 @@ sample_lambda_2d_array(struct gl_context *ctx,
if (magStart < magEnd) {
/* do the magnified texels */
- switch (tObj->MagFilter) {
+ switch (tObj->Sampler.MagFilter) {
case GL_NEAREST:
for (i = magStart; i < magEnd; i++)
sample_2d_array_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
@@ -2616,7 +2616,7 @@ sample_1d_array_nearest(struct gl_context *ctx,
GLint array;
(void) ctx;
- i = nearest_texel_location(tObj->WrapS, img, width, texcoord[0]);
+ i = nearest_texel_location(tObj->Sampler.WrapS, img, width, texcoord[0]);
array = tex_array_slice(texcoord[1], height);
if (i < 0 || i >= (GLint) img->Width ||
@@ -2648,7 +2648,7 @@ sample_1d_array_linear(struct gl_context *ctx,
GLfloat a;
GLfloat t0[4], t1[4];
- linear_texel_locations(tObj->WrapS, img, width, texcoord[0], &i0, &i1, &a);
+ linear_texel_locations(tObj->Sampler.WrapS, img, width, texcoord[0], &i0, &i1, &a);
array = tex_array_slice(texcoord[1], height);
if (img->Border) {
@@ -2813,7 +2813,7 @@ sample_lambda_1d_array(struct gl_context *ctx,
if (minStart < minEnd) {
/* do the minified texels */
GLuint m = minEnd - minStart;
- switch (tObj->MinFilter) {
+ switch (tObj->Sampler.MinFilter) {
case GL_NEAREST:
for (i = minStart; i < minEnd; i++)
sample_1d_array_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
@@ -2852,7 +2852,7 @@ sample_lambda_1d_array(struct gl_context *ctx,
if (magStart < magEnd) {
/* do the magnified texels */
- switch (tObj->MagFilter) {
+ switch (tObj->Sampler.MagFilter) {
case GL_NEAREST:
for (i = magStart; i < magEnd; i++)
sample_1d_array_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel],
@@ -2975,13 +2975,13 @@ choose_depth_texture_level(const struct gl_texture_object *tObj, GLfloat lambda)
{
GLint level;
- if (tObj->MinFilter == GL_NEAREST || tObj->MinFilter == GL_LINEAR) {
+ if (tObj->Sampler.MinFilter == GL_NEAREST || tObj->Sampler.MinFilter == GL_LINEAR) {
/* no mipmapping - use base level */
level = tObj->BaseLevel;
}
else {
/* choose mipmap level */
- lambda = CLAMP(lambda, tObj->MinLod, tObj->MaxLod);
+ lambda = CLAMP(lambda, tObj->Sampler.MinLod, tObj->Sampler.MaxLod);
level = (GLint) lambda;
level = CLAMP(level, tObj->BaseLevel, tObj->_MaxLevel);
}
@@ -3020,14 +3020,14 @@ sample_depth_texture( struct gl_context *ctx,
tObj->Target == GL_TEXTURE_1D_ARRAY_EXT ||
tObj->Target == GL_TEXTURE_2D_ARRAY_EXT);
- ambient = tObj->CompareFailValue;
+ ambient = tObj->Sampler.CompareFailValue;
- /* XXXX if tObj->MinFilter != tObj->MagFilter, we're ignoring lambda */
+ /* XXXX if tObj->Sampler.MinFilter != tObj->Sampler.MagFilter, we're ignoring lambda */
- function = (tObj->CompareMode == GL_COMPARE_R_TO_TEXTURE_ARB) ?
- tObj->CompareFunc : GL_NONE;
+ function = (tObj->Sampler.CompareMode == GL_COMPARE_R_TO_TEXTURE_ARB) ?
+ tObj->Sampler.CompareFunc : GL_NONE;
- if (tObj->MagFilter == GL_NEAREST) {
+ if (tObj->Sampler.MagFilter == GL_NEAREST) {
GLuint i;
for (i = 0; i < n; i++) {
GLfloat depthSample, depthRef;
@@ -3040,14 +3040,14 @@ sample_depth_texture( struct gl_context *ctx,
img->FetchTexelf(img, col, row, slice, &depthSample);
}
else {
- depthSample = tObj->BorderColor.f[0];
+ depthSample = tObj->Sampler.BorderColor.f[0];
}
depthRef = CLAMP(texcoords[i][compare_coord], 0.0F, 1.0F);
result = shadow_compare(function, depthRef, depthSample, ambient);
- switch (tObj->DepthMode) {
+ switch (tObj->Sampler.DepthMode) {
case GL_LUMINANCE:
ASSIGN_4V(texel[i], result, result, result, 1.0F);
break;
@@ -3067,7 +3067,7 @@ sample_depth_texture( struct gl_context *ctx,
}
else {
GLuint i;
- ASSERT(tObj->MagFilter == GL_LINEAR);
+ ASSERT(tObj->Sampler.MagFilter == GL_LINEAR);
for (i = 0; i < n; i++) {
GLfloat depth00, depth01, depth10, depth11, depthRef;
GLint i0, i1, j0, j1;
@@ -3095,21 +3095,21 @@ sample_depth_texture( struct gl_context *ctx,
}
if (slice < 0 || slice >= (GLint) depth) {
- depth00 = tObj->BorderColor.f[0];
- depth01 = tObj->BorderColor.f[0];
- depth10 = tObj->BorderColor.f[0];
- depth11 = tObj->BorderColor.f[0];
+ depth00 = tObj->Sampler.BorderColor.f[0];
+ depth01 = tObj->Sampler.BorderColor.f[0];
+ depth10 = tObj->Sampler.BorderColor.f[0];
+ depth11 = tObj->Sampler.BorderColor.f[0];
}
else {
/* get four depth samples from the texture */
if (useBorderTexel & (I0BIT | J0BIT)) {
- depth00 = tObj->BorderColor.f[0];
+ depth00 = tObj->Sampler.BorderColor.f[0];
}
else {
img->FetchTexelf(img, i0, j0, slice, &depth00);
}
if (useBorderTexel & (I1BIT | J0BIT)) {
- depth10 = tObj->BorderColor.f[0];
+ depth10 = tObj->Sampler.BorderColor.f[0];
}
else {
img->FetchTexelf(img, i1, j0, slice, &depth10);
@@ -3117,13 +3117,13 @@ sample_depth_texture( struct gl_context *ctx,
if (tObj->Target != GL_TEXTURE_1D_ARRAY_EXT) {
if (useBorderTexel & (I0BIT | J1BIT)) {
- depth01 = tObj->BorderColor.f[0];
+ depth01 = tObj->Sampler.BorderColor.f[0];
}
else {
img->FetchTexelf(img, i0, j1, slice, &depth01);
}
if (useBorderTexel & (I1BIT | J1BIT)) {
- depth11 = tObj->BorderColor.f[0];
+ depth11 = tObj->Sampler.BorderColor.f[0];
}
else {
img->FetchTexelf(img, i1, j1, slice, &depth11);
@@ -3141,7 +3141,7 @@ sample_depth_texture( struct gl_context *ctx,
depth00, depth01, depth10, depth11,
ambient, wi, wj);
- switch (tObj->DepthMode) {
+ switch (tObj->Sampler.DepthMode) {
case GL_LUMINANCE:
ASSIGN_4V(texel[i], result, result, result, 1.0F);
break;
@@ -3197,7 +3197,8 @@ _swrast_choose_texture_sample_func( struct gl_context *ctx,
return &null_sample_func;
}
else {
- const GLboolean needLambda = (GLboolean) (t->MinFilter != t->MagFilter);
+ const GLboolean needLambda =
+ (GLboolean) (t->Sampler.MinFilter != t->Sampler.MagFilter);
const GLenum format = t->Image[0][t->BaseLevel]->_BaseFormat;
switch (t->Target) {
@@ -3208,11 +3209,11 @@ _swrast_choose_texture_sample_func( struct gl_context *ctx,
else if (needLambda) {
return &sample_lambda_1d;
}
- else if (t->MinFilter == GL_LINEAR) {
+ else if (t->Sampler.MinFilter == GL_LINEAR) {
return &sample_linear_1d;
}
else {
- ASSERT(t->MinFilter == GL_NEAREST);
+ ASSERT(t->Sampler.MinFilter == GL_NEAREST);
return &sample_nearest_1d;
}
case GL_TEXTURE_2D:
@@ -3222,22 +3223,22 @@ _swrast_choose_texture_sample_func( struct gl_context *ctx,
else if (needLambda) {
return &sample_lambda_2d;
}
- else if (t->MinFilter == GL_LINEAR) {
+ else if (t->Sampler.MinFilter == GL_LINEAR) {
return &sample_linear_2d;
}
else {
/* check for a few optimized cases */
const struct gl_texture_image *img = t->Image[0][t->BaseLevel];
- ASSERT(t->MinFilter == GL_NEAREST);
- if (t->WrapS == GL_REPEAT &&
- t->WrapT == GL_REPEAT &&
+ ASSERT(t->Sampler.MinFilter == GL_NEAREST);
+ if (t->Sampler.WrapS == GL_REPEAT &&
+ t->Sampler.WrapT == GL_REPEAT &&
img->_IsPowerOfTwo &&
img->Border == 0 &&
img->TexFormat == MESA_FORMAT_RGB888) {
return &opt_sample_rgb_2d;
}
- else if (t->WrapS == GL_REPEAT &&
- t->WrapT == GL_REPEAT &&
+ else if (t->Sampler.WrapS == GL_REPEAT &&
+ t->Sampler.WrapT == GL_REPEAT &&
img->_IsPowerOfTwo &&
img->Border == 0 &&
img->TexFormat == MESA_FORMAT_RGBA8888) {
@@ -3251,22 +3252,22 @@ _swrast_choose_texture_sample_func( struct gl_context *ctx,
if (needLambda) {
return &sample_lambda_3d;
}
- else if (t->MinFilter == GL_LINEAR) {
+ else if (t->Sampler.MinFilter == GL_LINEAR) {
return &sample_linear_3d;
}
else {
- ASSERT(t->MinFilter == GL_NEAREST);
+ ASSERT(t->Sampler.MinFilter == GL_NEAREST);
return &sample_nearest_3d;
}
case GL_TEXTURE_CUBE_MAP:
if (needLambda) {
return &sample_lambda_cube;
}
- else if (t->MinFilter == GL_LINEAR) {
+ else if (t->Sampler.MinFilter == GL_LINEAR) {
return &sample_linear_cube;
}
else {
- ASSERT(t->MinFilter == GL_NEAREST);
+ ASSERT(t->Sampler.MinFilter == GL_NEAREST);
return &sample_nearest_cube;
}
case GL_TEXTURE_RECTANGLE_NV:
@@ -3276,33 +3277,33 @@ _swrast_choose_texture_sample_func( struct gl_context *ctx,
else if (needLambda) {
return &sample_lambda_rect;
}
- else if (t->MinFilter == GL_LINEAR) {
+ else if (t->Sampler.MinFilter == GL_LINEAR) {
return &sample_linear_rect;
}
else {
- ASSERT(t->MinFilter == GL_NEAREST);
+ ASSERT(t->Sampler.MinFilter == GL_NEAREST);
return &sample_nearest_rect;
}
case GL_TEXTURE_1D_ARRAY_EXT:
if (needLambda) {
return &sample_lambda_1d_array;
}
- else if (t->MinFilter == GL_LINEAR) {
+ else if (t->Sampler.MinFilter == GL_LINEAR) {
return &sample_linear_1d_array;
}
else {
- ASSERT(t->MinFilter == GL_NEAREST);
+ ASSERT(t->Sampler.MinFilter == GL_NEAREST);
return &sample_nearest_1d_array;
}
case GL_TEXTURE_2D_ARRAY_EXT:
if (needLambda) {
return &sample_lambda_2d_array;
}
- else if (t->MinFilter == GL_LINEAR) {
+ else if (t->Sampler.MinFilter == GL_LINEAR) {
return &sample_linear_2d_array;
}
else {
- ASSERT(t->MinFilter == GL_NEAREST);
+ ASSERT(t->Sampler.MinFilter == GL_NEAREST);
return &sample_nearest_2d_array;
}
default:
diff --git a/mesalib/src/mesa/swrast/s_triangle.c b/mesalib/src/mesa/swrast/s_triangle.c
index c2c1ce221..8a9671aa0 100644
--- a/mesalib/src/mesa/swrast/s_triangle.c
+++ b/mesalib/src/mesa/swrast/s_triangle.c
@@ -1,1143 +1,1143 @@
-/*
- * Mesa 3-D graphics library
- * Version: 7.3
- *
- * Copyright (C) 1999-2007 Brian Paul All Rights Reserved.
- *
- * Permission is hereby granted, free of charge, to any person obtaining a
- * copy of this software and associated documentation files (the "Software"),
- * to deal in the Software without restriction, including without limitation
- * the rights to use, copy, modify, merge, publish, distribute, sublicense,
- * and/or sell copies of the Software, and to permit persons to whom the
- * Software is furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included
- * in all copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
- * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
- * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
- * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
- * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
- */
-
-
-/*
- * When the device driver doesn't implement triangle rasterization it
- * can hook in _swrast_Triangle, which eventually calls one of these
- * functions to draw triangles.
- */
-
-#include "main/glheader.h"
-#include "main/context.h"
-#include "main/colormac.h"
-#include "main/imports.h"
-#include "main/macros.h"
-#include "main/mtypes.h"
-#include "main/state.h"
-#include "program/prog_instruction.h"
-
-#include "s_aatriangle.h"
-#include "s_context.h"
-#include "s_feedback.h"
-#include "s_span.h"
-#include "s_triangle.h"
-
-
-/**
- * Test if a triangle should be culled. Used for feedback and selection mode.
- * \return GL_TRUE if the triangle is to be culled, GL_FALSE otherwise.
- */
-GLboolean
-_swrast_culltriangle( struct gl_context *ctx,
- const SWvertex *v0,
- const SWvertex *v1,
- const SWvertex *v2 )
-{
- SWcontext *swrast = SWRAST_CONTEXT(ctx);
- GLfloat ex = v1->attrib[FRAG_ATTRIB_WPOS][0] - v0->attrib[FRAG_ATTRIB_WPOS][0];
- GLfloat ey = v1->attrib[FRAG_ATTRIB_WPOS][1] - v0->attrib[FRAG_ATTRIB_WPOS][1];
- GLfloat fx = v2->attrib[FRAG_ATTRIB_WPOS][0] - v0->attrib[FRAG_ATTRIB_WPOS][0];
- GLfloat fy = v2->attrib[FRAG_ATTRIB_WPOS][1] - v0->attrib[FRAG_ATTRIB_WPOS][1];
- GLfloat c = ex*fy-ey*fx;
-
- if (c * swrast->_BackfaceSign * swrast->_BackfaceCullSign <= 0.0F)
- return GL_FALSE;
-
- return GL_TRUE;
-}
-
-
-
-/*
- * Render a flat-shaded RGBA triangle.
- */
-#define NAME flat_rgba_triangle
-#define INTERP_Z 1
-#define SETUP_CODE \
- ASSERT(ctx->Texture._EnabledCoordUnits == 0);\
- ASSERT(ctx->Light.ShadeModel==GL_FLAT); \
- span.interpMask |= SPAN_RGBA; \
- span.red = ChanToFixed(v2->color[0]); \
- span.green = ChanToFixed(v2->color[1]); \
- span.blue = ChanToFixed(v2->color[2]); \
- span.alpha = ChanToFixed(v2->color[3]); \
- span.redStep = 0; \
- span.greenStep = 0; \
- span.blueStep = 0; \
- span.alphaStep = 0;
-#define RENDER_SPAN( span ) _swrast_write_rgba_span(ctx, &span);
-#include "s_tritemp.h"
-
-
-
-/*
- * Render a smooth-shaded RGBA triangle.
- */
-#define NAME smooth_rgba_triangle
-#define INTERP_Z 1
-#define INTERP_RGB 1
-#define INTERP_ALPHA 1
-#define SETUP_CODE \
- { \
- /* texturing must be off */ \
- ASSERT(ctx->Texture._EnabledCoordUnits == 0); \
- ASSERT(ctx->Light.ShadeModel==GL_SMOOTH); \
- }
-#define RENDER_SPAN( span ) _swrast_write_rgba_span(ctx, &span);
-#include "s_tritemp.h"
-
-
-
-/*
- * Render an RGB, GL_DECAL, textured triangle.
- * Interpolate S,T only w/out mipmapping or perspective correction.
- *
- * No fog. No depth testing.
- */
-#define NAME simple_textured_triangle
-#define INTERP_INT_TEX 1
-#define S_SCALE twidth
-#define T_SCALE theight
-
-#define SETUP_CODE \
- struct gl_renderbuffer *rb = ctx->DrawBuffer->_ColorDrawBuffers[0]; \
- const struct gl_texture_object *obj = \
- ctx->Texture.Unit[0].CurrentTex[TEXTURE_2D_INDEX]; \
- const struct gl_texture_image *texImg = \
- obj->Image[0][obj->BaseLevel]; \
- const GLfloat twidth = (GLfloat) texImg->Width; \
- const GLfloat theight = (GLfloat) texImg->Height; \
- const GLint twidth_log2 = texImg->WidthLog2; \
- const GLubyte *texture = (const GLubyte *) texImg->Data; \
- const GLint smask = texImg->Width - 1; \
- const GLint tmask = texImg->Height - 1; \
- ASSERT(texImg->TexFormat == MESA_FORMAT_RGB888); \
- if (!rb || !texture) { \
- return; \
- }
-
-#define RENDER_SPAN( span ) \
- GLuint i; \
- GLubyte rgb[MAX_WIDTH][3]; \
- span.intTex[0] -= FIXED_HALF; /* off-by-one error? */ \
- span.intTex[1] -= FIXED_HALF; \
- for (i = 0; i < span.end; i++) { \
- GLint s = FixedToInt(span.intTex[0]) & smask; \
- GLint t = FixedToInt(span.intTex[1]) & tmask; \
- GLint pos = (t << twidth_log2) + s; \
- pos = pos + pos + pos; /* multiply by 3 */ \
- rgb[i][RCOMP] = texture[pos+2]; \
- rgb[i][GCOMP] = texture[pos+1]; \
- rgb[i][BCOMP] = texture[pos+0]; \
- span.intTex[0] += span.intTexStep[0]; \
- span.intTex[1] += span.intTexStep[1]; \
- } \
- rb->PutRowRGB(ctx, rb, span.end, span.x, span.y, rgb, NULL);
-
-#include "s_tritemp.h"
-
-
-
-/*
- * Render an RGB, GL_DECAL, textured triangle.
- * Interpolate S,T, GL_LESS depth test, w/out mipmapping or
- * perspective correction.
- * Depth buffer bits must be <= sizeof(DEFAULT_SOFTWARE_DEPTH_TYPE)
- *
- * No fog.
- */
-#define NAME simple_z_textured_triangle
-#define INTERP_Z 1
-#define DEPTH_TYPE DEFAULT_SOFTWARE_DEPTH_TYPE
-#define INTERP_INT_TEX 1
-#define S_SCALE twidth
-#define T_SCALE theight
-
-#define SETUP_CODE \
- struct gl_renderbuffer *rb = ctx->DrawBuffer->_ColorDrawBuffers[0]; \
- const struct gl_texture_object *obj = \
- ctx->Texture.Unit[0].CurrentTex[TEXTURE_2D_INDEX]; \
- const struct gl_texture_image *texImg = \
- obj->Image[0][obj->BaseLevel]; \
- const GLfloat twidth = (GLfloat) texImg->Width; \
- const GLfloat theight = (GLfloat) texImg->Height; \
- const GLint twidth_log2 = texImg->WidthLog2; \
- const GLubyte *texture = (const GLubyte *) texImg->Data; \
- const GLint smask = texImg->Width - 1; \
- const GLint tmask = texImg->Height - 1; \
- ASSERT(texImg->TexFormat == MESA_FORMAT_RGB888); \
- if (!rb || !texture) { \
- return; \
- }
-
-#define RENDER_SPAN( span ) \
- GLuint i; \
- GLubyte rgb[MAX_WIDTH][3]; \
- span.intTex[0] -= FIXED_HALF; /* off-by-one error? */ \
- span.intTex[1] -= FIXED_HALF; \
- for (i = 0; i < span.end; i++) { \
- const GLuint z = FixedToDepth(span.z); \
- if (z < zRow[i]) { \
- GLint s = FixedToInt(span.intTex[0]) & smask; \
- GLint t = FixedToInt(span.intTex[1]) & tmask; \
- GLint pos = (t << twidth_log2) + s; \
- pos = pos + pos + pos; /* multiply by 3 */ \
- rgb[i][RCOMP] = texture[pos+2]; \
- rgb[i][GCOMP] = texture[pos+1]; \
- rgb[i][BCOMP] = texture[pos+0]; \
- zRow[i] = z; \
- span.array->mask[i] = 1; \
- } \
- else { \
- span.array->mask[i] = 0; \
- } \
- span.intTex[0] += span.intTexStep[0]; \
- span.intTex[1] += span.intTexStep[1]; \
- span.z += span.zStep; \
- } \
- rb->PutRowRGB(ctx, rb, span.end, span.x, span.y, rgb, span.array->mask);
-
-#include "s_tritemp.h"
-
-
-#if CHAN_TYPE != GL_FLOAT
-
-struct affine_info
-{
- GLenum filter;
- GLenum format;
- GLenum envmode;
- GLint smask, tmask;
- GLint twidth_log2;
- const GLchan *texture;
- GLfixed er, eg, eb, ea;
- GLint tbytesline, tsize;
-};
-
-
-static INLINE GLint
-ilerp(GLint t, GLint a, GLint b)
-{
- return a + ((t * (b - a)) >> FIXED_SHIFT);
-}
-
-static INLINE GLint
-ilerp_2d(GLint ia, GLint ib, GLint v00, GLint v10, GLint v01, GLint v11)
-{
- const GLint temp0 = ilerp(ia, v00, v10);
- const GLint temp1 = ilerp(ia, v01, v11);
- return ilerp(ib, temp0, temp1);
-}
-
-
-/* This function can handle GL_NEAREST or GL_LINEAR sampling of 2D RGB or RGBA
- * textures with GL_REPLACE, GL_MODULATE, GL_BLEND, GL_DECAL or GL_ADD
- * texture env modes.
- */
-static INLINE void
-affine_span(struct gl_context *ctx, SWspan *span,
- struct affine_info *info)
-{
- GLchan sample[4]; /* the filtered texture sample */
- const GLuint texEnableSave = ctx->Texture._EnabledCoordUnits;
-
- /* Instead of defining a function for each mode, a test is done
- * between the outer and inner loops. This is to reduce code size
- * and complexity. Observe that an optimizing compiler kills
- * unused variables (for instance tf,sf,ti,si in case of GL_NEAREST).
- */
-
-#define NEAREST_RGB \
- sample[RCOMP] = tex00[2]; \
- sample[GCOMP] = tex00[1]; \
- sample[BCOMP] = tex00[0]; \
- sample[ACOMP] = CHAN_MAX;
-
-#define LINEAR_RGB \
- sample[RCOMP] = ilerp_2d(sf, tf, tex00[2], tex01[2], tex10[2], tex11[2]);\
- sample[GCOMP] = ilerp_2d(sf, tf, tex00[1], tex01[1], tex10[1], tex11[1]);\
- sample[BCOMP] = ilerp_2d(sf, tf, tex00[0], tex01[0], tex10[0], tex11[0]);\
- sample[ACOMP] = CHAN_MAX;
-
-#define NEAREST_RGBA \
- sample[RCOMP] = tex00[3]; \
- sample[GCOMP] = tex00[2]; \
- sample[BCOMP] = tex00[1]; \
- sample[ACOMP] = tex00[0];
-
-#define LINEAR_RGBA \
- sample[RCOMP] = ilerp_2d(sf, tf, tex00[3], tex01[3], tex10[3], tex11[3]);\
- sample[GCOMP] = ilerp_2d(sf, tf, tex00[2], tex01[2], tex10[2], tex11[2]);\
- sample[BCOMP] = ilerp_2d(sf, tf, tex00[1], tex01[1], tex10[1], tex11[1]);\
- sample[ACOMP] = ilerp_2d(sf, tf, tex00[0], tex01[0], tex10[0], tex11[0])
-
-#define MODULATE \
- dest[RCOMP] = span->red * (sample[RCOMP] + 1u) >> (FIXED_SHIFT + 8); \
- dest[GCOMP] = span->green * (sample[GCOMP] + 1u) >> (FIXED_SHIFT + 8); \
- dest[BCOMP] = span->blue * (sample[BCOMP] + 1u) >> (FIXED_SHIFT + 8); \
- dest[ACOMP] = span->alpha * (sample[ACOMP] + 1u) >> (FIXED_SHIFT + 8)
-
-#define DECAL \
- dest[RCOMP] = ((CHAN_MAX - sample[ACOMP]) * span->red + \
- ((sample[ACOMP] + 1) * sample[RCOMP] << FIXED_SHIFT)) \
- >> (FIXED_SHIFT + 8); \
- dest[GCOMP] = ((CHAN_MAX - sample[ACOMP]) * span->green + \
- ((sample[ACOMP] + 1) * sample[GCOMP] << FIXED_SHIFT)) \
- >> (FIXED_SHIFT + 8); \
- dest[BCOMP] = ((CHAN_MAX - sample[ACOMP]) * span->blue + \
- ((sample[ACOMP] + 1) * sample[BCOMP] << FIXED_SHIFT)) \
- >> (FIXED_SHIFT + 8); \
- dest[ACOMP] = FixedToInt(span->alpha)
-
-#define BLEND \
- dest[RCOMP] = ((CHAN_MAX - sample[RCOMP]) * span->red \
- + (sample[RCOMP] + 1) * info->er) >> (FIXED_SHIFT + 8); \
- dest[GCOMP] = ((CHAN_MAX - sample[GCOMP]) * span->green \
- + (sample[GCOMP] + 1) * info->eg) >> (FIXED_SHIFT + 8); \
- dest[BCOMP] = ((CHAN_MAX - sample[BCOMP]) * span->blue \
- + (sample[BCOMP] + 1) * info->eb) >> (FIXED_SHIFT + 8); \
- dest[ACOMP] = span->alpha * (sample[ACOMP] + 1) >> (FIXED_SHIFT + 8)
-
-#define REPLACE COPY_CHAN4(dest, sample)
-
-#define ADD \
- { \
- GLint rSum = FixedToInt(span->red) + (GLint) sample[RCOMP]; \
- GLint gSum = FixedToInt(span->green) + (GLint) sample[GCOMP]; \
- GLint bSum = FixedToInt(span->blue) + (GLint) sample[BCOMP]; \
- dest[RCOMP] = MIN2(rSum, CHAN_MAX); \
- dest[GCOMP] = MIN2(gSum, CHAN_MAX); \
- dest[BCOMP] = MIN2(bSum, CHAN_MAX); \
- dest[ACOMP] = span->alpha * (sample[ACOMP] + 1) >> (FIXED_SHIFT + 8); \
- }
-
-/* shortcuts */
-
-#define NEAREST_RGB_REPLACE \
- NEAREST_RGB; \
- dest[0] = sample[0]; \
- dest[1] = sample[1]; \
- dest[2] = sample[2]; \
- dest[3] = FixedToInt(span->alpha);
-
-#define NEAREST_RGBA_REPLACE \
- dest[RCOMP] = tex00[3]; \
- dest[GCOMP] = tex00[2]; \
- dest[BCOMP] = tex00[1]; \
- dest[ACOMP] = tex00[0]
-
-#define SPAN_NEAREST(DO_TEX, COMPS) \
- for (i = 0; i < span->end; i++) { \
- /* Isn't it necessary to use FixedFloor below?? */ \
- GLint s = FixedToInt(span->intTex[0]) & info->smask; \
- GLint t = FixedToInt(span->intTex[1]) & info->tmask; \
- GLint pos = (t << info->twidth_log2) + s; \
- const GLchan *tex00 = info->texture + COMPS * pos; \
- DO_TEX; \
- span->red += span->redStep; \
- span->green += span->greenStep; \
- span->blue += span->blueStep; \
- span->alpha += span->alphaStep; \
- span->intTex[0] += span->intTexStep[0]; \
- span->intTex[1] += span->intTexStep[1]; \
- dest += 4; \
- }
-
-#define SPAN_LINEAR(DO_TEX, COMPS) \
- for (i = 0; i < span->end; i++) { \
- /* Isn't it necessary to use FixedFloor below?? */ \
- const GLint s = FixedToInt(span->intTex[0]) & info->smask; \
- const GLint t = FixedToInt(span->intTex[1]) & info->tmask; \
- const GLfixed sf = span->intTex[0] & FIXED_FRAC_MASK; \
- const GLfixed tf = span->intTex[1] & FIXED_FRAC_MASK; \
- const GLint pos = (t << info->twidth_log2) + s; \
- const GLchan *tex00 = info->texture + COMPS * pos; \
- const GLchan *tex10 = tex00 + info->tbytesline; \
- const GLchan *tex01 = tex00 + COMPS; \
- const GLchan *tex11 = tex10 + COMPS; \
- if (t == info->tmask) { \
- tex10 -= info->tsize; \
- tex11 -= info->tsize; \
- } \
- if (s == info->smask) { \
- tex01 -= info->tbytesline; \
- tex11 -= info->tbytesline; \
- } \
- DO_TEX; \
- span->red += span->redStep; \
- span->green += span->greenStep; \
- span->blue += span->blueStep; \
- span->alpha += span->alphaStep; \
- span->intTex[0] += span->intTexStep[0]; \
- span->intTex[1] += span->intTexStep[1]; \
- dest += 4; \
- }
-
-
- GLuint i;
- GLchan *dest = span->array->rgba[0];
-
- /* Disable tex units so they're not re-applied in swrast_write_rgba_span */
- ctx->Texture._EnabledCoordUnits = 0x0;
-
- span->intTex[0] -= FIXED_HALF;
- span->intTex[1] -= FIXED_HALF;
- switch (info->filter) {
- case GL_NEAREST:
- switch (info->format) {
- case MESA_FORMAT_RGB888:
- switch (info->envmode) {
- case GL_MODULATE:
- SPAN_NEAREST(NEAREST_RGB;MODULATE,3);
- break;
- case GL_DECAL:
- case GL_REPLACE:
- SPAN_NEAREST(NEAREST_RGB_REPLACE,3);
- break;
- case GL_BLEND:
- SPAN_NEAREST(NEAREST_RGB;BLEND,3);
- break;
- case GL_ADD:
- SPAN_NEAREST(NEAREST_RGB;ADD,3);
- break;
- default:
- _mesa_problem(ctx, "bad tex env mode in SPAN_LINEAR");
- return;
- }
- break;
- case MESA_FORMAT_RGBA8888:
- switch(info->envmode) {
- case GL_MODULATE:
- SPAN_NEAREST(NEAREST_RGBA;MODULATE,4);
- break;
- case GL_DECAL:
- SPAN_NEAREST(NEAREST_RGBA;DECAL,4);
- break;
- case GL_BLEND:
- SPAN_NEAREST(NEAREST_RGBA;BLEND,4);
- break;
- case GL_ADD:
- SPAN_NEAREST(NEAREST_RGBA;ADD,4);
- break;
- case GL_REPLACE:
- SPAN_NEAREST(NEAREST_RGBA_REPLACE,4);
- break;
- default:
- _mesa_problem(ctx, "bad tex env mode (2) in SPAN_LINEAR");
- return;
- }
- break;
- }
- break;
-
- case GL_LINEAR:
- span->intTex[0] -= FIXED_HALF;
- span->intTex[1] -= FIXED_HALF;
- switch (info->format) {
- case MESA_FORMAT_RGB888:
- switch (info->envmode) {
- case GL_MODULATE:
- SPAN_LINEAR(LINEAR_RGB;MODULATE,3);
- break;
- case GL_DECAL:
- case GL_REPLACE:
- SPAN_LINEAR(LINEAR_RGB;REPLACE,3);
- break;
- case GL_BLEND:
- SPAN_LINEAR(LINEAR_RGB;BLEND,3);
- break;
- case GL_ADD:
- SPAN_LINEAR(LINEAR_RGB;ADD,3);
- break;
- default:
- _mesa_problem(ctx, "bad tex env mode (3) in SPAN_LINEAR");
- return;
- }
- break;
- case MESA_FORMAT_RGBA8888:
- switch (info->envmode) {
- case GL_MODULATE:
- SPAN_LINEAR(LINEAR_RGBA;MODULATE,4);
- break;
- case GL_DECAL:
- SPAN_LINEAR(LINEAR_RGBA;DECAL,4);
- break;
- case GL_BLEND:
- SPAN_LINEAR(LINEAR_RGBA;BLEND,4);
- break;
- case GL_ADD:
- SPAN_LINEAR(LINEAR_RGBA;ADD,4);
- break;
- case GL_REPLACE:
- SPAN_LINEAR(LINEAR_RGBA;REPLACE,4);
- break;
- default:
- _mesa_problem(ctx, "bad tex env mode (4) in SPAN_LINEAR");
- return;
- }
- break;
- }
- break;
- }
- span->interpMask &= ~SPAN_RGBA;
- ASSERT(span->arrayMask & SPAN_RGBA);
-
- _swrast_write_rgba_span(ctx, span);
-
- /* re-enable texture units */
- ctx->Texture._EnabledCoordUnits = texEnableSave;
-
-#undef SPAN_NEAREST
-#undef SPAN_LINEAR
-}
-
-
-
-/*
- * Render an RGB/RGBA textured triangle without perspective correction.
- */
-#define NAME affine_textured_triangle
-#define INTERP_Z 1
-#define INTERP_RGB 1
-#define INTERP_ALPHA 1
-#define INTERP_INT_TEX 1
-#define S_SCALE twidth
-#define T_SCALE theight
-
-#define SETUP_CODE \
- struct affine_info info; \
- struct gl_texture_unit *unit = ctx->Texture.Unit+0; \
- const struct gl_texture_object *obj = \
- ctx->Texture.Unit[0].CurrentTex[TEXTURE_2D_INDEX]; \
- const struct gl_texture_image *texImg = \
- obj->Image[0][obj->BaseLevel]; \
- const GLfloat twidth = (GLfloat) texImg->Width; \
- const GLfloat theight = (GLfloat) texImg->Height; \
- info.texture = (const GLchan *) texImg->Data; \
- info.twidth_log2 = texImg->WidthLog2; \
- info.smask = texImg->Width - 1; \
- info.tmask = texImg->Height - 1; \
- info.format = texImg->TexFormat; \
- info.filter = obj->MinFilter; \
- info.envmode = unit->EnvMode; \
- info.er = 0; \
- info.eg = 0; \
- info.eb = 0; \
- span.arrayMask |= SPAN_RGBA; \
- \
- if (info.envmode == GL_BLEND) { \
- /* potential off-by-one error here? (1.0f -> 2048 -> 0) */ \
- info.er = FloatToFixed(unit->EnvColor[RCOMP] * CHAN_MAXF); \
- info.eg = FloatToFixed(unit->EnvColor[GCOMP] * CHAN_MAXF); \
- info.eb = FloatToFixed(unit->EnvColor[BCOMP] * CHAN_MAXF); \
- info.ea = FloatToFixed(unit->EnvColor[ACOMP] * CHAN_MAXF); \
- } \
- if (!info.texture) { \
- /* this shouldn't happen */ \
- return; \
- } \
- \
- switch (info.format) { \
- case MESA_FORMAT_RGB888: \
- info.tbytesline = texImg->Width * 3; \
- break; \
- case MESA_FORMAT_RGBA8888: \
- info.tbytesline = texImg->Width * 4; \
- break; \
- default: \
- _mesa_problem(NULL, "Bad texture format in affine_texture_triangle");\
- return; \
- } \
- info.tsize = texImg->Height * info.tbytesline;
-
-#define RENDER_SPAN( span ) affine_span(ctx, &span, &info);
-
-#include "s_tritemp.h"
-
-
-
-struct persp_info
-{
- GLenum filter;
- GLenum format;
- GLenum envmode;
- GLint smask, tmask;
- GLint twidth_log2;
- const GLchan *texture;
- GLfixed er, eg, eb, ea; /* texture env color */
- GLint tbytesline, tsize;
-};
-
-
-static INLINE void
-fast_persp_span(struct gl_context *ctx, SWspan *span,
- struct persp_info *info)
-{
- GLchan sample[4]; /* the filtered texture sample */
-
- /* Instead of defining a function for each mode, a test is done
- * between the outer and inner loops. This is to reduce code size
- * and complexity. Observe that an optimizing compiler kills
- * unused variables (for instance tf,sf,ti,si in case of GL_NEAREST).
- */
-#define SPAN_NEAREST(DO_TEX,COMP) \
- for (i = 0; i < span->end; i++) { \
- GLdouble invQ = tex_coord[2] ? \
- (1.0 / tex_coord[2]) : 1.0; \
- GLfloat s_tmp = (GLfloat) (tex_coord[0] * invQ); \
- GLfloat t_tmp = (GLfloat) (tex_coord[1] * invQ); \
- GLint s = IFLOOR(s_tmp) & info->smask; \
- GLint t = IFLOOR(t_tmp) & info->tmask; \
- GLint pos = (t << info->twidth_log2) + s; \
- const GLchan *tex00 = info->texture + COMP * pos; \
- DO_TEX; \
- span->red += span->redStep; \
- span->green += span->greenStep; \
- span->blue += span->blueStep; \
- span->alpha += span->alphaStep; \
- tex_coord[0] += tex_step[0]; \
- tex_coord[1] += tex_step[1]; \
- tex_coord[2] += tex_step[2]; \
- dest += 4; \
- }
-
-#define SPAN_LINEAR(DO_TEX,COMP) \
- for (i = 0; i < span->end; i++) { \
- GLdouble invQ = tex_coord[2] ? \
- (1.0 / tex_coord[2]) : 1.0; \
- const GLfloat s_tmp = (GLfloat) (tex_coord[0] * invQ); \
- const GLfloat t_tmp = (GLfloat) (tex_coord[1] * invQ); \
- const GLfixed s_fix = FloatToFixed(s_tmp) - FIXED_HALF; \
- const GLfixed t_fix = FloatToFixed(t_tmp) - FIXED_HALF; \
- const GLint s = FixedToInt(FixedFloor(s_fix)) & info->smask; \
- const GLint t = FixedToInt(FixedFloor(t_fix)) & info->tmask; \
- const GLfixed sf = s_fix & FIXED_FRAC_MASK; \
- const GLfixed tf = t_fix & FIXED_FRAC_MASK; \
- const GLint pos = (t << info->twidth_log2) + s; \
- const GLchan *tex00 = info->texture + COMP * pos; \
- const GLchan *tex10 = tex00 + info->tbytesline; \
- const GLchan *tex01 = tex00 + COMP; \
- const GLchan *tex11 = tex10 + COMP; \
- if (t == info->tmask) { \
- tex10 -= info->tsize; \
- tex11 -= info->tsize; \
- } \
- if (s == info->smask) { \
- tex01 -= info->tbytesline; \
- tex11 -= info->tbytesline; \
- } \
- DO_TEX; \
- span->red += span->redStep; \
- span->green += span->greenStep; \
- span->blue += span->blueStep; \
- span->alpha += span->alphaStep; \
- tex_coord[0] += tex_step[0]; \
- tex_coord[1] += tex_step[1]; \
- tex_coord[2] += tex_step[2]; \
- dest += 4; \
- }
-
- GLuint i;
- GLfloat tex_coord[3], tex_step[3];
- GLchan *dest = span->array->rgba[0];
-
- const GLuint texEnableSave = ctx->Texture._EnabledCoordUnits;
- ctx->Texture._EnabledCoordUnits = 0;
-
- tex_coord[0] = span->attrStart[FRAG_ATTRIB_TEX0][0] * (info->smask + 1);
- tex_step[0] = span->attrStepX[FRAG_ATTRIB_TEX0][0] * (info->smask + 1);
- tex_coord[1] = span->attrStart[FRAG_ATTRIB_TEX0][1] * (info->tmask + 1);
- tex_step[1] = span->attrStepX[FRAG_ATTRIB_TEX0][1] * (info->tmask + 1);
- /* span->attrStart[FRAG_ATTRIB_TEX0][2] only if 3D-texturing, here only 2D */
- tex_coord[2] = span->attrStart[FRAG_ATTRIB_TEX0][3];
- tex_step[2] = span->attrStepX[FRAG_ATTRIB_TEX0][3];
-
- switch (info->filter) {
- case GL_NEAREST:
- switch (info->format) {
- case MESA_FORMAT_RGB888:
- switch (info->envmode) {
- case GL_MODULATE:
- SPAN_NEAREST(NEAREST_RGB;MODULATE,3);
- break;
- case GL_DECAL:
- case GL_REPLACE:
- SPAN_NEAREST(NEAREST_RGB_REPLACE,3);
- break;
- case GL_BLEND:
- SPAN_NEAREST(NEAREST_RGB;BLEND,3);
- break;
- case GL_ADD:
- SPAN_NEAREST(NEAREST_RGB;ADD,3);
- break;
- default:
- _mesa_problem(ctx, "bad tex env mode (5) in SPAN_LINEAR");
- return;
- }
- break;
- case MESA_FORMAT_RGBA8888:
- switch(info->envmode) {
- case GL_MODULATE:
- SPAN_NEAREST(NEAREST_RGBA;MODULATE,4);
- break;
- case GL_DECAL:
- SPAN_NEAREST(NEAREST_RGBA;DECAL,4);
- break;
- case GL_BLEND:
- SPAN_NEAREST(NEAREST_RGBA;BLEND,4);
- break;
- case GL_ADD:
- SPAN_NEAREST(NEAREST_RGBA;ADD,4);
- break;
- case GL_REPLACE:
- SPAN_NEAREST(NEAREST_RGBA_REPLACE,4);
- break;
- default:
- _mesa_problem(ctx, "bad tex env mode (6) in SPAN_LINEAR");
- return;
- }
- break;
- }
- break;
-
- case GL_LINEAR:
- switch (info->format) {
- case MESA_FORMAT_RGB888:
- switch (info->envmode) {
- case GL_MODULATE:
- SPAN_LINEAR(LINEAR_RGB;MODULATE,3);
- break;
- case GL_DECAL:
- case GL_REPLACE:
- SPAN_LINEAR(LINEAR_RGB;REPLACE,3);
- break;
- case GL_BLEND:
- SPAN_LINEAR(LINEAR_RGB;BLEND,3);
- break;
- case GL_ADD:
- SPAN_LINEAR(LINEAR_RGB;ADD,3);
- break;
- default:
- _mesa_problem(ctx, "bad tex env mode (7) in SPAN_LINEAR");
- return;
- }
- break;
- case MESA_FORMAT_RGBA8888:
- switch (info->envmode) {
- case GL_MODULATE:
- SPAN_LINEAR(LINEAR_RGBA;MODULATE,4);
- break;
- case GL_DECAL:
- SPAN_LINEAR(LINEAR_RGBA;DECAL,4);
- break;
- case GL_BLEND:
- SPAN_LINEAR(LINEAR_RGBA;BLEND,4);
- break;
- case GL_ADD:
- SPAN_LINEAR(LINEAR_RGBA;ADD,4);
- break;
- case GL_REPLACE:
- SPAN_LINEAR(LINEAR_RGBA;REPLACE,4);
- break;
- default:
- _mesa_problem(ctx, "bad tex env mode (8) in SPAN_LINEAR");
- return;
- }
- break;
- }
- break;
- }
-
- ASSERT(span->arrayMask & SPAN_RGBA);
- _swrast_write_rgba_span(ctx, span);
-
-#undef SPAN_NEAREST
-#undef SPAN_LINEAR
-
- /* restore state */
- ctx->Texture._EnabledCoordUnits = texEnableSave;
-}
-
-
-/*
- * Render an perspective corrected RGB/RGBA textured triangle.
- * The Q (aka V in Mesa) coordinate must be zero such that the divide
- * by interpolated Q/W comes out right.
- *
- */
-#define NAME persp_textured_triangle
-#define INTERP_Z 1
-#define INTERP_RGB 1
-#define INTERP_ALPHA 1
-#define INTERP_ATTRIBS 1
-
-#define SETUP_CODE \
- struct persp_info info; \
- const struct gl_texture_unit *unit = ctx->Texture.Unit+0; \
- const struct gl_texture_object *obj = \
- ctx->Texture.Unit[0].CurrentTex[TEXTURE_2D_INDEX]; \
- const struct gl_texture_image *texImg = \
- obj->Image[0][obj->BaseLevel]; \
- info.texture = (const GLchan *) texImg->Data; \
- info.twidth_log2 = texImg->WidthLog2; \
- info.smask = texImg->Width - 1; \
- info.tmask = texImg->Height - 1; \
- info.format = texImg->TexFormat; \
- info.filter = obj->MinFilter; \
- info.envmode = unit->EnvMode; \
- info.er = 0; \
- info.eg = 0; \
- info.eb = 0; \
- \
- if (info.envmode == GL_BLEND) { \
- /* potential off-by-one error here? (1.0f -> 2048 -> 0) */ \
- info.er = FloatToFixed(unit->EnvColor[RCOMP] * CHAN_MAXF); \
- info.eg = FloatToFixed(unit->EnvColor[GCOMP] * CHAN_MAXF); \
- info.eb = FloatToFixed(unit->EnvColor[BCOMP] * CHAN_MAXF); \
- info.ea = FloatToFixed(unit->EnvColor[ACOMP] * CHAN_MAXF); \
- } \
- if (!info.texture) { \
- /* this shouldn't happen */ \
- return; \
- } \
- \
- switch (info.format) { \
- case MESA_FORMAT_RGB888: \
- info.tbytesline = texImg->Width * 3; \
- break; \
- case MESA_FORMAT_RGBA8888: \
- info.tbytesline = texImg->Width * 4; \
- break; \
- default: \
- _mesa_problem(NULL, "Bad texture format in persp_textured_triangle");\
- return; \
- } \
- info.tsize = texImg->Height * info.tbytesline;
-
-#define RENDER_SPAN( span ) \
- span.interpMask &= ~SPAN_RGBA; \
- span.arrayMask |= SPAN_RGBA; \
- fast_persp_span(ctx, &span, &info);
-
-#include "s_tritemp.h"
-
-#endif /*CHAN_TYPE != GL_FLOAT*/
-
-
-
-/*
- * Render an RGBA triangle with arbitrary attributes.
- */
-#define NAME general_triangle
-#define INTERP_Z 1
-#define INTERP_RGB 1
-#define INTERP_ALPHA 1
-#define INTERP_ATTRIBS 1
-#define RENDER_SPAN( span ) _swrast_write_rgba_span(ctx, &span);
-#include "s_tritemp.h"
-
-
-
-
-/*
- * Special tri function for occlusion testing
- */
-#define NAME occlusion_zless_triangle
-#define INTERP_Z 1
-#define SETUP_CODE \
- struct gl_renderbuffer *rb = ctx->DrawBuffer->_DepthBuffer; \
- struct gl_query_object *q = ctx->Query.CurrentOcclusionObject; \
- ASSERT(ctx->Depth.Test); \
- ASSERT(!ctx->Depth.Mask); \
- ASSERT(ctx->Depth.Func == GL_LESS); \
- if (!q) { \
- return; \
- }
-#define RENDER_SPAN( span ) \
- if (rb->Format == MESA_FORMAT_Z16) { \
- GLuint i; \
- const GLushort *zRow = (const GLushort *) \
- rb->GetPointer(ctx, rb, span.x, span.y); \
- for (i = 0; i < span.end; i++) { \
- GLuint z = FixedToDepth(span.z); \
- if (z < zRow[i]) { \
- q->Result++; \
- } \
- span.z += span.zStep; \
- } \
- } \
- else { \
- GLuint i; \
- const GLuint *zRow = (const GLuint *) \
- rb->GetPointer(ctx, rb, span.x, span.y); \
- for (i = 0; i < span.end; i++) { \
- if ((GLuint)span.z < zRow[i]) { \
- q->Result++; \
- } \
- span.z += span.zStep; \
- } \
- }
-#include "s_tritemp.h"
-
-
-
-static void
-nodraw_triangle( struct gl_context *ctx,
- const SWvertex *v0,
- const SWvertex *v1,
- const SWvertex *v2 )
-{
- (void) (ctx && v0 && v1 && v2);
-}
-
-
-/*
- * This is used when separate specular color is enabled, but not
- * texturing. We add the specular color to the primary color,
- * draw the triangle, then restore the original primary color.
- * Inefficient, but seldom needed.
- */
-void
-_swrast_add_spec_terms_triangle(struct gl_context *ctx, const SWvertex *v0,
- const SWvertex *v1, const SWvertex *v2)
-{
- SWvertex *ncv0 = (SWvertex *)v0; /* drop const qualifier */
- SWvertex *ncv1 = (SWvertex *)v1;
- SWvertex *ncv2 = (SWvertex *)v2;
- GLfloat rSum, gSum, bSum;
- GLchan cSave[3][4];
-
- /* save original colors */
- COPY_CHAN4( cSave[0], ncv0->color );
- COPY_CHAN4( cSave[1], ncv1->color );
- COPY_CHAN4( cSave[2], ncv2->color );
- /* sum v0 */
- rSum = CHAN_TO_FLOAT(ncv0->color[0]) + ncv0->attrib[FRAG_ATTRIB_COL1][0];
- gSum = CHAN_TO_FLOAT(ncv0->color[1]) + ncv0->attrib[FRAG_ATTRIB_COL1][1];
- bSum = CHAN_TO_FLOAT(ncv0->color[2]) + ncv0->attrib[FRAG_ATTRIB_COL1][2];
- UNCLAMPED_FLOAT_TO_CHAN(ncv0->color[0], rSum);
- UNCLAMPED_FLOAT_TO_CHAN(ncv0->color[1], gSum);
- UNCLAMPED_FLOAT_TO_CHAN(ncv0->color[2], bSum);
- /* sum v1 */
- rSum = CHAN_TO_FLOAT(ncv1->color[0]) + ncv1->attrib[FRAG_ATTRIB_COL1][0];
- gSum = CHAN_TO_FLOAT(ncv1->color[1]) + ncv1->attrib[FRAG_ATTRIB_COL1][1];
- bSum = CHAN_TO_FLOAT(ncv1->color[2]) + ncv1->attrib[FRAG_ATTRIB_COL1][2];
- UNCLAMPED_FLOAT_TO_CHAN(ncv1->color[0], rSum);
- UNCLAMPED_FLOAT_TO_CHAN(ncv1->color[1], gSum);
- UNCLAMPED_FLOAT_TO_CHAN(ncv1->color[2], bSum);
- /* sum v2 */
- rSum = CHAN_TO_FLOAT(ncv2->color[0]) + ncv2->attrib[FRAG_ATTRIB_COL1][0];
- gSum = CHAN_TO_FLOAT(ncv2->color[1]) + ncv2->attrib[FRAG_ATTRIB_COL1][1];
- bSum = CHAN_TO_FLOAT(ncv2->color[2]) + ncv2->attrib[FRAG_ATTRIB_COL1][2];
- UNCLAMPED_FLOAT_TO_CHAN(ncv2->color[0], rSum);
- UNCLAMPED_FLOAT_TO_CHAN(ncv2->color[1], gSum);
- UNCLAMPED_FLOAT_TO_CHAN(ncv2->color[2], bSum);
- /* draw */
- SWRAST_CONTEXT(ctx)->SpecTriangle( ctx, ncv0, ncv1, ncv2 );
- /* restore original colors */
- COPY_CHAN4( ncv0->color, cSave[0] );
- COPY_CHAN4( ncv1->color, cSave[1] );
- COPY_CHAN4( ncv2->color, cSave[2] );
-}
-
-
-
-#ifdef DEBUG
-
-/* record the current triangle function name */
-const char *_mesa_triFuncName = NULL;
-
-#define USE(triFunc) \
-do { \
- _mesa_triFuncName = #triFunc; \
- /*printf("%s\n", _mesa_triFuncName);*/ \
- swrast->Triangle = triFunc; \
-} while (0)
-
-#else
-
-#define USE(triFunc) swrast->Triangle = triFunc;
-
-#endif
-
-
-
-
-/*
- * Determine which triangle rendering function to use given the current
- * rendering context.
- *
- * Please update the summary flag _SWRAST_NEW_TRIANGLE if you add or
- * remove tests to this code.
- */
-void
-_swrast_choose_triangle( struct gl_context *ctx )
-{
- SWcontext *swrast = SWRAST_CONTEXT(ctx);
-
- if (ctx->Polygon.CullFlag &&
- ctx->Polygon.CullFaceMode == GL_FRONT_AND_BACK) {
- USE(nodraw_triangle);
- return;
- }
-
- if (ctx->RenderMode==GL_RENDER) {
-
- if (ctx->Polygon.SmoothFlag) {
- _swrast_set_aa_triangle_function(ctx);
- ASSERT(swrast->Triangle);
- return;
- }
-
- /* special case for occlusion testing */
- if (ctx->Query.CurrentOcclusionObject &&
- ctx->Depth.Test &&
- ctx->Depth.Mask == GL_FALSE &&
- ctx->Depth.Func == GL_LESS &&
- !ctx->Stencil._Enabled) {
- if (ctx->Color.ColorMask[0][0] == 0 &&
- ctx->Color.ColorMask[0][1] == 0 &&
- ctx->Color.ColorMask[0][2] == 0 &&
- ctx->Color.ColorMask[0][3] == 0) {
- USE(occlusion_zless_triangle);
- return;
- }
- }
-
- /*
- * XXX should examine swrast->_ActiveAttribMask to determine what
- * needs to be interpolated.
- */
- if (ctx->Texture._EnabledCoordUnits ||
- ctx->FragmentProgram._Current ||
- ctx->ATIFragmentShader._Enabled ||
- _mesa_need_secondary_color(ctx) ||
- swrast->_FogEnabled) {
- /* Ugh, we do a _lot_ of tests to pick the best textured tri func */
- const struct gl_texture_object *texObj2D;
- const struct gl_texture_image *texImg;
- GLenum minFilter, magFilter, envMode;
- gl_format format;
- texObj2D = ctx->Texture.Unit[0].CurrentTex[TEXTURE_2D_INDEX];
-
- texImg = texObj2D ? texObj2D->Image[0][texObj2D->BaseLevel] : NULL;
- format = texImg ? texImg->TexFormat : MESA_FORMAT_NONE;
- minFilter = texObj2D ? texObj2D->MinFilter : GL_NONE;
- magFilter = texObj2D ? texObj2D->MagFilter : GL_NONE;
- envMode = ctx->Texture.Unit[0].EnvMode;
-
- /* First see if we can use an optimized 2-D texture function */
- if (ctx->Texture._EnabledCoordUnits == 0x1
- && !ctx->FragmentProgram._Current
- && !ctx->ATIFragmentShader._Enabled
- && ctx->Texture._EnabledUnits == 0x1
- && ctx->Texture.Unit[0]._ReallyEnabled == TEXTURE_2D_BIT
- && texObj2D->WrapS == GL_REPEAT
- && texObj2D->WrapT == GL_REPEAT
- && texObj2D->_Swizzle == SWIZZLE_NOOP
- && texImg->_IsPowerOfTwo
- && texImg->Border == 0
- && texImg->Width == texImg->RowStride
- && (format == MESA_FORMAT_RGB888 || format == MESA_FORMAT_RGBA8888)
- && minFilter == magFilter
- && ctx->Light.Model.ColorControl == GL_SINGLE_COLOR
- && !swrast->_FogEnabled
- && ctx->Texture.Unit[0].EnvMode != GL_COMBINE_EXT
- && ctx->Texture.Unit[0].EnvMode != GL_COMBINE4_NV) {
- if (ctx->Hint.PerspectiveCorrection==GL_FASTEST) {
- if (minFilter == GL_NEAREST
- && format == MESA_FORMAT_RGB888
- && (envMode == GL_REPLACE || envMode == GL_DECAL)
- && ((swrast->_RasterMask == (DEPTH_BIT | TEXTURE_BIT)
- && ctx->Depth.Func == GL_LESS
- && ctx->Depth.Mask == GL_TRUE)
- || swrast->_RasterMask == TEXTURE_BIT)
- && ctx->Polygon.StippleFlag == GL_FALSE
- && ctx->DrawBuffer->Visual.depthBits <= 16) {
- if (swrast->_RasterMask == (DEPTH_BIT | TEXTURE_BIT)) {
- USE(simple_z_textured_triangle);
- }
- else {
- USE(simple_textured_triangle);
- }
- }
- else {
-#if CHAN_BITS != 8
- USE(general_triangle);
-#else
- if (format == MESA_FORMAT_RGBA8888 && !_mesa_little_endian()) {
- /* We only handle RGBA8888 correctly on little endian
- * in the optimized code above.
- */
- USE(general_triangle);
- }
- else {
- USE(affine_textured_triangle);
- }
-#endif
- }
- }
- else {
-#if CHAN_BITS != 8
- USE(general_triangle);
-#else
- USE(persp_textured_triangle);
-#endif
- }
- }
- else {
- /* general case textured triangles */
- USE(general_triangle);
- }
- }
- else {
- ASSERT(!swrast->_FogEnabled);
- ASSERT(!_mesa_need_secondary_color(ctx));
- if (ctx->Light.ShadeModel==GL_SMOOTH) {
- /* smooth shaded, no texturing, stippled or some raster ops */
-#if CHAN_BITS != 8
- USE(general_triangle);
-#else
- USE(smooth_rgba_triangle);
-#endif
- }
- else {
- /* flat shaded, no texturing, stippled or some raster ops */
-#if CHAN_BITS != 8
- USE(general_triangle);
-#else
- USE(flat_rgba_triangle);
-#endif
- }
- }
- }
- else if (ctx->RenderMode==GL_FEEDBACK) {
- USE(_swrast_feedback_triangle);
- }
- else {
- /* GL_SELECT mode */
- USE(_swrast_select_triangle);
- }
-}
+/*
+ * Mesa 3-D graphics library
+ * Version: 7.3
+ *
+ * Copyright (C) 1999-2007 Brian Paul All Rights Reserved.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included
+ * in all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
+ * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
+ * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+ */
+
+
+/*
+ * When the device driver doesn't implement triangle rasterization it
+ * can hook in _swrast_Triangle, which eventually calls one of these
+ * functions to draw triangles.
+ */
+
+#include "main/glheader.h"
+#include "main/context.h"
+#include "main/colormac.h"
+#include "main/imports.h"
+#include "main/macros.h"
+#include "main/mtypes.h"
+#include "main/state.h"
+#include "program/prog_instruction.h"
+
+#include "s_aatriangle.h"
+#include "s_context.h"
+#include "s_feedback.h"
+#include "s_span.h"
+#include "s_triangle.h"
+
+
+/**
+ * Test if a triangle should be culled. Used for feedback and selection mode.
+ * \return GL_TRUE if the triangle is to be culled, GL_FALSE otherwise.
+ */
+GLboolean
+_swrast_culltriangle( struct gl_context *ctx,
+ const SWvertex *v0,
+ const SWvertex *v1,
+ const SWvertex *v2 )
+{
+ SWcontext *swrast = SWRAST_CONTEXT(ctx);
+ GLfloat ex = v1->attrib[FRAG_ATTRIB_WPOS][0] - v0->attrib[FRAG_ATTRIB_WPOS][0];
+ GLfloat ey = v1->attrib[FRAG_ATTRIB_WPOS][1] - v0->attrib[FRAG_ATTRIB_WPOS][1];
+ GLfloat fx = v2->attrib[FRAG_ATTRIB_WPOS][0] - v0->attrib[FRAG_ATTRIB_WPOS][0];
+ GLfloat fy = v2->attrib[FRAG_ATTRIB_WPOS][1] - v0->attrib[FRAG_ATTRIB_WPOS][1];
+ GLfloat c = ex*fy-ey*fx;
+
+ if (c * swrast->_BackfaceSign * swrast->_BackfaceCullSign <= 0.0F)
+ return GL_FALSE;
+
+ return GL_TRUE;
+}
+
+
+
+/*
+ * Render a flat-shaded RGBA triangle.
+ */
+#define NAME flat_rgba_triangle
+#define INTERP_Z 1
+#define SETUP_CODE \
+ ASSERT(ctx->Texture._EnabledCoordUnits == 0);\
+ ASSERT(ctx->Light.ShadeModel==GL_FLAT); \
+ span.interpMask |= SPAN_RGBA; \
+ span.red = ChanToFixed(v2->color[0]); \
+ span.green = ChanToFixed(v2->color[1]); \
+ span.blue = ChanToFixed(v2->color[2]); \
+ span.alpha = ChanToFixed(v2->color[3]); \
+ span.redStep = 0; \
+ span.greenStep = 0; \
+ span.blueStep = 0; \
+ span.alphaStep = 0;
+#define RENDER_SPAN( span ) _swrast_write_rgba_span(ctx, &span);
+#include "s_tritemp.h"
+
+
+
+/*
+ * Render a smooth-shaded RGBA triangle.
+ */
+#define NAME smooth_rgba_triangle
+#define INTERP_Z 1
+#define INTERP_RGB 1
+#define INTERP_ALPHA 1
+#define SETUP_CODE \
+ { \
+ /* texturing must be off */ \
+ ASSERT(ctx->Texture._EnabledCoordUnits == 0); \
+ ASSERT(ctx->Light.ShadeModel==GL_SMOOTH); \
+ }
+#define RENDER_SPAN( span ) _swrast_write_rgba_span(ctx, &span);
+#include "s_tritemp.h"
+
+
+
+/*
+ * Render an RGB, GL_DECAL, textured triangle.
+ * Interpolate S,T only w/out mipmapping or perspective correction.
+ *
+ * No fog. No depth testing.
+ */
+#define NAME simple_textured_triangle
+#define INTERP_INT_TEX 1
+#define S_SCALE twidth
+#define T_SCALE theight
+
+#define SETUP_CODE \
+ struct gl_renderbuffer *rb = ctx->DrawBuffer->_ColorDrawBuffers[0]; \
+ const struct gl_texture_object *obj = \
+ ctx->Texture.Unit[0].CurrentTex[TEXTURE_2D_INDEX]; \
+ const struct gl_texture_image *texImg = \
+ obj->Image[0][obj->BaseLevel]; \
+ const GLfloat twidth = (GLfloat) texImg->Width; \
+ const GLfloat theight = (GLfloat) texImg->Height; \
+ const GLint twidth_log2 = texImg->WidthLog2; \
+ const GLubyte *texture = (const GLubyte *) texImg->Data; \
+ const GLint smask = texImg->Width - 1; \
+ const GLint tmask = texImg->Height - 1; \
+ ASSERT(texImg->TexFormat == MESA_FORMAT_RGB888); \
+ if (!rb || !texture) { \
+ return; \
+ }
+
+#define RENDER_SPAN( span ) \
+ GLuint i; \
+ GLubyte rgb[MAX_WIDTH][3]; \
+ span.intTex[0] -= FIXED_HALF; /* off-by-one error? */ \
+ span.intTex[1] -= FIXED_HALF; \
+ for (i = 0; i < span.end; i++) { \
+ GLint s = FixedToInt(span.intTex[0]) & smask; \
+ GLint t = FixedToInt(span.intTex[1]) & tmask; \
+ GLint pos = (t << twidth_log2) + s; \
+ pos = pos + pos + pos; /* multiply by 3 */ \
+ rgb[i][RCOMP] = texture[pos+2]; \
+ rgb[i][GCOMP] = texture[pos+1]; \
+ rgb[i][BCOMP] = texture[pos+0]; \
+ span.intTex[0] += span.intTexStep[0]; \
+ span.intTex[1] += span.intTexStep[1]; \
+ } \
+ rb->PutRowRGB(ctx, rb, span.end, span.x, span.y, rgb, NULL);
+
+#include "s_tritemp.h"
+
+
+
+/*
+ * Render an RGB, GL_DECAL, textured triangle.
+ * Interpolate S,T, GL_LESS depth test, w/out mipmapping or
+ * perspective correction.
+ * Depth buffer bits must be <= sizeof(DEFAULT_SOFTWARE_DEPTH_TYPE)
+ *
+ * No fog.
+ */
+#define NAME simple_z_textured_triangle
+#define INTERP_Z 1
+#define DEPTH_TYPE DEFAULT_SOFTWARE_DEPTH_TYPE
+#define INTERP_INT_TEX 1
+#define S_SCALE twidth
+#define T_SCALE theight
+
+#define SETUP_CODE \
+ struct gl_renderbuffer *rb = ctx->DrawBuffer->_ColorDrawBuffers[0]; \
+ const struct gl_texture_object *obj = \
+ ctx->Texture.Unit[0].CurrentTex[TEXTURE_2D_INDEX]; \
+ const struct gl_texture_image *texImg = \
+ obj->Image[0][obj->BaseLevel]; \
+ const GLfloat twidth = (GLfloat) texImg->Width; \
+ const GLfloat theight = (GLfloat) texImg->Height; \
+ const GLint twidth_log2 = texImg->WidthLog2; \
+ const GLubyte *texture = (const GLubyte *) texImg->Data; \
+ const GLint smask = texImg->Width - 1; \
+ const GLint tmask = texImg->Height - 1; \
+ ASSERT(texImg->TexFormat == MESA_FORMAT_RGB888); \
+ if (!rb || !texture) { \
+ return; \
+ }
+
+#define RENDER_SPAN( span ) \
+ GLuint i; \
+ GLubyte rgb[MAX_WIDTH][3]; \
+ span.intTex[0] -= FIXED_HALF; /* off-by-one error? */ \
+ span.intTex[1] -= FIXED_HALF; \
+ for (i = 0; i < span.end; i++) { \
+ const GLuint z = FixedToDepth(span.z); \
+ if (z < zRow[i]) { \
+ GLint s = FixedToInt(span.intTex[0]) & smask; \
+ GLint t = FixedToInt(span.intTex[1]) & tmask; \
+ GLint pos = (t << twidth_log2) + s; \
+ pos = pos + pos + pos; /* multiply by 3 */ \
+ rgb[i][RCOMP] = texture[pos+2]; \
+ rgb[i][GCOMP] = texture[pos+1]; \
+ rgb[i][BCOMP] = texture[pos+0]; \
+ zRow[i] = z; \
+ span.array->mask[i] = 1; \
+ } \
+ else { \
+ span.array->mask[i] = 0; \
+ } \
+ span.intTex[0] += span.intTexStep[0]; \
+ span.intTex[1] += span.intTexStep[1]; \
+ span.z += span.zStep; \
+ } \
+ rb->PutRowRGB(ctx, rb, span.end, span.x, span.y, rgb, span.array->mask);
+
+#include "s_tritemp.h"
+
+
+#if CHAN_TYPE != GL_FLOAT
+
+struct affine_info
+{
+ GLenum filter;
+ GLenum format;
+ GLenum envmode;
+ GLint smask, tmask;
+ GLint twidth_log2;
+ const GLchan *texture;
+ GLfixed er, eg, eb, ea;
+ GLint tbytesline, tsize;
+};
+
+
+static INLINE GLint
+ilerp(GLint t, GLint a, GLint b)
+{
+ return a + ((t * (b - a)) >> FIXED_SHIFT);
+}
+
+static INLINE GLint
+ilerp_2d(GLint ia, GLint ib, GLint v00, GLint v10, GLint v01, GLint v11)
+{
+ const GLint temp0 = ilerp(ia, v00, v10);
+ const GLint temp1 = ilerp(ia, v01, v11);
+ return ilerp(ib, temp0, temp1);
+}
+
+
+/* This function can handle GL_NEAREST or GL_LINEAR sampling of 2D RGB or RGBA
+ * textures with GL_REPLACE, GL_MODULATE, GL_BLEND, GL_DECAL or GL_ADD
+ * texture env modes.
+ */
+static INLINE void
+affine_span(struct gl_context *ctx, SWspan *span,
+ struct affine_info *info)
+{
+ GLchan sample[4]; /* the filtered texture sample */
+ const GLuint texEnableSave = ctx->Texture._EnabledCoordUnits;
+
+ /* Instead of defining a function for each mode, a test is done
+ * between the outer and inner loops. This is to reduce code size
+ * and complexity. Observe that an optimizing compiler kills
+ * unused variables (for instance tf,sf,ti,si in case of GL_NEAREST).
+ */
+
+#define NEAREST_RGB \
+ sample[RCOMP] = tex00[2]; \
+ sample[GCOMP] = tex00[1]; \
+ sample[BCOMP] = tex00[0]; \
+ sample[ACOMP] = CHAN_MAX;
+
+#define LINEAR_RGB \
+ sample[RCOMP] = ilerp_2d(sf, tf, tex00[2], tex01[2], tex10[2], tex11[2]);\
+ sample[GCOMP] = ilerp_2d(sf, tf, tex00[1], tex01[1], tex10[1], tex11[1]);\
+ sample[BCOMP] = ilerp_2d(sf, tf, tex00[0], tex01[0], tex10[0], tex11[0]);\
+ sample[ACOMP] = CHAN_MAX;
+
+#define NEAREST_RGBA \
+ sample[RCOMP] = tex00[3]; \
+ sample[GCOMP] = tex00[2]; \
+ sample[BCOMP] = tex00[1]; \
+ sample[ACOMP] = tex00[0];
+
+#define LINEAR_RGBA \
+ sample[RCOMP] = ilerp_2d(sf, tf, tex00[3], tex01[3], tex10[3], tex11[3]);\
+ sample[GCOMP] = ilerp_2d(sf, tf, tex00[2], tex01[2], tex10[2], tex11[2]);\
+ sample[BCOMP] = ilerp_2d(sf, tf, tex00[1], tex01[1], tex10[1], tex11[1]);\
+ sample[ACOMP] = ilerp_2d(sf, tf, tex00[0], tex01[0], tex10[0], tex11[0])
+
+#define MODULATE \
+ dest[RCOMP] = span->red * (sample[RCOMP] + 1u) >> (FIXED_SHIFT + 8); \
+ dest[GCOMP] = span->green * (sample[GCOMP] + 1u) >> (FIXED_SHIFT + 8); \
+ dest[BCOMP] = span->blue * (sample[BCOMP] + 1u) >> (FIXED_SHIFT + 8); \
+ dest[ACOMP] = span->alpha * (sample[ACOMP] + 1u) >> (FIXED_SHIFT + 8)
+
+#define DECAL \
+ dest[RCOMP] = ((CHAN_MAX - sample[ACOMP]) * span->red + \
+ ((sample[ACOMP] + 1) * sample[RCOMP] << FIXED_SHIFT)) \
+ >> (FIXED_SHIFT + 8); \
+ dest[GCOMP] = ((CHAN_MAX - sample[ACOMP]) * span->green + \
+ ((sample[ACOMP] + 1) * sample[GCOMP] << FIXED_SHIFT)) \
+ >> (FIXED_SHIFT + 8); \
+ dest[BCOMP] = ((CHAN_MAX - sample[ACOMP]) * span->blue + \
+ ((sample[ACOMP] + 1) * sample[BCOMP] << FIXED_SHIFT)) \
+ >> (FIXED_SHIFT + 8); \
+ dest[ACOMP] = FixedToInt(span->alpha)
+
+#define BLEND \
+ dest[RCOMP] = ((CHAN_MAX - sample[RCOMP]) * span->red \
+ + (sample[RCOMP] + 1) * info->er) >> (FIXED_SHIFT + 8); \
+ dest[GCOMP] = ((CHAN_MAX - sample[GCOMP]) * span->green \
+ + (sample[GCOMP] + 1) * info->eg) >> (FIXED_SHIFT + 8); \
+ dest[BCOMP] = ((CHAN_MAX - sample[BCOMP]) * span->blue \
+ + (sample[BCOMP] + 1) * info->eb) >> (FIXED_SHIFT + 8); \
+ dest[ACOMP] = span->alpha * (sample[ACOMP] + 1) >> (FIXED_SHIFT + 8)
+
+#define REPLACE COPY_CHAN4(dest, sample)
+
+#define ADD \
+ { \
+ GLint rSum = FixedToInt(span->red) + (GLint) sample[RCOMP]; \
+ GLint gSum = FixedToInt(span->green) + (GLint) sample[GCOMP]; \
+ GLint bSum = FixedToInt(span->blue) + (GLint) sample[BCOMP]; \
+ dest[RCOMP] = MIN2(rSum, CHAN_MAX); \
+ dest[GCOMP] = MIN2(gSum, CHAN_MAX); \
+ dest[BCOMP] = MIN2(bSum, CHAN_MAX); \
+ dest[ACOMP] = span->alpha * (sample[ACOMP] + 1) >> (FIXED_SHIFT + 8); \
+ }
+
+/* shortcuts */
+
+#define NEAREST_RGB_REPLACE \
+ NEAREST_RGB; \
+ dest[0] = sample[0]; \
+ dest[1] = sample[1]; \
+ dest[2] = sample[2]; \
+ dest[3] = FixedToInt(span->alpha);
+
+#define NEAREST_RGBA_REPLACE \
+ dest[RCOMP] = tex00[3]; \
+ dest[GCOMP] = tex00[2]; \
+ dest[BCOMP] = tex00[1]; \
+ dest[ACOMP] = tex00[0]
+
+#define SPAN_NEAREST(DO_TEX, COMPS) \
+ for (i = 0; i < span->end; i++) { \
+ /* Isn't it necessary to use FixedFloor below?? */ \
+ GLint s = FixedToInt(span->intTex[0]) & info->smask; \
+ GLint t = FixedToInt(span->intTex[1]) & info->tmask; \
+ GLint pos = (t << info->twidth_log2) + s; \
+ const GLchan *tex00 = info->texture + COMPS * pos; \
+ DO_TEX; \
+ span->red += span->redStep; \
+ span->green += span->greenStep; \
+ span->blue += span->blueStep; \
+ span->alpha += span->alphaStep; \
+ span->intTex[0] += span->intTexStep[0]; \
+ span->intTex[1] += span->intTexStep[1]; \
+ dest += 4; \
+ }
+
+#define SPAN_LINEAR(DO_TEX, COMPS) \
+ for (i = 0; i < span->end; i++) { \
+ /* Isn't it necessary to use FixedFloor below?? */ \
+ const GLint s = FixedToInt(span->intTex[0]) & info->smask; \
+ const GLint t = FixedToInt(span->intTex[1]) & info->tmask; \
+ const GLfixed sf = span->intTex[0] & FIXED_FRAC_MASK; \
+ const GLfixed tf = span->intTex[1] & FIXED_FRAC_MASK; \
+ const GLint pos = (t << info->twidth_log2) + s; \
+ const GLchan *tex00 = info->texture + COMPS * pos; \
+ const GLchan *tex10 = tex00 + info->tbytesline; \
+ const GLchan *tex01 = tex00 + COMPS; \
+ const GLchan *tex11 = tex10 + COMPS; \
+ if (t == info->tmask) { \
+ tex10 -= info->tsize; \
+ tex11 -= info->tsize; \
+ } \
+ if (s == info->smask) { \
+ tex01 -= info->tbytesline; \
+ tex11 -= info->tbytesline; \
+ } \
+ DO_TEX; \
+ span->red += span->redStep; \
+ span->green += span->greenStep; \
+ span->blue += span->blueStep; \
+ span->alpha += span->alphaStep; \
+ span->intTex[0] += span->intTexStep[0]; \
+ span->intTex[1] += span->intTexStep[1]; \
+ dest += 4; \
+ }
+
+
+ GLuint i;
+ GLchan *dest = span->array->rgba[0];
+
+ /* Disable tex units so they're not re-applied in swrast_write_rgba_span */
+ ctx->Texture._EnabledCoordUnits = 0x0;
+
+ span->intTex[0] -= FIXED_HALF;
+ span->intTex[1] -= FIXED_HALF;
+ switch (info->filter) {
+ case GL_NEAREST:
+ switch (info->format) {
+ case MESA_FORMAT_RGB888:
+ switch (info->envmode) {
+ case GL_MODULATE:
+ SPAN_NEAREST(NEAREST_RGB;MODULATE,3);
+ break;
+ case GL_DECAL:
+ case GL_REPLACE:
+ SPAN_NEAREST(NEAREST_RGB_REPLACE,3);
+ break;
+ case GL_BLEND:
+ SPAN_NEAREST(NEAREST_RGB;BLEND,3);
+ break;
+ case GL_ADD:
+ SPAN_NEAREST(NEAREST_RGB;ADD,3);
+ break;
+ default:
+ _mesa_problem(ctx, "bad tex env mode in SPAN_LINEAR");
+ return;
+ }
+ break;
+ case MESA_FORMAT_RGBA8888:
+ switch(info->envmode) {
+ case GL_MODULATE:
+ SPAN_NEAREST(NEAREST_RGBA;MODULATE,4);
+ break;
+ case GL_DECAL:
+ SPAN_NEAREST(NEAREST_RGBA;DECAL,4);
+ break;
+ case GL_BLEND:
+ SPAN_NEAREST(NEAREST_RGBA;BLEND,4);
+ break;
+ case GL_ADD:
+ SPAN_NEAREST(NEAREST_RGBA;ADD,4);
+ break;
+ case GL_REPLACE:
+ SPAN_NEAREST(NEAREST_RGBA_REPLACE,4);
+ break;
+ default:
+ _mesa_problem(ctx, "bad tex env mode (2) in SPAN_LINEAR");
+ return;
+ }
+ break;
+ }
+ break;
+
+ case GL_LINEAR:
+ span->intTex[0] -= FIXED_HALF;
+ span->intTex[1] -= FIXED_HALF;
+ switch (info->format) {
+ case MESA_FORMAT_RGB888:
+ switch (info->envmode) {
+ case GL_MODULATE:
+ SPAN_LINEAR(LINEAR_RGB;MODULATE,3);
+ break;
+ case GL_DECAL:
+ case GL_REPLACE:
+ SPAN_LINEAR(LINEAR_RGB;REPLACE,3);
+ break;
+ case GL_BLEND:
+ SPAN_LINEAR(LINEAR_RGB;BLEND,3);
+ break;
+ case GL_ADD:
+ SPAN_LINEAR(LINEAR_RGB;ADD,3);
+ break;
+ default:
+ _mesa_problem(ctx, "bad tex env mode (3) in SPAN_LINEAR");
+ return;
+ }
+ break;
+ case MESA_FORMAT_RGBA8888:
+ switch (info->envmode) {
+ case GL_MODULATE:
+ SPAN_LINEAR(LINEAR_RGBA;MODULATE,4);
+ break;
+ case GL_DECAL:
+ SPAN_LINEAR(LINEAR_RGBA;DECAL,4);
+ break;
+ case GL_BLEND:
+ SPAN_LINEAR(LINEAR_RGBA;BLEND,4);
+ break;
+ case GL_ADD:
+ SPAN_LINEAR(LINEAR_RGBA;ADD,4);
+ break;
+ case GL_REPLACE:
+ SPAN_LINEAR(LINEAR_RGBA;REPLACE,4);
+ break;
+ default:
+ _mesa_problem(ctx, "bad tex env mode (4) in SPAN_LINEAR");
+ return;
+ }
+ break;
+ }
+ break;
+ }
+ span->interpMask &= ~SPAN_RGBA;
+ ASSERT(span->arrayMask & SPAN_RGBA);
+
+ _swrast_write_rgba_span(ctx, span);
+
+ /* re-enable texture units */
+ ctx->Texture._EnabledCoordUnits = texEnableSave;
+
+#undef SPAN_NEAREST
+#undef SPAN_LINEAR
+}
+
+
+
+/*
+ * Render an RGB/RGBA textured triangle without perspective correction.
+ */
+#define NAME affine_textured_triangle
+#define INTERP_Z 1
+#define INTERP_RGB 1
+#define INTERP_ALPHA 1
+#define INTERP_INT_TEX 1
+#define S_SCALE twidth
+#define T_SCALE theight
+
+#define SETUP_CODE \
+ struct affine_info info; \
+ struct gl_texture_unit *unit = ctx->Texture.Unit+0; \
+ const struct gl_texture_object *obj = \
+ ctx->Texture.Unit[0].CurrentTex[TEXTURE_2D_INDEX]; \
+ const struct gl_texture_image *texImg = \
+ obj->Image[0][obj->BaseLevel]; \
+ const GLfloat twidth = (GLfloat) texImg->Width; \
+ const GLfloat theight = (GLfloat) texImg->Height; \
+ info.texture = (const GLchan *) texImg->Data; \
+ info.twidth_log2 = texImg->WidthLog2; \
+ info.smask = texImg->Width - 1; \
+ info.tmask = texImg->Height - 1; \
+ info.format = texImg->TexFormat; \
+ info.filter = obj->Sampler.MinFilter; \
+ info.envmode = unit->EnvMode; \
+ info.er = 0; \
+ info.eg = 0; \
+ info.eb = 0; \
+ span.arrayMask |= SPAN_RGBA; \
+ \
+ if (info.envmode == GL_BLEND) { \
+ /* potential off-by-one error here? (1.0f -> 2048 -> 0) */ \
+ info.er = FloatToFixed(unit->EnvColor[RCOMP] * CHAN_MAXF); \
+ info.eg = FloatToFixed(unit->EnvColor[GCOMP] * CHAN_MAXF); \
+ info.eb = FloatToFixed(unit->EnvColor[BCOMP] * CHAN_MAXF); \
+ info.ea = FloatToFixed(unit->EnvColor[ACOMP] * CHAN_MAXF); \
+ } \
+ if (!info.texture) { \
+ /* this shouldn't happen */ \
+ return; \
+ } \
+ \
+ switch (info.format) { \
+ case MESA_FORMAT_RGB888: \
+ info.tbytesline = texImg->Width * 3; \
+ break; \
+ case MESA_FORMAT_RGBA8888: \
+ info.tbytesline = texImg->Width * 4; \
+ break; \
+ default: \
+ _mesa_problem(NULL, "Bad texture format in affine_texture_triangle");\
+ return; \
+ } \
+ info.tsize = texImg->Height * info.tbytesline;
+
+#define RENDER_SPAN( span ) affine_span(ctx, &span, &info);
+
+#include "s_tritemp.h"
+
+
+
+struct persp_info
+{
+ GLenum filter;
+ GLenum format;
+ GLenum envmode;
+ GLint smask, tmask;
+ GLint twidth_log2;
+ const GLchan *texture;
+ GLfixed er, eg, eb, ea; /* texture env color */
+ GLint tbytesline, tsize;
+};
+
+
+static INLINE void
+fast_persp_span(struct gl_context *ctx, SWspan *span,
+ struct persp_info *info)
+{
+ GLchan sample[4]; /* the filtered texture sample */
+
+ /* Instead of defining a function for each mode, a test is done
+ * between the outer and inner loops. This is to reduce code size
+ * and complexity. Observe that an optimizing compiler kills
+ * unused variables (for instance tf,sf,ti,si in case of GL_NEAREST).
+ */
+#define SPAN_NEAREST(DO_TEX,COMP) \
+ for (i = 0; i < span->end; i++) { \
+ GLdouble invQ = tex_coord[2] ? \
+ (1.0 / tex_coord[2]) : 1.0; \
+ GLfloat s_tmp = (GLfloat) (tex_coord[0] * invQ); \
+ GLfloat t_tmp = (GLfloat) (tex_coord[1] * invQ); \
+ GLint s = IFLOOR(s_tmp) & info->smask; \
+ GLint t = IFLOOR(t_tmp) & info->tmask; \
+ GLint pos = (t << info->twidth_log2) + s; \
+ const GLchan *tex00 = info->texture + COMP * pos; \
+ DO_TEX; \
+ span->red += span->redStep; \
+ span->green += span->greenStep; \
+ span->blue += span->blueStep; \
+ span->alpha += span->alphaStep; \
+ tex_coord[0] += tex_step[0]; \
+ tex_coord[1] += tex_step[1]; \
+ tex_coord[2] += tex_step[2]; \
+ dest += 4; \
+ }
+
+#define SPAN_LINEAR(DO_TEX,COMP) \
+ for (i = 0; i < span->end; i++) { \
+ GLdouble invQ = tex_coord[2] ? \
+ (1.0 / tex_coord[2]) : 1.0; \
+ const GLfloat s_tmp = (GLfloat) (tex_coord[0] * invQ); \
+ const GLfloat t_tmp = (GLfloat) (tex_coord[1] * invQ); \
+ const GLfixed s_fix = FloatToFixed(s_tmp) - FIXED_HALF; \
+ const GLfixed t_fix = FloatToFixed(t_tmp) - FIXED_HALF; \
+ const GLint s = FixedToInt(FixedFloor(s_fix)) & info->smask; \
+ const GLint t = FixedToInt(FixedFloor(t_fix)) & info->tmask; \
+ const GLfixed sf = s_fix & FIXED_FRAC_MASK; \
+ const GLfixed tf = t_fix & FIXED_FRAC_MASK; \
+ const GLint pos = (t << info->twidth_log2) + s; \
+ const GLchan *tex00 = info->texture + COMP * pos; \
+ const GLchan *tex10 = tex00 + info->tbytesline; \
+ const GLchan *tex01 = tex00 + COMP; \
+ const GLchan *tex11 = tex10 + COMP; \
+ if (t == info->tmask) { \
+ tex10 -= info->tsize; \
+ tex11 -= info->tsize; \
+ } \
+ if (s == info->smask) { \
+ tex01 -= info->tbytesline; \
+ tex11 -= info->tbytesline; \
+ } \
+ DO_TEX; \
+ span->red += span->redStep; \
+ span->green += span->greenStep; \
+ span->blue += span->blueStep; \
+ span->alpha += span->alphaStep; \
+ tex_coord[0] += tex_step[0]; \
+ tex_coord[1] += tex_step[1]; \
+ tex_coord[2] += tex_step[2]; \
+ dest += 4; \
+ }
+
+ GLuint i;
+ GLfloat tex_coord[3], tex_step[3];
+ GLchan *dest = span->array->rgba[0];
+
+ const GLuint texEnableSave = ctx->Texture._EnabledCoordUnits;
+ ctx->Texture._EnabledCoordUnits = 0;
+
+ tex_coord[0] = span->attrStart[FRAG_ATTRIB_TEX0][0] * (info->smask + 1);
+ tex_step[0] = span->attrStepX[FRAG_ATTRIB_TEX0][0] * (info->smask + 1);
+ tex_coord[1] = span->attrStart[FRAG_ATTRIB_TEX0][1] * (info->tmask + 1);
+ tex_step[1] = span->attrStepX[FRAG_ATTRIB_TEX0][1] * (info->tmask + 1);
+ /* span->attrStart[FRAG_ATTRIB_TEX0][2] only if 3D-texturing, here only 2D */
+ tex_coord[2] = span->attrStart[FRAG_ATTRIB_TEX0][3];
+ tex_step[2] = span->attrStepX[FRAG_ATTRIB_TEX0][3];
+
+ switch (info->filter) {
+ case GL_NEAREST:
+ switch (info->format) {
+ case MESA_FORMAT_RGB888:
+ switch (info->envmode) {
+ case GL_MODULATE:
+ SPAN_NEAREST(NEAREST_RGB;MODULATE,3);
+ break;
+ case GL_DECAL:
+ case GL_REPLACE:
+ SPAN_NEAREST(NEAREST_RGB_REPLACE,3);
+ break;
+ case GL_BLEND:
+ SPAN_NEAREST(NEAREST_RGB;BLEND,3);
+ break;
+ case GL_ADD:
+ SPAN_NEAREST(NEAREST_RGB;ADD,3);
+ break;
+ default:
+ _mesa_problem(ctx, "bad tex env mode (5) in SPAN_LINEAR");
+ return;
+ }
+ break;
+ case MESA_FORMAT_RGBA8888:
+ switch(info->envmode) {
+ case GL_MODULATE:
+ SPAN_NEAREST(NEAREST_RGBA;MODULATE,4);
+ break;
+ case GL_DECAL:
+ SPAN_NEAREST(NEAREST_RGBA;DECAL,4);
+ break;
+ case GL_BLEND:
+ SPAN_NEAREST(NEAREST_RGBA;BLEND,4);
+ break;
+ case GL_ADD:
+ SPAN_NEAREST(NEAREST_RGBA;ADD,4);
+ break;
+ case GL_REPLACE:
+ SPAN_NEAREST(NEAREST_RGBA_REPLACE,4);
+ break;
+ default:
+ _mesa_problem(ctx, "bad tex env mode (6) in SPAN_LINEAR");
+ return;
+ }
+ break;
+ }
+ break;
+
+ case GL_LINEAR:
+ switch (info->format) {
+ case MESA_FORMAT_RGB888:
+ switch (info->envmode) {
+ case GL_MODULATE:
+ SPAN_LINEAR(LINEAR_RGB;MODULATE,3);
+ break;
+ case GL_DECAL:
+ case GL_REPLACE:
+ SPAN_LINEAR(LINEAR_RGB;REPLACE,3);
+ break;
+ case GL_BLEND:
+ SPAN_LINEAR(LINEAR_RGB;BLEND,3);
+ break;
+ case GL_ADD:
+ SPAN_LINEAR(LINEAR_RGB;ADD,3);
+ break;
+ default:
+ _mesa_problem(ctx, "bad tex env mode (7) in SPAN_LINEAR");
+ return;
+ }
+ break;
+ case MESA_FORMAT_RGBA8888:
+ switch (info->envmode) {
+ case GL_MODULATE:
+ SPAN_LINEAR(LINEAR_RGBA;MODULATE,4);
+ break;
+ case GL_DECAL:
+ SPAN_LINEAR(LINEAR_RGBA;DECAL,4);
+ break;
+ case GL_BLEND:
+ SPAN_LINEAR(LINEAR_RGBA;BLEND,4);
+ break;
+ case GL_ADD:
+ SPAN_LINEAR(LINEAR_RGBA;ADD,4);
+ break;
+ case GL_REPLACE:
+ SPAN_LINEAR(LINEAR_RGBA;REPLACE,4);
+ break;
+ default:
+ _mesa_problem(ctx, "bad tex env mode (8) in SPAN_LINEAR");
+ return;
+ }
+ break;
+ }
+ break;
+ }
+
+ ASSERT(span->arrayMask & SPAN_RGBA);
+ _swrast_write_rgba_span(ctx, span);
+
+#undef SPAN_NEAREST
+#undef SPAN_LINEAR
+
+ /* restore state */
+ ctx->Texture._EnabledCoordUnits = texEnableSave;
+}
+
+
+/*
+ * Render an perspective corrected RGB/RGBA textured triangle.
+ * The Q (aka V in Mesa) coordinate must be zero such that the divide
+ * by interpolated Q/W comes out right.
+ *
+ */
+#define NAME persp_textured_triangle
+#define INTERP_Z 1
+#define INTERP_RGB 1
+#define INTERP_ALPHA 1
+#define INTERP_ATTRIBS 1
+
+#define SETUP_CODE \
+ struct persp_info info; \
+ const struct gl_texture_unit *unit = ctx->Texture.Unit+0; \
+ const struct gl_texture_object *obj = \
+ ctx->Texture.Unit[0].CurrentTex[TEXTURE_2D_INDEX]; \
+ const struct gl_texture_image *texImg = \
+ obj->Image[0][obj->BaseLevel]; \
+ info.texture = (const GLchan *) texImg->Data; \
+ info.twidth_log2 = texImg->WidthLog2; \
+ info.smask = texImg->Width - 1; \
+ info.tmask = texImg->Height - 1; \
+ info.format = texImg->TexFormat; \
+ info.filter = obj->Sampler.MinFilter; \
+ info.envmode = unit->EnvMode; \
+ info.er = 0; \
+ info.eg = 0; \
+ info.eb = 0; \
+ \
+ if (info.envmode == GL_BLEND) { \
+ /* potential off-by-one error here? (1.0f -> 2048 -> 0) */ \
+ info.er = FloatToFixed(unit->EnvColor[RCOMP] * CHAN_MAXF); \
+ info.eg = FloatToFixed(unit->EnvColor[GCOMP] * CHAN_MAXF); \
+ info.eb = FloatToFixed(unit->EnvColor[BCOMP] * CHAN_MAXF); \
+ info.ea = FloatToFixed(unit->EnvColor[ACOMP] * CHAN_MAXF); \
+ } \
+ if (!info.texture) { \
+ /* this shouldn't happen */ \
+ return; \
+ } \
+ \
+ switch (info.format) { \
+ case MESA_FORMAT_RGB888: \
+ info.tbytesline = texImg->Width * 3; \
+ break; \
+ case MESA_FORMAT_RGBA8888: \
+ info.tbytesline = texImg->Width * 4; \
+ break; \
+ default: \
+ _mesa_problem(NULL, "Bad texture format in persp_textured_triangle");\
+ return; \
+ } \
+ info.tsize = texImg->Height * info.tbytesline;
+
+#define RENDER_SPAN( span ) \
+ span.interpMask &= ~SPAN_RGBA; \
+ span.arrayMask |= SPAN_RGBA; \
+ fast_persp_span(ctx, &span, &info);
+
+#include "s_tritemp.h"
+
+#endif /*CHAN_TYPE != GL_FLOAT*/
+
+
+
+/*
+ * Render an RGBA triangle with arbitrary attributes.
+ */
+#define NAME general_triangle
+#define INTERP_Z 1
+#define INTERP_RGB 1
+#define INTERP_ALPHA 1
+#define INTERP_ATTRIBS 1
+#define RENDER_SPAN( span ) _swrast_write_rgba_span(ctx, &span);
+#include "s_tritemp.h"
+
+
+
+
+/*
+ * Special tri function for occlusion testing
+ */
+#define NAME occlusion_zless_triangle
+#define INTERP_Z 1
+#define SETUP_CODE \
+ struct gl_renderbuffer *rb = ctx->DrawBuffer->_DepthBuffer; \
+ struct gl_query_object *q = ctx->Query.CurrentOcclusionObject; \
+ ASSERT(ctx->Depth.Test); \
+ ASSERT(!ctx->Depth.Mask); \
+ ASSERT(ctx->Depth.Func == GL_LESS); \
+ if (!q) { \
+ return; \
+ }
+#define RENDER_SPAN( span ) \
+ if (rb->Format == MESA_FORMAT_Z16) { \
+ GLuint i; \
+ const GLushort *zRow = (const GLushort *) \
+ rb->GetPointer(ctx, rb, span.x, span.y); \
+ for (i = 0; i < span.end; i++) { \
+ GLuint z = FixedToDepth(span.z); \
+ if (z < zRow[i]) { \
+ q->Result++; \
+ } \
+ span.z += span.zStep; \
+ } \
+ } \
+ else { \
+ GLuint i; \
+ const GLuint *zRow = (const GLuint *) \
+ rb->GetPointer(ctx, rb, span.x, span.y); \
+ for (i = 0; i < span.end; i++) { \
+ if ((GLuint)span.z < zRow[i]) { \
+ q->Result++; \
+ } \
+ span.z += span.zStep; \
+ } \
+ }
+#include "s_tritemp.h"
+
+
+
+static void
+nodraw_triangle( struct gl_context *ctx,
+ const SWvertex *v0,
+ const SWvertex *v1,
+ const SWvertex *v2 )
+{
+ (void) (ctx && v0 && v1 && v2);
+}
+
+
+/*
+ * This is used when separate specular color is enabled, but not
+ * texturing. We add the specular color to the primary color,
+ * draw the triangle, then restore the original primary color.
+ * Inefficient, but seldom needed.
+ */
+void
+_swrast_add_spec_terms_triangle(struct gl_context *ctx, const SWvertex *v0,
+ const SWvertex *v1, const SWvertex *v2)
+{
+ SWvertex *ncv0 = (SWvertex *)v0; /* drop const qualifier */
+ SWvertex *ncv1 = (SWvertex *)v1;
+ SWvertex *ncv2 = (SWvertex *)v2;
+ GLfloat rSum, gSum, bSum;
+ GLchan cSave[3][4];
+
+ /* save original colors */
+ COPY_CHAN4( cSave[0], ncv0->color );
+ COPY_CHAN4( cSave[1], ncv1->color );
+ COPY_CHAN4( cSave[2], ncv2->color );
+ /* sum v0 */
+ rSum = CHAN_TO_FLOAT(ncv0->color[0]) + ncv0->attrib[FRAG_ATTRIB_COL1][0];
+ gSum = CHAN_TO_FLOAT(ncv0->color[1]) + ncv0->attrib[FRAG_ATTRIB_COL1][1];
+ bSum = CHAN_TO_FLOAT(ncv0->color[2]) + ncv0->attrib[FRAG_ATTRIB_COL1][2];
+ UNCLAMPED_FLOAT_TO_CHAN(ncv0->color[0], rSum);
+ UNCLAMPED_FLOAT_TO_CHAN(ncv0->color[1], gSum);
+ UNCLAMPED_FLOAT_TO_CHAN(ncv0->color[2], bSum);
+ /* sum v1 */
+ rSum = CHAN_TO_FLOAT(ncv1->color[0]) + ncv1->attrib[FRAG_ATTRIB_COL1][0];
+ gSum = CHAN_TO_FLOAT(ncv1->color[1]) + ncv1->attrib[FRAG_ATTRIB_COL1][1];
+ bSum = CHAN_TO_FLOAT(ncv1->color[2]) + ncv1->attrib[FRAG_ATTRIB_COL1][2];
+ UNCLAMPED_FLOAT_TO_CHAN(ncv1->color[0], rSum);
+ UNCLAMPED_FLOAT_TO_CHAN(ncv1->color[1], gSum);
+ UNCLAMPED_FLOAT_TO_CHAN(ncv1->color[2], bSum);
+ /* sum v2 */
+ rSum = CHAN_TO_FLOAT(ncv2->color[0]) + ncv2->attrib[FRAG_ATTRIB_COL1][0];
+ gSum = CHAN_TO_FLOAT(ncv2->color[1]) + ncv2->attrib[FRAG_ATTRIB_COL1][1];
+ bSum = CHAN_TO_FLOAT(ncv2->color[2]) + ncv2->attrib[FRAG_ATTRIB_COL1][2];
+ UNCLAMPED_FLOAT_TO_CHAN(ncv2->color[0], rSum);
+ UNCLAMPED_FLOAT_TO_CHAN(ncv2->color[1], gSum);
+ UNCLAMPED_FLOAT_TO_CHAN(ncv2->color[2], bSum);
+ /* draw */
+ SWRAST_CONTEXT(ctx)->SpecTriangle( ctx, ncv0, ncv1, ncv2 );
+ /* restore original colors */
+ COPY_CHAN4( ncv0->color, cSave[0] );
+ COPY_CHAN4( ncv1->color, cSave[1] );
+ COPY_CHAN4( ncv2->color, cSave[2] );
+}
+
+
+
+#ifdef DEBUG
+
+/* record the current triangle function name */
+const char *_mesa_triFuncName = NULL;
+
+#define USE(triFunc) \
+do { \
+ _mesa_triFuncName = #triFunc; \
+ /*printf("%s\n", _mesa_triFuncName);*/ \
+ swrast->Triangle = triFunc; \
+} while (0)
+
+#else
+
+#define USE(triFunc) swrast->Triangle = triFunc;
+
+#endif
+
+
+
+
+/*
+ * Determine which triangle rendering function to use given the current
+ * rendering context.
+ *
+ * Please update the summary flag _SWRAST_NEW_TRIANGLE if you add or
+ * remove tests to this code.
+ */
+void
+_swrast_choose_triangle( struct gl_context *ctx )
+{
+ SWcontext *swrast = SWRAST_CONTEXT(ctx);
+
+ if (ctx->Polygon.CullFlag &&
+ ctx->Polygon.CullFaceMode == GL_FRONT_AND_BACK) {
+ USE(nodraw_triangle);
+ return;
+ }
+
+ if (ctx->RenderMode==GL_RENDER) {
+
+ if (ctx->Polygon.SmoothFlag) {
+ _swrast_set_aa_triangle_function(ctx);
+ ASSERT(swrast->Triangle);
+ return;
+ }
+
+ /* special case for occlusion testing */
+ if (ctx->Query.CurrentOcclusionObject &&
+ ctx->Depth.Test &&
+ ctx->Depth.Mask == GL_FALSE &&
+ ctx->Depth.Func == GL_LESS &&
+ !ctx->Stencil._Enabled) {
+ if (ctx->Color.ColorMask[0][0] == 0 &&
+ ctx->Color.ColorMask[0][1] == 0 &&
+ ctx->Color.ColorMask[0][2] == 0 &&
+ ctx->Color.ColorMask[0][3] == 0) {
+ USE(occlusion_zless_triangle);
+ return;
+ }
+ }
+
+ /*
+ * XXX should examine swrast->_ActiveAttribMask to determine what
+ * needs to be interpolated.
+ */
+ if (ctx->Texture._EnabledCoordUnits ||
+ ctx->FragmentProgram._Current ||
+ ctx->ATIFragmentShader._Enabled ||
+ _mesa_need_secondary_color(ctx) ||
+ swrast->_FogEnabled) {
+ /* Ugh, we do a _lot_ of tests to pick the best textured tri func */
+ const struct gl_texture_object *texObj2D;
+ const struct gl_texture_image *texImg;
+ GLenum minFilter, magFilter, envMode;
+ gl_format format;
+ texObj2D = ctx->Texture.Unit[0].CurrentTex[TEXTURE_2D_INDEX];
+
+ texImg = texObj2D ? texObj2D->Image[0][texObj2D->BaseLevel] : NULL;
+ format = texImg ? texImg->TexFormat : MESA_FORMAT_NONE;
+ minFilter = texObj2D ? texObj2D->Sampler.MinFilter : GL_NONE;
+ magFilter = texObj2D ? texObj2D->Sampler.MagFilter : GL_NONE;
+ envMode = ctx->Texture.Unit[0].EnvMode;
+
+ /* First see if we can use an optimized 2-D texture function */
+ if (ctx->Texture._EnabledCoordUnits == 0x1
+ && !ctx->FragmentProgram._Current
+ && !ctx->ATIFragmentShader._Enabled
+ && ctx->Texture._EnabledUnits == 0x1
+ && ctx->Texture.Unit[0]._ReallyEnabled == TEXTURE_2D_BIT
+ && texObj2D->Sampler.WrapS == GL_REPEAT
+ && texObj2D->Sampler.WrapT == GL_REPEAT
+ && texObj2D->_Swizzle == SWIZZLE_NOOP
+ && texImg->_IsPowerOfTwo
+ && texImg->Border == 0
+ && texImg->Width == texImg->RowStride
+ && (format == MESA_FORMAT_RGB888 || format == MESA_FORMAT_RGBA8888)
+ && minFilter == magFilter
+ && ctx->Light.Model.ColorControl == GL_SINGLE_COLOR
+ && !swrast->_FogEnabled
+ && ctx->Texture.Unit[0].EnvMode != GL_COMBINE_EXT
+ && ctx->Texture.Unit[0].EnvMode != GL_COMBINE4_NV) {
+ if (ctx->Hint.PerspectiveCorrection==GL_FASTEST) {
+ if (minFilter == GL_NEAREST
+ && format == MESA_FORMAT_RGB888
+ && (envMode == GL_REPLACE || envMode == GL_DECAL)
+ && ((swrast->_RasterMask == (DEPTH_BIT | TEXTURE_BIT)
+ && ctx->Depth.Func == GL_LESS
+ && ctx->Depth.Mask == GL_TRUE)
+ || swrast->_RasterMask == TEXTURE_BIT)
+ && ctx->Polygon.StippleFlag == GL_FALSE
+ && ctx->DrawBuffer->Visual.depthBits <= 16) {
+ if (swrast->_RasterMask == (DEPTH_BIT | TEXTURE_BIT)) {
+ USE(simple_z_textured_triangle);
+ }
+ else {
+ USE(simple_textured_triangle);
+ }
+ }
+ else {
+#if CHAN_BITS != 8
+ USE(general_triangle);
+#else
+ if (format == MESA_FORMAT_RGBA8888 && !_mesa_little_endian()) {
+ /* We only handle RGBA8888 correctly on little endian
+ * in the optimized code above.
+ */
+ USE(general_triangle);
+ }
+ else {
+ USE(affine_textured_triangle);
+ }
+#endif
+ }
+ }
+ else {
+#if CHAN_BITS != 8
+ USE(general_triangle);
+#else
+ USE(persp_textured_triangle);
+#endif
+ }
+ }
+ else {
+ /* general case textured triangles */
+ USE(general_triangle);
+ }
+ }
+ else {
+ ASSERT(!swrast->_FogEnabled);
+ ASSERT(!_mesa_need_secondary_color(ctx));
+ if (ctx->Light.ShadeModel==GL_SMOOTH) {
+ /* smooth shaded, no texturing, stippled or some raster ops */
+#if CHAN_BITS != 8
+ USE(general_triangle);
+#else
+ USE(smooth_rgba_triangle);
+#endif
+ }
+ else {
+ /* flat shaded, no texturing, stippled or some raster ops */
+#if CHAN_BITS != 8
+ USE(general_triangle);
+#else
+ USE(flat_rgba_triangle);
+#endif
+ }
+ }
+ }
+ else if (ctx->RenderMode==GL_FEEDBACK) {
+ USE(_swrast_feedback_triangle);
+ }
+ else {
+ /* GL_SELECT mode */
+ USE(_swrast_select_triangle);
+ }
+}