aboutsummaryrefslogtreecommitdiff
path: root/openssl/crypto/modes/asm/ghash-armv4.pl
diff options
context:
space:
mode:
Diffstat (limited to 'openssl/crypto/modes/asm/ghash-armv4.pl')
-rw-r--r--openssl/crypto/modes/asm/ghash-armv4.pl429
1 files changed, 429 insertions, 0 deletions
diff --git a/openssl/crypto/modes/asm/ghash-armv4.pl b/openssl/crypto/modes/asm/ghash-armv4.pl
new file mode 100644
index 000000000..d91586ee2
--- /dev/null
+++ b/openssl/crypto/modes/asm/ghash-armv4.pl
@@ -0,0 +1,429 @@
+#!/usr/bin/env perl
+#
+# ====================================================================
+# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
+# project. The module is, however, dual licensed under OpenSSL and
+# CRYPTOGAMS licenses depending on where you obtain it. For further
+# details see http://www.openssl.org/~appro/cryptogams/.
+# ====================================================================
+#
+# April 2010
+#
+# The module implements "4-bit" GCM GHASH function and underlying
+# single multiplication operation in GF(2^128). "4-bit" means that it
+# uses 256 bytes per-key table [+32 bytes shared table]. There is no
+# experimental performance data available yet. The only approximation
+# that can be made at this point is based on code size. Inner loop is
+# 32 instructions long and on single-issue core should execute in <40
+# cycles. Having verified that gcc 3.4 didn't unroll corresponding
+# loop, this assembler loop body was found to be ~3x smaller than
+# compiler-generated one...
+#
+# July 2010
+#
+# Rescheduling for dual-issue pipeline resulted in 8.5% improvement on
+# Cortex A8 core and ~25 cycles per processed byte (which was observed
+# to be ~3 times faster than gcc-generated code:-)
+#
+# February 2011
+#
+# Profiler-assisted and platform-specific optimization resulted in 7%
+# improvement on Cortex A8 core and ~23.5 cycles per byte.
+#
+# March 2011
+#
+# Add NEON implementation featuring polynomial multiplication, i.e. no
+# lookup tables involved. On Cortex A8 it was measured to process one
+# byte in 15 cycles or 55% faster than integer-only code.
+
+# ====================================================================
+# Note about "528B" variant. In ARM case it makes lesser sense to
+# implement it for following reasons:
+#
+# - performance improvement won't be anywhere near 50%, because 128-
+# bit shift operation is neatly fused with 128-bit xor here, and
+# "538B" variant would eliminate only 4-5 instructions out of 32
+# in the inner loop (meaning that estimated improvement is ~15%);
+# - ARM-based systems are often embedded ones and extra memory
+# consumption might be unappreciated (for so little improvement);
+#
+# Byte order [in]dependence. =========================================
+#
+# Caller is expected to maintain specific *dword* order in Htable,
+# namely with *least* significant dword of 128-bit value at *lower*
+# address. This differs completely from C code and has everything to
+# do with ldm instruction and order in which dwords are "consumed" by
+# algorithm. *Byte* order within these dwords in turn is whatever
+# *native* byte order on current platform. See gcm128.c for working
+# example...
+
+while (($output=shift) && ($output!~/^\w[\w\-]*\.\w+$/)) {}
+open STDOUT,">$output";
+
+$Xi="r0"; # argument block
+$Htbl="r1";
+$inp="r2";
+$len="r3";
+
+$Zll="r4"; # variables
+$Zlh="r5";
+$Zhl="r6";
+$Zhh="r7";
+$Tll="r8";
+$Tlh="r9";
+$Thl="r10";
+$Thh="r11";
+$nlo="r12";
+################# r13 is stack pointer
+$nhi="r14";
+################# r15 is program counter
+
+$rem_4bit=$inp; # used in gcm_gmult_4bit
+$cnt=$len;
+
+sub Zsmash() {
+ my $i=12;
+ my @args=@_;
+ for ($Zll,$Zlh,$Zhl,$Zhh) {
+ $code.=<<___;
+#if __ARM_ARCH__>=7 && defined(__ARMEL__)
+ rev $_,$_
+ str $_,[$Xi,#$i]
+#elif defined(__ARMEB__)
+ str $_,[$Xi,#$i]
+#else
+ mov $Tlh,$_,lsr#8
+ strb $_,[$Xi,#$i+3]
+ mov $Thl,$_,lsr#16
+ strb $Tlh,[$Xi,#$i+2]
+ mov $Thh,$_,lsr#24
+ strb $Thl,[$Xi,#$i+1]
+ strb $Thh,[$Xi,#$i]
+#endif
+___
+ $code.="\t".shift(@args)."\n";
+ $i-=4;
+ }
+}
+
+$code=<<___;
+#include "arm_arch.h"
+
+.text
+.code 32
+
+.type rem_4bit,%object
+.align 5
+rem_4bit:
+.short 0x0000,0x1C20,0x3840,0x2460
+.short 0x7080,0x6CA0,0x48C0,0x54E0
+.short 0xE100,0xFD20,0xD940,0xC560
+.short 0x9180,0x8DA0,0xA9C0,0xB5E0
+.size rem_4bit,.-rem_4bit
+
+.type rem_4bit_get,%function
+rem_4bit_get:
+ sub $rem_4bit,pc,#8
+ sub $rem_4bit,$rem_4bit,#32 @ &rem_4bit
+ b .Lrem_4bit_got
+ nop
+.size rem_4bit_get,.-rem_4bit_get
+
+.global gcm_ghash_4bit
+.type gcm_ghash_4bit,%function
+gcm_ghash_4bit:
+ sub r12,pc,#8
+ add $len,$inp,$len @ $len to point at the end
+ stmdb sp!,{r3-r11,lr} @ save $len/end too
+ sub r12,r12,#48 @ &rem_4bit
+
+ ldmia r12,{r4-r11} @ copy rem_4bit ...
+ stmdb sp!,{r4-r11} @ ... to stack
+
+ ldrb $nlo,[$inp,#15]
+ ldrb $nhi,[$Xi,#15]
+.Louter:
+ eor $nlo,$nlo,$nhi
+ and $nhi,$nlo,#0xf0
+ and $nlo,$nlo,#0x0f
+ mov $cnt,#14
+
+ add $Zhh,$Htbl,$nlo,lsl#4
+ ldmia $Zhh,{$Zll-$Zhh} @ load Htbl[nlo]
+ add $Thh,$Htbl,$nhi
+ ldrb $nlo,[$inp,#14]
+
+ and $nhi,$Zll,#0xf @ rem
+ ldmia $Thh,{$Tll-$Thh} @ load Htbl[nhi]
+ add $nhi,$nhi,$nhi
+ eor $Zll,$Tll,$Zll,lsr#4
+ ldrh $Tll,[sp,$nhi] @ rem_4bit[rem]
+ eor $Zll,$Zll,$Zlh,lsl#28
+ ldrb $nhi,[$Xi,#14]
+ eor $Zlh,$Tlh,$Zlh,lsr#4
+ eor $Zlh,$Zlh,$Zhl,lsl#28
+ eor $Zhl,$Thl,$Zhl,lsr#4
+ eor $Zhl,$Zhl,$Zhh,lsl#28
+ eor $Zhh,$Thh,$Zhh,lsr#4
+ eor $nlo,$nlo,$nhi
+ and $nhi,$nlo,#0xf0
+ and $nlo,$nlo,#0x0f
+ eor $Zhh,$Zhh,$Tll,lsl#16
+
+.Linner:
+ add $Thh,$Htbl,$nlo,lsl#4
+ and $nlo,$Zll,#0xf @ rem
+ subs $cnt,$cnt,#1
+ add $nlo,$nlo,$nlo
+ ldmia $Thh,{$Tll-$Thh} @ load Htbl[nlo]
+ eor $Zll,$Tll,$Zll,lsr#4
+ eor $Zll,$Zll,$Zlh,lsl#28
+ eor $Zlh,$Tlh,$Zlh,lsr#4
+ eor $Zlh,$Zlh,$Zhl,lsl#28
+ ldrh $Tll,[sp,$nlo] @ rem_4bit[rem]
+ eor $Zhl,$Thl,$Zhl,lsr#4
+ ldrplb $nlo,[$inp,$cnt]
+ eor $Zhl,$Zhl,$Zhh,lsl#28
+ eor $Zhh,$Thh,$Zhh,lsr#4
+
+ add $Thh,$Htbl,$nhi
+ and $nhi,$Zll,#0xf @ rem
+ eor $Zhh,$Zhh,$Tll,lsl#16 @ ^= rem_4bit[rem]
+ add $nhi,$nhi,$nhi
+ ldmia $Thh,{$Tll-$Thh} @ load Htbl[nhi]
+ eor $Zll,$Tll,$Zll,lsr#4
+ ldrplb $Tll,[$Xi,$cnt]
+ eor $Zll,$Zll,$Zlh,lsl#28
+ eor $Zlh,$Tlh,$Zlh,lsr#4
+ ldrh $Tlh,[sp,$nhi]
+ eor $Zlh,$Zlh,$Zhl,lsl#28
+ eor $Zhl,$Thl,$Zhl,lsr#4
+ eor $Zhl,$Zhl,$Zhh,lsl#28
+ eorpl $nlo,$nlo,$Tll
+ eor $Zhh,$Thh,$Zhh,lsr#4
+ andpl $nhi,$nlo,#0xf0
+ andpl $nlo,$nlo,#0x0f
+ eor $Zhh,$Zhh,$Tlh,lsl#16 @ ^= rem_4bit[rem]
+ bpl .Linner
+
+ ldr $len,[sp,#32] @ re-load $len/end
+ add $inp,$inp,#16
+ mov $nhi,$Zll
+___
+ &Zsmash("cmp\t$inp,$len","ldrneb\t$nlo,[$inp,#15]");
+$code.=<<___;
+ bne .Louter
+
+ add sp,sp,#36
+#if __ARM_ARCH__>=5
+ ldmia sp!,{r4-r11,pc}
+#else
+ ldmia sp!,{r4-r11,lr}
+ tst lr,#1
+ moveq pc,lr @ be binary compatible with V4, yet
+ bx lr @ interoperable with Thumb ISA:-)
+#endif
+.size gcm_ghash_4bit,.-gcm_ghash_4bit
+
+.global gcm_gmult_4bit
+.type gcm_gmult_4bit,%function
+gcm_gmult_4bit:
+ stmdb sp!,{r4-r11,lr}
+ ldrb $nlo,[$Xi,#15]
+ b rem_4bit_get
+.Lrem_4bit_got:
+ and $nhi,$nlo,#0xf0
+ and $nlo,$nlo,#0x0f
+ mov $cnt,#14
+
+ add $Zhh,$Htbl,$nlo,lsl#4
+ ldmia $Zhh,{$Zll-$Zhh} @ load Htbl[nlo]
+ ldrb $nlo,[$Xi,#14]
+
+ add $Thh,$Htbl,$nhi
+ and $nhi,$Zll,#0xf @ rem
+ ldmia $Thh,{$Tll-$Thh} @ load Htbl[nhi]
+ add $nhi,$nhi,$nhi
+ eor $Zll,$Tll,$Zll,lsr#4
+ ldrh $Tll,[$rem_4bit,$nhi] @ rem_4bit[rem]
+ eor $Zll,$Zll,$Zlh,lsl#28
+ eor $Zlh,$Tlh,$Zlh,lsr#4
+ eor $Zlh,$Zlh,$Zhl,lsl#28
+ eor $Zhl,$Thl,$Zhl,lsr#4
+ eor $Zhl,$Zhl,$Zhh,lsl#28
+ eor $Zhh,$Thh,$Zhh,lsr#4
+ and $nhi,$nlo,#0xf0
+ eor $Zhh,$Zhh,$Tll,lsl#16
+ and $nlo,$nlo,#0x0f
+
+.Loop:
+ add $Thh,$Htbl,$nlo,lsl#4
+ and $nlo,$Zll,#0xf @ rem
+ subs $cnt,$cnt,#1
+ add $nlo,$nlo,$nlo
+ ldmia $Thh,{$Tll-$Thh} @ load Htbl[nlo]
+ eor $Zll,$Tll,$Zll,lsr#4
+ eor $Zll,$Zll,$Zlh,lsl#28
+ eor $Zlh,$Tlh,$Zlh,lsr#4
+ eor $Zlh,$Zlh,$Zhl,lsl#28
+ ldrh $Tll,[$rem_4bit,$nlo] @ rem_4bit[rem]
+ eor $Zhl,$Thl,$Zhl,lsr#4
+ ldrplb $nlo,[$Xi,$cnt]
+ eor $Zhl,$Zhl,$Zhh,lsl#28
+ eor $Zhh,$Thh,$Zhh,lsr#4
+
+ add $Thh,$Htbl,$nhi
+ and $nhi,$Zll,#0xf @ rem
+ eor $Zhh,$Zhh,$Tll,lsl#16 @ ^= rem_4bit[rem]
+ add $nhi,$nhi,$nhi
+ ldmia $Thh,{$Tll-$Thh} @ load Htbl[nhi]
+ eor $Zll,$Tll,$Zll,lsr#4
+ eor $Zll,$Zll,$Zlh,lsl#28
+ eor $Zlh,$Tlh,$Zlh,lsr#4
+ ldrh $Tll,[$rem_4bit,$nhi] @ rem_4bit[rem]
+ eor $Zlh,$Zlh,$Zhl,lsl#28
+ eor $Zhl,$Thl,$Zhl,lsr#4
+ eor $Zhl,$Zhl,$Zhh,lsl#28
+ eor $Zhh,$Thh,$Zhh,lsr#4
+ andpl $nhi,$nlo,#0xf0
+ andpl $nlo,$nlo,#0x0f
+ eor $Zhh,$Zhh,$Tll,lsl#16 @ ^= rem_4bit[rem]
+ bpl .Loop
+___
+ &Zsmash();
+$code.=<<___;
+#if __ARM_ARCH__>=5
+ ldmia sp!,{r4-r11,pc}
+#else
+ ldmia sp!,{r4-r11,lr}
+ tst lr,#1
+ moveq pc,lr @ be binary compatible with V4, yet
+ bx lr @ interoperable with Thumb ISA:-)
+#endif
+.size gcm_gmult_4bit,.-gcm_gmult_4bit
+___
+{
+my $cnt=$Htbl; # $Htbl is used once in the very beginning
+
+my ($Hhi, $Hlo, $Zo, $T, $xi, $mod) = map("d$_",(0..7));
+my ($Qhi, $Qlo, $Z, $R, $zero, $Qpost, $IN) = map("q$_",(8..15));
+
+# Z:Zo keeps 128-bit result shifted by 1 to the right, with bottom bit
+# in Zo. Or should I say "top bit", because GHASH is specified in
+# reverse bit order? Otherwise straightforward 128-bt H by one input
+# byte multiplication and modulo-reduction, times 16.
+
+sub Dlo() { shift=~m|q([1]?[0-9])|?"d".($1*2):""; }
+sub Dhi() { shift=~m|q([1]?[0-9])|?"d".($1*2+1):""; }
+sub Q() { shift=~m|d([1-3]?[02468])|?"q".($1/2):""; }
+
+$code.=<<___;
+#if __ARM_ARCH__>=7
+.fpu neon
+
+.global gcm_gmult_neon
+.type gcm_gmult_neon,%function
+.align 4
+gcm_gmult_neon:
+ sub $Htbl,#16 @ point at H in GCM128_CTX
+ vld1.64 `&Dhi("$IN")`,[$Xi,:64]!@ load Xi
+ vmov.i32 $mod,#0xe1 @ our irreducible polynomial
+ vld1.64 `&Dlo("$IN")`,[$Xi,:64]!
+ vshr.u64 $mod,#32
+ vldmia $Htbl,{$Hhi-$Hlo} @ load H
+ veor $zero,$zero
+#ifdef __ARMEL__
+ vrev64.8 $IN,$IN
+#endif
+ veor $Qpost,$Qpost
+ veor $R,$R
+ mov $cnt,#16
+ veor $Z,$Z
+ mov $len,#16
+ veor $Zo,$Zo
+ vdup.8 $xi,`&Dlo("$IN")`[0] @ broadcast lowest byte
+ b .Linner_neon
+.size gcm_gmult_neon,.-gcm_gmult_neon
+
+.global gcm_ghash_neon
+.type gcm_ghash_neon,%function
+.align 4
+gcm_ghash_neon:
+ vld1.64 `&Dhi("$Z")`,[$Xi,:64]! @ load Xi
+ vmov.i32 $mod,#0xe1 @ our irreducible polynomial
+ vld1.64 `&Dlo("$Z")`,[$Xi,:64]!
+ vshr.u64 $mod,#32
+ vldmia $Xi,{$Hhi-$Hlo} @ load H
+ veor $zero,$zero
+ nop
+#ifdef __ARMEL__
+ vrev64.8 $Z,$Z
+#endif
+.Louter_neon:
+ vld1.64 `&Dhi($IN)`,[$inp]! @ load inp
+ veor $Qpost,$Qpost
+ vld1.64 `&Dlo($IN)`,[$inp]!
+ veor $R,$R
+ mov $cnt,#16
+#ifdef __ARMEL__
+ vrev64.8 $IN,$IN
+#endif
+ veor $Zo,$Zo
+ veor $IN,$Z @ inp^=Xi
+ veor $Z,$Z
+ vdup.8 $xi,`&Dlo("$IN")`[0] @ broadcast lowest byte
+.Linner_neon:
+ subs $cnt,$cnt,#1
+ vmull.p8 $Qlo,$Hlo,$xi @ H.lo·Xi[i]
+ vmull.p8 $Qhi,$Hhi,$xi @ H.hi·Xi[i]
+ vext.8 $IN,$zero,#1 @ IN>>=8
+
+ veor $Z,$Qpost @ modulo-scheduled part
+ vshl.i64 `&Dlo("$R")`,#48
+ vdup.8 $xi,`&Dlo("$IN")`[0] @ broadcast lowest byte
+ veor $T,`&Dlo("$Qlo")`,`&Dlo("$Z")`
+
+ veor `&Dhi("$Z")`,`&Dlo("$R")`
+ vuzp.8 $Qlo,$Qhi
+ vsli.8 $Zo,$T,#1 @ compose the "carry" byte
+ vext.8 $Z,$zero,#1 @ Z>>=8
+
+ vmull.p8 $R,$Zo,$mod @ "carry"·0xe1
+ vshr.u8 $Zo,$T,#7 @ save Z's bottom bit
+ vext.8 $Qpost,$Qlo,$zero,#1 @ Qlo>>=8
+ veor $Z,$Qhi
+ bne .Linner_neon
+
+ veor $Z,$Qpost @ modulo-scheduled artefact
+ vshl.i64 `&Dlo("$R")`,#48
+ veor `&Dhi("$Z")`,`&Dlo("$R")`
+
+ @ finalization, normalize Z:Zo
+ vand $Zo,$mod @ suffices to mask the bit
+ vshr.u64 `&Dhi(&Q("$Zo"))`,`&Dlo("$Z")`,#63
+ vshl.i64 $Z,#1
+ subs $len,#16
+ vorr $Z,`&Q("$Zo")` @ Z=Z:Zo<<1
+ bne .Louter_neon
+
+#ifdef __ARMEL__
+ vrev64.8 $Z,$Z
+#endif
+ sub $Xi,#16
+ vst1.64 `&Dhi("$Z")`,[$Xi,:64]! @ write out Xi
+ vst1.64 `&Dlo("$Z")`,[$Xi,:64]
+
+ bx lr
+.size gcm_ghash_neon,.-gcm_ghash_neon
+#endif
+___
+}
+$code.=<<___;
+.asciz "GHASH for ARMv4/NEON, CRYPTOGAMS by <appro\@openssl.org>"
+.align 2
+___
+
+$code =~ s/\`([^\`]*)\`/eval $1/gem;
+$code =~ s/\bbx\s+lr\b/.word\t0xe12fff1e/gm; # make it possible to compile with -march=armv4
+print $code;
+close STDOUT; # enforce flush