aboutsummaryrefslogtreecommitdiff
path: root/openssl/crypto/sha/asm/sha1-sparcv9a.pl
blob: e65291bbd9791fe7c990cd45c51c01fa30988dde (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
#!/usr/bin/env perl

# ====================================================================
# Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
# ====================================================================

# January 2009
#
# Provided that UltraSPARC VIS instructions are pipe-lined(*) and
# pairable(*) with IALU ones, offloading of Xupdate to the UltraSPARC
# Graphic Unit would make it possible to achieve higher instruction-
# level parallelism, ILP, and thus higher performance. It should be
# explicitly noted that ILP is the keyword, and it means that this
# code would be unsuitable for cores like UltraSPARC-Tx. The idea is
# not really novel, Sun had VIS-powered implementation for a while.
# Unlike Sun's implementation this one can process multiple unaligned
# input blocks, and as such works as drop-in replacement for OpenSSL
# sha1_block_data_order. Performance improvement was measured to be
# 40% over pure IALU sha1-sparcv9.pl on UltraSPARC-IIi, but 12% on
# UltraSPARC-III. See below for discussion...
#
# The module does not present direct interest for OpenSSL, because
# it doesn't provide better performance on contemporary SPARCv9 CPUs,
# UltraSPARC-Tx and SPARC64-V[II] to be specific. Those who feel they
# absolutely must score on UltraSPARC-I-IV can simply replace
# crypto/sha/asm/sha1-sparcv9.pl with this module.
#
# (*)	"Pipe-lined" means that even if it takes several cycles to
#	complete, next instruction using same functional unit [but not
#	depending on the result of the current instruction] can start
#	execution without having to wait for the unit. "Pairable"
#	means that two [or more] independent instructions can be
#	issued at the very same time.

$bits=32;
for (@ARGV)	{ $bits=64 if (/\-m64/ || /\-xarch\=v9/); }
if ($bits==64)	{ $bias=2047; $frame=192; }
else		{ $bias=0;    $frame=112; }

$output=shift;
open STDOUT,">$output";

$ctx="%i0";
$inp="%i1";
$len="%i2";
$tmp0="%i3";
$tmp1="%i4";
$tmp2="%i5";
$tmp3="%g5";

$base="%g1";
$align="%g4";
$Xfer="%o5";
$nXfer=$tmp3;
$Xi="%o7";

$A="%l0";
$B="%l1";
$C="%l2";
$D="%l3";
$E="%l4";
@V=($A,$B,$C,$D,$E);

$Actx="%o0";
$Bctx="%o1";
$Cctx="%o2";
$Dctx="%o3";
$Ectx="%o4";

$fmul="%f32";
$VK_00_19="%f34";
$VK_20_39="%f36";
$VK_40_59="%f38";
$VK_60_79="%f40";
@VK=($VK_00_19,$VK_20_39,$VK_40_59,$VK_60_79);
@X=("%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7",
    "%f8", "%f9","%f10","%f11","%f12","%f13","%f14","%f15","%f16");

# This is reference 2x-parallelized VIS-powered Xupdate procedure. It
# covers even K_NN_MM addition...
sub Xupdate {
my ($i)=@_;
my $K=@VK[($i+16)/20];
my $j=($i+16)%16;

#	[ provided that GSR.alignaddr_offset is 5, $mul contains
#	  0x100ULL<<32|0x100 value and K_NN_MM are pre-loaded to
#	  chosen registers... ]
$code.=<<___;
	fxors		@X[($j+13)%16],@X[$j],@X[$j]	!-1/-1/-1:X[0]^=X[13]
	fxors		@X[($j+14)%16],@X[$j+1],@X[$j+1]! 0/ 0/ 0:X[1]^=X[14]
	fxor		@X[($j+2)%16],@X[($j+8)%16],%f18! 1/ 1/ 1:Tmp=X[2,3]^X[8,9]
	fxor		%f18,@X[$j],@X[$j]		! 2/ 4/ 3:X[0,1]^=X[2,3]^X[8,9]
	faligndata	@X[$j],@X[$j],%f18		! 3/ 7/ 5:Tmp=X[0,1]>>>24
	fpadd32		@X[$j],@X[$j],@X[$j]		! 4/ 8/ 6:X[0,1]<<=1
	fmul8ulx16	%f18,$fmul,%f18			! 5/10/ 7:Tmp>>=7, Tmp&=1
	![fxors		%f15,%f2,%f2]
	for		%f18,@X[$j],@X[$j]		! 8/14/10:X[0,1]|=Tmp
	![fxors		%f0,%f3,%f3]			!10/17/12:X[0] dependency
	fpadd32		$K,@X[$j],%f20
	std		%f20,[$Xfer+`4*$j`]
___
# The numbers delimited with slash are the earliest possible dispatch
# cycles for given instruction assuming 1 cycle latency for simple VIS
# instructions, such as on UltraSPARC-I&II, 3 cycles latency, such as
# on UltraSPARC-III&IV, and 2 cycles latency(*), respectively. Being
# 2x-parallelized the procedure is "worth" 5, 8.5 or 6 ticks per SHA1
# round. As [long as] FPU/VIS instructions are perfectly pairable with
# IALU ones, the round timing is defined by the maximum between VIS
# and IALU timings. The latter varies from round to round and averages
# out at 6.25 ticks. This means that USI&II should operate at IALU
# rate, while USIII&IV - at VIS rate. This explains why performance
# improvement varies among processors. Well, given that pure IALU
# sha1-sparcv9.pl module exhibits virtually uniform performance of
# ~9.3 cycles per SHA1 round. Timings mentioned above are theoretical
# lower limits. Real-life performance was measured to be 6.6 cycles
# per SHA1 round on USIIi and 8.3 on USIII. The latter is lower than
# half-round VIS timing, because there are 16 Xupdate-free rounds,
# which "push down" average theoretical timing to 8 cycles...

# (*)	SPARC64-V[II] was originally believed to have 2 cycles VIS
#	latency. Well, it might have, but it doesn't have dedicated
#	VIS-unit. Instead, VIS instructions are executed by other
#	functional units, ones used here - by IALU. This doesn't
#	improve effective ILP...
}

# The reference Xupdate procedure is then "strained" over *pairs* of
# BODY_NN_MM and kind of modulo-scheduled in respect to X[n]^=X[n+13]
# and K_NN_MM addition. It's "running" 15 rounds ahead, which leaves
# plenty of room to amortize for read-after-write hazard, as well as
# to fetch and align input for the next spin. The VIS instructions are
# scheduled for latency of 2 cycles, because there are not enough IALU
# instructions to schedule for latency of 3, while scheduling for 1
# would give no gain on USI&II anyway.

sub BODY_00_19 {
my ($i,$a,$b,$c,$d,$e)=@_;
my $j=$i&~1;
my $k=($j+16+2)%16;	# ahead reference
my $l=($j+16-2)%16;	# behind reference
my $K=@VK[($j+16-2)/20];

$j=($j+16)%16;

$code.=<<___ if (!($i&1));
	sll		$a,5,$tmp0			!! $i
	and		$c,$b,$tmp3
	ld		[$Xfer+`4*($i%16)`],$Xi
	 fxors		@X[($j+14)%16],@X[$j+1],@X[$j+1]! 0/ 0/ 0:X[1]^=X[14]
	srl		$a,27,$tmp1
	add		$tmp0,$e,$e
	 fxor		@X[($j+2)%16],@X[($j+8)%16],%f18! 1/ 1/ 1:Tmp=X[2,3]^X[8,9]
	sll		$b,30,$tmp2
	add		$tmp1,$e,$e
	andn		$d,$b,$tmp1
	add		$Xi,$e,$e
	 fxor		%f18,@X[$j],@X[$j]		! 2/ 4/ 3:X[0,1]^=X[2,3]^X[8,9]
	srl		$b,2,$b
	or		$tmp1,$tmp3,$tmp1
	or		$tmp2,$b,$b
	add		$tmp1,$e,$e
	 faligndata	@X[$j],@X[$j],%f18		! 3/ 7/ 5:Tmp=X[0,1]>>>24
___
$code.=<<___ if ($i&1);
	sll		$a,5,$tmp0			!! $i
	and		$c,$b,$tmp3
	ld		[$Xfer+`4*($i%16)`],$Xi
	 fpadd32	@X[$j],@X[$j],@X[$j]		! 4/ 8/ 6:X[0,1]<<=1
	srl		$a,27,$tmp1
	add		$tmp0,$e,$e
	 fmul8ulx16	%f18,$fmul,%f18			! 5/10/ 7:Tmp>>=7, Tmp&=1
	sll		$b,30,$tmp2
	add		$tmp1,$e,$e
	 fpadd32	$K,@X[$l],%f20			!
	andn		$d,$b,$tmp1
	add		$Xi,$e,$e
	 fxors		@X[($k+13)%16],@X[$k],@X[$k]	!-1/-1/-1:X[0]^=X[13]
	srl		$b,2,$b
	or		$tmp1,$tmp3,$tmp1
	 fxor		%f18,@X[$j],@X[$j]		! 8/14/10:X[0,1]|=Tmp
	or		$tmp2,$b,$b
	add		$tmp1,$e,$e
___
$code.=<<___ if ($i&1 && $i>=2);
	 std		%f20,[$Xfer+`4*$l`]		!
___
}

sub BODY_20_39 {
my ($i,$a,$b,$c,$d,$e)=@_;
my $j=$i&~1;
my $k=($j+16+2)%16;	# ahead reference
my $l=($j+16-2)%16;	# behind reference
my $K=@VK[($j+16-2)/20];

$j=($j+16)%16;

$code.=<<___ if (!($i&1) && $i<64);
	sll		$a,5,$tmp0			!! $i
	ld		[$Xfer+`4*($i%16)`],$Xi
	 fxors		@X[($j+14)%16],@X[$j+1],@X[$j+1]! 0/ 0/ 0:X[1]^=X[14]
	srl		$a,27,$tmp1
	add		$tmp0,$e,$e
	 fxor		@X[($j+2)%16],@X[($j+8)%16],%f18! 1/ 1/ 1:Tmp=X[2,3]^X[8,9]
	xor		$c,$b,$tmp0
	add		$tmp1,$e,$e
	sll		$b,30,$tmp2
	xor		$d,$tmp0,$tmp1
	 fxor		%f18,@X[$j],@X[$j]		! 2/ 4/ 3:X[0,1]^=X[2,3]^X[8,9]
	srl		$b,2,$b
	add		$tmp1,$e,$e
	or		$tmp2,$b,$b
	add		$Xi,$e,$e
	 faligndata	@X[$j],@X[$j],%f18		! 3/ 7/ 5:Tmp=X[0,1]>>>24
___
$code.=<<___ if ($i&1 && $i<64);
	sll		$a,5,$tmp0			!! $i
	ld		[$Xfer+`4*($i%16)`],$Xi
	 fpadd32	@X[$j],@X[$j],@X[$j]		! 4/ 8/ 6:X[0,1]<<=1
	srl		$a,27,$tmp1
	add		$tmp0,$e,$e
	 fmul8ulx16	%f18,$fmul,%f18			! 5/10/ 7:Tmp>>=7, Tmp&=1
	xor		$c,$b,$tmp0
	add		$tmp1,$e,$e
	 fpadd32	$K,@X[$l],%f20			!
	sll		$b,30,$tmp2
	xor		$d,$tmp0,$tmp1
	 fxors		@X[($k+13)%16],@X[$k],@X[$k]	!-1/-1/-1:X[0]^=X[13]
	srl		$b,2,$b
	add		$tmp1,$e,$e
	 fxor		%f18,@X[$j],@X[$j]		! 8/14/10:X[0,1]|=Tmp
	or		$tmp2,$b,$b
	add		$Xi,$e,$e
	 std		%f20,[$Xfer+`4*$l`]		!
___
$code.=<<___ if ($i==64);
	sll		$a,5,$tmp0			!! $i
	ld		[$Xfer+`4*($i%16)`],$Xi
	 fpadd32	$K,@X[$l],%f20
	srl		$a,27,$tmp1
	add		$tmp0,$e,$e
	xor		$c,$b,$tmp0
	add		$tmp1,$e,$e
	sll		$b,30,$tmp2
	xor		$d,$tmp0,$tmp1
	 std		%f20,[$Xfer+`4*$l`]
	srl		$b,2,$b
	add		$tmp1,$e,$e
	or		$tmp2,$b,$b
	add		$Xi,$e,$e
___
$code.=<<___ if ($i>64);
	sll		$a,5,$tmp0			!! $i
	ld		[$Xfer+`4*($i%16)`],$Xi
	srl		$a,27,$tmp1
	add		$tmp0,$e,$e
	xor		$c,$b,$tmp0
	add		$tmp1,$e,$e
	sll		$b,30,$tmp2
	xor		$d,$tmp0,$tmp1
	srl		$b,2,$b
	add		$tmp1,$e,$e
	or		$tmp2,$b,$b
	add		$Xi,$e,$e
___
}

sub BODY_40_59 {
my ($i,$a,$b,$c,$d,$e)=@_;
my $j=$i&~1;
my $k=($j+16+2)%16;	# ahead reference
my $l=($j+16-2)%16;	# behind reference
my $K=@VK[($j+16-2)/20];

$j=($j+16)%16;

$code.=<<___ if (!($i&1));
	sll		$a,5,$tmp0			!! $i
	ld		[$Xfer+`4*($i%16)`],$Xi
	 fxors		@X[($j+14)%16],@X[$j+1],@X[$j+1]! 0/ 0/ 0:X[1]^=X[14]
	srl		$a,27,$tmp1
	add		$tmp0,$e,$e
	 fxor		@X[($j+2)%16],@X[($j+8)%16],%f18! 1/ 1/ 1:Tmp=X[2,3]^X[8,9]
	and		$c,$b,$tmp0
	add		$tmp1,$e,$e
	sll		$b,30,$tmp2
	or		$c,$b,$tmp1
	 fxor		%f18,@X[$j],@X[$j]		! 2/ 4/ 3:X[0,1]^=X[2,3]^X[8,9]
	srl		$b,2,$b
	and		$d,$tmp1,$tmp1
	add		$Xi,$e,$e
	or		$tmp1,$tmp0,$tmp1
	 faligndata	@X[$j],@X[$j],%f18		! 3/ 7/ 5:Tmp=X[0,1]>>>24
	or		$tmp2,$b,$b
	add		$tmp1,$e,$e
	 fpadd32	@X[$j],@X[$j],@X[$j]		! 4/ 8/ 6:X[0,1]<<=1
___
$code.=<<___ if ($i&1);
	sll		$a,5,$tmp0			!! $i
	ld		[$Xfer+`4*($i%16)`],$Xi
	srl		$a,27,$tmp1
	add		$tmp0,$e,$e
	 fmul8ulx16	%f18,$fmul,%f18			! 5/10/ 7:Tmp>>=7, Tmp&=1
	and		$c,$b,$tmp0
	add		$tmp1,$e,$e
	 fpadd32	$K,@X[$l],%f20			!
	sll		$b,30,$tmp2
	or		$c,$b,$tmp1
	 fxors		@X[($k+13)%16],@X[$k],@X[$k]	!-1/-1/-1:X[0]^=X[13]
	srl		$b,2,$b
	and		$d,$tmp1,$tmp1
	 fxor		%f18,@X[$j],@X[$j]		! 8/14/10:X[0,1]|=Tmp
	add		$Xi,$e,$e
	or		$tmp1,$tmp0,$tmp1
	or		$tmp2,$b,$b
	add		$tmp1,$e,$e
	 std		%f20,[$Xfer+`4*$l`]		!
___
}

# If there is more data to process, then we pre-fetch the data for
# next iteration in last ten rounds...
sub BODY_70_79 {
my ($i,$a,$b,$c,$d,$e)=@_;
my $j=$i&~1;
my $m=($i%8)*2;

$j=($j+16)%16;

$code.=<<___ if ($i==70);
	sll		$a,5,$tmp0			!! $i
	ld		[$Xfer+`4*($i%16)`],$Xi
	srl		$a,27,$tmp1
	add		$tmp0,$e,$e
	 ldd		[$inp+64],@X[0]
	xor		$c,$b,$tmp0
	add		$tmp1,$e,$e
	sll		$b,30,$tmp2
	xor		$d,$tmp0,$tmp1
	srl		$b,2,$b
	add		$tmp1,$e,$e
	or		$tmp2,$b,$b
	add		$Xi,$e,$e

	and		$inp,-64,$nXfer
	inc		64,$inp
	and		$nXfer,255,$nXfer
	alignaddr	%g0,$align,%g0
	add		$base,$nXfer,$nXfer
___
$code.=<<___ if ($i==71);
	sll		$a,5,$tmp0			!! $i
	ld		[$Xfer+`4*($i%16)`],$Xi
	srl		$a,27,$tmp1
	add		$tmp0,$e,$e
	xor		$c,$b,$tmp0
	add		$tmp1,$e,$e
	sll		$b,30,$tmp2
	xor		$d,$tmp0,$tmp1
	srl		$b,2,$b
	add		$tmp1,$e,$e
	or		$tmp2,$b,$b
	add		$Xi,$e,$e
___
$code.=<<___ if ($i>=72);
	 faligndata	@X[$m],@X[$m+2],@X[$m]
	sll		$a,5,$tmp0			!! $i
	ld		[$Xfer+`4*($i%16)`],$Xi
	srl		$a,27,$tmp1
	add		$tmp0,$e,$e
	xor		$c,$b,$tmp0
	add		$tmp1,$e,$e
	 fpadd32	$VK_00_19,@X[$m],%f20
	sll		$b,30,$tmp2
	xor		$d,$tmp0,$tmp1
	srl		$b,2,$b
	add		$tmp1,$e,$e
	or		$tmp2,$b,$b
	add		$Xi,$e,$e
___
$code.=<<___ if ($i<77);
	 ldd		[$inp+`8*($i+1-70)`],@X[2*($i+1-70)]
___
$code.=<<___ if ($i==77);	# redundant if $inp was aligned
	 add		$align,63,$tmp0
	 and		$tmp0,-8,$tmp0
	 ldd		[$inp+$tmp0],@X[16]
___
$code.=<<___ if ($i>=72);
	 std		%f20,[$nXfer+`4*$m`]
___
}

$code.=<<___;
.section	".text",#alloc,#execinstr

.align	64
vis_const:
.long	0x5a827999,0x5a827999	! K_00_19
.long	0x6ed9eba1,0x6ed9eba1	! K_20_39
.long	0x8f1bbcdc,0x8f1bbcdc	! K_40_59
.long	0xca62c1d6,0xca62c1d6	! K_60_79
.long	0x00000100,0x00000100
.align	64
.type	vis_const,#object
.size	vis_const,(.-vis_const)

.globl	sha1_block_data_order
sha1_block_data_order:
	save	%sp,-$frame,%sp
	add	%fp,$bias-256,$base

1:	call	.+8
	add	%o7,vis_const-1b,$tmp0

	ldd	[$tmp0+0],$VK_00_19
	ldd	[$tmp0+8],$VK_20_39
	ldd	[$tmp0+16],$VK_40_59
	ldd	[$tmp0+24],$VK_60_79
	ldd	[$tmp0+32],$fmul

	ld	[$ctx+0],$Actx
	and	$base,-256,$base
	ld	[$ctx+4],$Bctx
	sub	$base,$bias+$frame,%sp
	ld	[$ctx+8],$Cctx
	and	$inp,7,$align
	ld	[$ctx+12],$Dctx
	and	$inp,-8,$inp
	ld	[$ctx+16],$Ectx

	! X[16] is maintained in FP register bank
	alignaddr	%g0,$align,%g0
	ldd		[$inp+0],@X[0]
	sub		$inp,-64,$Xfer
	ldd		[$inp+8],@X[2]
	and		$Xfer,-64,$Xfer
	ldd		[$inp+16],@X[4]
	and		$Xfer,255,$Xfer
	ldd		[$inp+24],@X[6]
	add		$base,$Xfer,$Xfer
	ldd		[$inp+32],@X[8]
	ldd		[$inp+40],@X[10]
	ldd		[$inp+48],@X[12]
	brz,pt		$align,.Laligned
	ldd		[$inp+56],@X[14]

	ldd		[$inp+64],@X[16]
	faligndata	@X[0],@X[2],@X[0]
	faligndata	@X[2],@X[4],@X[2]
	faligndata	@X[4],@X[6],@X[4]
	faligndata	@X[6],@X[8],@X[6]
	faligndata	@X[8],@X[10],@X[8]
	faligndata	@X[10],@X[12],@X[10]
	faligndata	@X[12],@X[14],@X[12]
	faligndata	@X[14],@X[16],@X[14]

.Laligned:
	mov		5,$tmp0
	dec		1,$len
	alignaddr	%g0,$tmp0,%g0
	fpadd32		$VK_00_19,@X[0],%f16
	fpadd32		$VK_00_19,@X[2],%f18
	fpadd32		$VK_00_19,@X[4],%f20
	fpadd32		$VK_00_19,@X[6],%f22
	fpadd32		$VK_00_19,@X[8],%f24
	fpadd32		$VK_00_19,@X[10],%f26
	fpadd32		$VK_00_19,@X[12],%f28
	fpadd32		$VK_00_19,@X[14],%f30
	std		%f16,[$Xfer+0]
	mov		$Actx,$A
	std		%f18,[$Xfer+8]
	mov		$Bctx,$B
	std		%f20,[$Xfer+16]
	mov		$Cctx,$C
	std		%f22,[$Xfer+24]
	mov		$Dctx,$D
	std		%f24,[$Xfer+32]
	mov		$Ectx,$E
	std		%f26,[$Xfer+40]
	fxors		@X[13],@X[0],@X[0]
	std		%f28,[$Xfer+48]
	ba		.Loop
	std		%f30,[$Xfer+56]
.align	32
.Loop:
___
for ($i=0;$i<20;$i++)	{ &BODY_00_19($i,@V); unshift(@V,pop(@V)); }
for (;$i<40;$i++)	{ &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
for (;$i<60;$i++)	{ &BODY_40_59($i,@V); unshift(@V,pop(@V)); }
for (;$i<70;$i++)	{ &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
$code.=<<___;
	tst		$len
	bz,pn		`$bits==32?"%icc":"%xcc"`,.Ltail
	nop
___
for (;$i<80;$i++)	{ &BODY_70_79($i,@V); unshift(@V,pop(@V)); }
$code.=<<___;
	add		$A,$Actx,$Actx
	add		$B,$Bctx,$Bctx
	add		$C,$Cctx,$Cctx
	add		$D,$Dctx,$Dctx
	add		$E,$Ectx,$Ectx
	mov		5,$tmp0
	fxors		@X[13],@X[0],@X[0]
	mov		$Actx,$A
	mov		$Bctx,$B
	mov		$Cctx,$C
	mov		$Dctx,$D
	mov		$Ectx,$E
	alignaddr	%g0,$tmp0,%g0	
	dec		1,$len
	ba		.Loop
	mov		$nXfer,$Xfer

.align	32
.Ltail:
___
for($i=70;$i<80;$i++)	{ &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
$code.=<<___;
	add	$A,$Actx,$Actx
	add	$B,$Bctx,$Bctx
	add	$C,$Cctx,$Cctx
	add	$D,$Dctx,$Dctx
	add	$E,$Ectx,$Ectx

	st	$Actx,[$ctx+0]
	st	$Bctx,[$ctx+4]
	st	$Cctx,[$ctx+8]
	st	$Dctx,[$ctx+12]
	st	$Ectx,[$ctx+16]

	ret
	restore
.type	sha1_block_data_order,#function
.size	sha1_block_data_order,(.-sha1_block_data_order)
.asciz	"SHA1 block transform for SPARCv9a, CRYPTOGAMS by <appro\@openssl.org>"
.align	4
___

# Purpose of these subroutines is to explicitly encode VIS instructions,
# so that one can compile the module without having to specify VIS
# extentions on compiler command line, e.g. -xarch=v9 vs. -xarch=v9a.
# Idea is to reserve for option to produce "universal" binary and let
# programmer detect if current CPU is VIS capable at run-time.
sub unvis {
my ($mnemonic,$rs1,$rs2,$rd)=@_;
my ($ref,$opf);
my %visopf = (	"fmul8ulx16"	=> 0x037,
		"faligndata"	=> 0x048,
		"fpadd32"	=> 0x052,
		"fxor"		=> 0x06c,
		"fxors"		=> 0x06d	);

    $ref = "$mnemonic\t$rs1,$rs2,$rd";

    if ($opf=$visopf{$mnemonic}) {
	foreach ($rs1,$rs2,$rd) {
	    return $ref if (!/%f([0-9]{1,2})/);
	    $_=$1;
	    if ($1>=32) {
		return $ref if ($1&1);
		# re-encode for upper double register addressing
		$_=($1|$1>>5)&31;
	    }
	}

	return	sprintf ".word\t0x%08x !%s",
			0x81b00000|$rd<<25|$rs1<<14|$opf<<5|$rs2,
			$ref;
    } else {
	return $ref;
    }
}
sub unalignaddr {
my ($mnemonic,$rs1,$rs2,$rd)=@_;
my %bias = ( "g" => 0, "o" => 8, "l" => 16, "i" => 24 );
my $ref="$mnemonic\t$rs1,$rs2,$rd";

    foreach ($rs1,$rs2,$rd) {
	if (/%([goli])([0-7])/)	{ $_=$bias{$1}+$2; }
	else			{ return $ref; }
    }
    return  sprintf ".word\t0x%08x !%s",
		    0x81b00300|$rd<<25|$rs1<<14|$rs2,
		    $ref;
}

$code =~ s/\`([^\`]*)\`/eval $1/gem;
$code =~ s/\b(f[^\s]*)\s+(%f[0-9]{1,2}),(%f[0-9]{1,2}),(%f[0-9]{1,2})/
		&unvis($1,$2,$3,$4)
	  /gem;
$code =~ s/\b(alignaddr)\s+(%[goli][0-7]),(%[goli][0-7]),(%[goli][0-7])/
		&unalignaddr($1,$2,$3,$4)
	  /gem;
print $code;
close STDOUT;