aboutsummaryrefslogtreecommitdiff
path: root/tools/bison++/lr0.cc
blob: ab4c46a0961ffeb979feeaf8b822b8469e36ffcf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
/* Generate the nondeterministic finite state machine for bison,
   Copyright (C) 1984, 1986, 1989 Free Software Foundation, Inc.

This file is part of Bison, the GNU Compiler Compiler.

Bison is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

Bison is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with Bison; see the file COPYING.  If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.  */


/* See comments in state.h for the data structures that represent it.
   The entry point is generate_states.  */

#include <stdio.h>
#include "system.h"
#include "machine.h"
#include "new.h"
#include "gram.h"
#include "state.h"


extern char *nullable;
extern short *itemset;
extern short *itemsetend;


int nstates;
int final_state;
core *first_state;
shifts *first_shift;
reductions *first_reduction;

int get_state(int);
core *new_state(int);

void new_itemsets();
void append_states();
void initialize_states();
void save_shifts();
void save_reductions();
void augment_automaton();
void insert_start_shift();
extern void initialize_closure(int);
extern void closure(short*,int);
extern void finalize_closure();
extern void toomany(char*);

static core *this_state;
static core *last_state;
static shifts *last_shift;
static reductions *last_reduction;

static int nshifts;
static short *shift_symbol;

static short *redset;
static short *shiftset;

static short **kernel_base;
static short **kernel_end;
static short *kernel_items;

/* hash table for states, to recognize equivalent ones.  */

#define	STATE_TABLE_SIZE	1009
static core **state_table;



void
allocate_itemsets()
{
  register short *itemp;
  register int symbol;
  register int i;
  register int count;
  register short *symbol_count;

  count = 0;
  symbol_count = NEW2(nsyms, short);

  itemp = ritem;
  symbol = *itemp++;
  while (symbol)
    {
      if (symbol > 0)
	{
	  count++;
	  symbol_count[symbol]++;
	}
      symbol = *itemp++;
    }

  /* see comments before new_itemsets.  All the vectors of items
     live inside kernel_items.  The number of active items after
     some symbol cannot be more than the number of times that symbol
     appears as an item, which is symbol_count[symbol].
     We allocate that much space for each symbol.  */

  kernel_base = NEW2(nsyms, short *);
  kernel_items = NEW2(count, short);

  count = 0;
  for (i = 0; i < nsyms; i++)
    {
      kernel_base[i] = kernel_items + count;
      count += symbol_count[i];
    }

  shift_symbol = symbol_count;
  kernel_end = NEW2(nsyms, short *);
}


void
allocate_storage()
{
  allocate_itemsets();

  shiftset = NEW2(nsyms, short);
  redset = NEW2(nrules + 1, short);
  state_table = NEW2(STATE_TABLE_SIZE, core *);
}


void
free_storage()
{
  FREE(shift_symbol);
  FREE(redset);
  FREE(shiftset);
  FREE(kernel_base);
  FREE(kernel_end);
  FREE(kernel_items);
  FREE(state_table);
}



/* compute the nondeterministic finite state machine (see state.h for details)
from the grammar.  */
void
generate_states()
{
  allocate_storage();
  initialize_closure(nitems);
  initialize_states();

  while (this_state)
    {
      /* Set up ruleset and itemset for the transitions out of this state.
         ruleset gets a 1 bit for each rule that could reduce now.
	 itemset gets a vector of all the items that could be accepted next.  */
      closure(this_state->items, this_state->nitems);
      /* record the reductions allowed out of this state */
      save_reductions();
      /* find the itemsets of the states that shifts can reach */
      new_itemsets();
      /* find or create the core structures for those states */
      append_states();

      /* create the shifts structures for the shifts to those states,
         now that the state numbers transitioning to are known */
      if (nshifts > 0)
        save_shifts();

      /* states are queued when they are created; process them all */
      this_state = this_state->next;
    }

  /* discard various storage */
  finalize_closure();
  free_storage();

  /* set up initial and final states as parser wants them */
  augment_automaton();
}



/* Find which symbols can be shifted in the current state,
   and for each one record which items would be active after that shift.
   Uses the contents of itemset.
   shift_symbol is set to a vector of the symbols that can be shifted.
   For each symbol in the grammar, kernel_base[symbol] points to
   a vector of item numbers activated if that symbol is shifted,
   and kernel_end[symbol] points after the end of that vector.  */
void
new_itemsets()
{
  register int i;
  register int shiftcount;
  register short *isp;
  register short *ksp;
  register int symbol;

#ifdef	TRACE
  fprintf(stderr, "Entering new_itemsets\n");
#endif

  for (i = 0; i < nsyms; i++)
    kernel_end[i] = NULL;

  shiftcount = 0;

  isp = itemset;

  while (isp < itemsetend)
    {
      i = *isp++;
      symbol = ritem[i];
      if (symbol > 0)
	{
          ksp = kernel_end[symbol];

          if (!ksp)
	    {
	      shift_symbol[shiftcount++] = symbol;
	      ksp = kernel_base[symbol];
	    }

          *ksp++ = i + 1;
          kernel_end[symbol] = ksp;
	}
    }

  nshifts = shiftcount;
}



/* Use the information computed by new_itemsets to find the state numbers
   reached by each shift transition from the current state.

   shiftset is set up as a vector of state numbers of those states.  */
void
append_states()
{
  register int i;
  register int j;
  register int symbol;

#ifdef	TRACE
  fprintf(stderr, "Entering append_states\n");
#endif

  /* first sort shift_symbol into increasing order */

  for (i = 1; i < nshifts; i++)
    {
      symbol = shift_symbol[i];
      j = i;
      while (j > 0 && shift_symbol[j - 1] > symbol)
	{
	  shift_symbol[j] = shift_symbol[j - 1];
	  j--;
	}
      shift_symbol[j] = symbol;
    }

  for (i = 0; i < nshifts; i++)
    {
      symbol = shift_symbol[i];
      shiftset[i] = get_state(symbol);
    }
}



/* find the state number for the state we would get to
(from the current state) by shifting symbol.
Create a new state if no equivalent one exists already.
Used by append_states  */

int
get_state(int symbol)
{
  register int key;
  register short *isp1;
  register short *isp2;
  register short *iend;
  register core *sp;
  register int found;

  int n;

#ifdef	TRACE
  fprintf(stderr, "Entering get_state, symbol = %d\n", symbol);
#endif

  isp1 = kernel_base[symbol];
  iend = kernel_end[symbol];
  n = iend - isp1;

  /* add up the target state's active item numbers to get a hash key */
  key = 0;
  while (isp1 < iend)
    key += *isp1++;

  key = key % STATE_TABLE_SIZE;

  sp = state_table[key];

  if (sp)
    {
      found = 0;
      while (!found)
	{
	  if (sp->nitems == n)
	    {
	      found = 1;
	      isp1 = kernel_base[symbol];
	      isp2 = sp->items;

	      while (found && isp1 < iend)
		{
		  if (*isp1++ != *isp2++)
		    found = 0;
		}
	    }

	  if (!found)
	    {
	      if (sp->link)
		{
		  sp = sp->link;
		}
	      else   /* bucket exhausted and no match */
		{
		  sp = sp->link = new_state(symbol);
		  found = 1;
		}
	    }
	}
    }
  else      /* bucket is empty */
    {
      state_table[key] = sp = new_state(symbol);
    }

  return (sp->number);
}



/* subroutine of get_state.  create a new state for those items, if necessary.  */

core *
new_state(int symbol)
{
  register int n;
  register core *p;
  register short *isp1;
  register short *isp2;
  register short *iend;

#ifdef	TRACE
  fprintf(stderr, "Entering new_state, symbol = %d\n", symbol);
#endif

  if (nstates >= MAXSHORT)
    toomany("states");

  isp1 = kernel_base[symbol];
  iend = kernel_end[symbol];
  n = iend - isp1;

  p = (core *) xmalloc((unsigned) (sizeof(core) + (n - 1) * sizeof(short)));
  p->accessing_symbol = symbol;
  p->number = nstates;
  p->nitems = n;

  isp2 = p->items;
  while (isp1 < iend)
    *isp2++ = *isp1++;

  last_state->next = p;
  last_state = p;

  nstates++;

  return (p);
}


void
initialize_states()
{
  register core *p;
/*  register unsigned *rp1; JF unused */
/*  register unsigned *rp2; JF unused */
/*  register unsigned *rend; JF unused */

  p = (core *) xmalloc((unsigned) (sizeof(core) - sizeof(short)));
  first_state = last_state = this_state = p;
  nstates = 1;
}


void
save_shifts()
{
  register shifts *p;
  register short *sp1;
  register short *sp2;
  register short *send;

  p = (shifts *) xmalloc((unsigned) (sizeof(shifts) +
				       (nshifts - 1) * sizeof(short)));

  p->number = this_state->number;
  p->nshifts = nshifts;

  sp1 = shiftset;
  sp2 = p->internalShifts;
  send = shiftset + nshifts;

  while (sp1 < send)
    *sp2++ = *sp1++;

  if (last_shift)
    {
      last_shift->next = p;
      last_shift = p;
    }
  else
    {
      first_shift = p;
      last_shift = p;
    }
}



/* find which rules can be used for reduction transitions from the current state
   and make a reductions structure for the state to record their rule numbers.  */
void
save_reductions()
{
  register short *isp;
  register short *rp1;
  register short *rp2;
  register int item;
  register int count;
  register reductions *p;

  short *rend;

  /* find and count the active items that represent ends of rules */

  count = 0;
  for (isp = itemset; isp < itemsetend; isp++)
    {
      item = ritem[*isp];
      if (item < 0)
	{
	  redset[count++] = -item;
	}
    }

  /* make a reductions structure and copy the data into it.  */

  if (count)
    {
      p = (reductions *) xmalloc((unsigned) (sizeof(reductions) +
					       (count - 1) * sizeof(short)));

      p->number = this_state->number;
      p->nreds = count;

      rp1 = redset;
      rp2 = p->rules;
      rend = rp1 + count;

      while (rp1 < rend)
	*rp2++ = *rp1++;

      if (last_reduction)
	{
	  last_reduction->next = p;
	  last_reduction = p;
	}
      else
	{
	  first_reduction = p;
	  last_reduction = p;
	}
    }
}



/* Make sure that the initial state has a shift that accepts the
grammar's start symbol and goes to the next-to-final state,
which has a shift going to the final state, which has a shift
to the termination state.
Create such states and shifts if they don't happen to exist already.  */
void
augment_automaton()
{
  register int i;
  register int k;
/*  register int found; JF unused */
  register core *statep;
  register shifts *sp;
  register shifts *sp2;
  register shifts *sp1;

  sp = first_shift;

  if (sp)
    {
      if (sp->number == 0)
	{
	  k = sp->nshifts;
	  statep = first_state->next;

	  /* The states reached by shifts from first_state are numbered 1...K.
	     Look for one reached by start_symbol.  */
	  while (statep->accessing_symbol < start_symbol
		  && statep->number < k)
	    statep = statep->next;

	  if (statep->accessing_symbol == start_symbol)
	    {
	      /* We already have a next-to-final state.
		 Make sure it has a shift to what will be the final state.  */
	      k = statep->number;

	      while (sp && sp->number < k)
		{
		  sp1 = sp;
		  sp = sp->next;
		}

	      if (sp && sp->number == k)
		{
		  sp2 = (shifts *) xmalloc((unsigned) (sizeof(shifts)
							 + sp->nshifts * sizeof(short)));
		  sp2->number = k;
		  sp2->nshifts = sp->nshifts + 1;
		  sp2->internalShifts[0] = nstates;
		  for (i = sp->nshifts; i > 0; i--)
		    sp2->internalShifts[i] = sp->internalShifts[i - 1];

		  /* Patch sp2 into the chain of shifts in place of sp,
		     following sp1.  */
		  sp2->next = sp->next;
		  sp1->next = sp2;
		  if (sp == last_shift)
		    last_shift = sp2;
		  FREE(sp);
		}
	      else
		{
		  sp2 = NEW(shifts);
		  sp2->number = k;
		  sp2->nshifts = 1;
		  sp2->internalShifts[0] = nstates;

		  /* Patch sp2 into the chain of shifts between sp1 and sp.  */
		  sp2->next = sp;
		  sp1->next = sp2;
		  if (sp == 0)
		    last_shift = sp2;
		}
	    }
	  else
	    {
	      /* There is no next-to-final state as yet.  */
	      /* Add one more shift in first_shift,
		 going to the next-to-final state (yet to be made).  */
	      sp = first_shift;

	      sp2 = (shifts *) xmalloc(sizeof(shifts)
					 + sp->nshifts * sizeof(short));
	      sp2->nshifts = sp->nshifts + 1;

	      /* Stick this shift into the vector at the proper place.  */
	      statep = first_state->next;
	      for (k = 0, i = 0; i < sp->nshifts; k++, i++)
		{
		  if (statep->accessing_symbol > start_symbol && i == k)
		    sp2->internalShifts[k++] = nstates;
		  sp2->internalShifts[k] = sp->internalShifts[i];
		  statep = statep->next;
		}
	      if (i == k)
		sp2->internalShifts[k++] = nstates;

	      /* Patch sp2 into the chain of shifts
		 in place of sp, at the beginning.  */
	      sp2->next = sp->next;
	      first_shift = sp2;
	      if (last_shift == sp)
		last_shift = sp2;

	      FREE(sp);

	      /* Create the next-to-final state, with shift to
		 what will be the final state.  */
	      insert_start_shift();
	    }
	}
      else
	{
	  /* The initial state didn't even have any shifts.
	     Give it one shift, to the next-to-final state.  */
	  sp = NEW(shifts);
	  sp->nshifts = 1;
	  sp->internalShifts[0] = nstates;

	  /* Patch sp into the chain of shifts at the beginning.  */
	  sp->next = first_shift;
	  first_shift = sp;

	  /* Create the next-to-final state, with shift to
	     what will be the final state.  */
	  insert_start_shift();
	}
    }
  else
    {
      /* There are no shifts for any state.
	 Make one shift, from the initial state to the next-to-final state.  */

      sp = NEW(shifts);
      sp->nshifts = 1;
      sp->internalShifts[0] = nstates;

      /* Initialize the chain of shifts with sp.  */
      first_shift = sp;
      last_shift = sp;

      /* Create the next-to-final state, with shift to
	 what will be the final state.  */
      insert_start_shift();
    }

  /* Make the final state--the one that follows a shift from the
     next-to-final state.
     The symbol for that shift is 0 (end-of-file).  */
  statep = (core *) xmalloc((unsigned) (sizeof(core) - sizeof(short)));
  statep->number = nstates;
  last_state->next = statep;
  last_state = statep;

  /* Make the shift from the final state to the termination state.  */
  sp = NEW(shifts);
  sp->number = nstates++;
  sp->nshifts = 1;
  sp->internalShifts[0] = nstates;
  last_shift->next = sp;
  last_shift = sp;

  /* Note that the variable `final_state' refers to what we sometimes call
     the termination state.  */
  final_state = nstates;

  /* Make the termination state.  */
  statep = (core *) xmalloc((unsigned) (sizeof(core) - sizeof(short)));
  statep->number = nstates++;
  last_state->next = statep;
  last_state = statep;
}


/* subroutine of augment_automaton.
   Create the next-to-final state, to which a shift has already been made in
   the initial state.  */
void
insert_start_shift()
{
  register core *statep;
  register shifts *sp;

  statep = (core *) xmalloc((unsigned) (sizeof(core) - sizeof(short)));
  statep->number = nstates;
  statep->accessing_symbol = start_symbol;

  last_state->next = statep;
  last_state = statep;

  /* Make a shift from this state to (what will be) the final state.  */
  sp = NEW(shifts);
  sp->number = nstates++;
  sp->nshifts = 1;
  sp->internalShifts[0] = nstates;

  last_shift->next = sp;
  last_shift = sp;
}