aboutsummaryrefslogtreecommitdiff
path: root/tools/plink/winhandl.c
blob: 06c2a6a077a22ecf224c7be96442ed52476a2cef (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
/*
 * winhandl.c: Module to give Windows front ends the general
 * ability to deal with consoles, pipes, serial ports, or any other
 * type of data stream accessed through a Windows API HANDLE rather
 * than a WinSock SOCKET.
 *
 * We do this by spawning a subthread to continuously try to read
 * from the handle. Every time a read successfully returns some
 * data, the subthread sets an event object which is picked up by
 * the main thread, and the main thread then sets an event in
 * return to instruct the subthread to resume reading.
 * 
 * Output works precisely the other way round, in a second
 * subthread. The output subthread should not be attempting to
 * write all the time, because it hasn't always got data _to_
 * write; so the output thread waits for an event object notifying
 * it to _attempt_ a write, and then it sets an event in return
 * when one completes.
 * 
 * (It's terribly annoying having to spawn a subthread for each
 * direction of each handle. Technically it isn't necessary for
 * serial ports, since we could use overlapped I/O within the main
 * thread and wait directly on the event objects in the OVERLAPPED
 * structures. However, we can't use this trick for some types of
 * file handle at all - for some reason Windows restricts use of
 * OVERLAPPED to files which were opened with the overlapped flag -
 * and so we must use threads for those. This being the case, it's
 * simplest just to use threads for everything rather than trying
 * to keep track of multiple completely separate mechanisms.)
 */

#include <assert.h>

#include "putty.h"

/* ----------------------------------------------------------------------
 * Generic definitions.
 */

/*
 * Maximum amount of backlog we will allow to build up on an input
 * handle before we stop reading from it.
 */
#define MAX_BACKLOG 32768

struct handle_generic {
    /*
     * Initial fields common to both handle_input and handle_output
     * structures.
     * 
     * The three HANDLEs are set up at initialisation time and are
     * thereafter read-only to both main thread and subthread.
     * `moribund' is only used by the main thread; `done' is
     * written by the main thread before signalling to the
     * subthread. `defunct' and `busy' are used only by the main
     * thread.
     */
    HANDLE h;			       /* the handle itself */
    HANDLE ev_to_main;		       /* event used to signal main thread */
    HANDLE ev_from_main;	       /* event used to signal back to us */
    int moribund;		       /* are we going to kill this soon? */
    int done;			       /* request subthread to terminate */
    int defunct;		       /* has the subthread already gone? */
    int busy;			       /* operation currently in progress? */
    void *privdata;		       /* for client to remember who they are */
};

/* ----------------------------------------------------------------------
 * Input threads.
 */

/*
 * Data required by an input thread.
 */
struct handle_input {
    /*
     * Copy of the handle_generic structure.
     */
    HANDLE h;			       /* the handle itself */
    HANDLE ev_to_main;		       /* event used to signal main thread */
    HANDLE ev_from_main;	       /* event used to signal back to us */
    int moribund;		       /* are we going to kill this soon? */
    int done;			       /* request subthread to terminate */
    int defunct;		       /* has the subthread already gone? */
    int busy;			       /* operation currently in progress? */
    void *privdata;		       /* for client to remember who they are */

    /*
     * Data set at initialisation and then read-only.
     */
    int flags;

    /*
     * Data set by the input thread before signalling ev_to_main,
     * and read by the main thread after receiving that signal.
     */
    char buffer[4096];		       /* the data read from the handle */
    DWORD len;			       /* how much data that was */
    int readerr;		       /* lets us know about read errors */

    /*
     * Callback function called by this module when data arrives on
     * an input handle.
     */
    handle_inputfn_t gotdata;
};

/*
 * The actual thread procedure for an input thread.
 */
static DWORD WINAPI handle_input_threadfunc(void *param)
{
    struct handle_input *ctx = (struct handle_input *) param;
    OVERLAPPED ovl, *povl;
    HANDLE oev;
    int readret, readlen;

    if (ctx->flags & HANDLE_FLAG_OVERLAPPED) {
	povl = &ovl;
	oev = CreateEvent(NULL, TRUE, FALSE, NULL);
    } else {
	povl = NULL;
    }

    if (ctx->flags & HANDLE_FLAG_UNITBUFFER)
	readlen = 1;
    else
	readlen = sizeof(ctx->buffer);

    while (1) {
	if (povl) {
	    memset(povl, 0, sizeof(OVERLAPPED));
	    povl->hEvent = oev;
	}
	readret = ReadFile(ctx->h, ctx->buffer,readlen, &ctx->len, povl);
	if (!readret)
	    ctx->readerr = GetLastError();
	else
	    ctx->readerr = 0;
	if (povl && !readret && ctx->readerr == ERROR_IO_PENDING) {
	    WaitForSingleObject(povl->hEvent, INFINITE);
	    readret = GetOverlappedResult(ctx->h, povl, &ctx->len, FALSE);
	    if (!readret)
		ctx->readerr = GetLastError();
	    else
		ctx->readerr = 0;
	}

	if (!readret) {
	    /*
	     * Windows apparently sends ERROR_BROKEN_PIPE when a
	     * pipe we're reading from is closed normally from the
	     * writing end. This is ludicrous; if that situation
	     * isn't a natural EOF, _nothing_ is. So if we get that
	     * particular error, we pretend it's EOF.
	     */
	    if (ctx->readerr == ERROR_BROKEN_PIPE)
		ctx->readerr = 0;
	    ctx->len = 0;
	}

	if (readret && ctx->len == 0 &&
	    (ctx->flags & HANDLE_FLAG_IGNOREEOF))
	    continue;

	SetEvent(ctx->ev_to_main);

	if (!ctx->len)
	    break;

	WaitForSingleObject(ctx->ev_from_main, INFINITE);
	if (ctx->done)
	    break;		       /* main thread told us to shut down */
    }

    if (povl)
	CloseHandle(oev);

    return 0;
}

/*
 * This is called after a succcessful read, or from the
 * `unthrottle' function. It decides whether or not to begin a new
 * read operation.
 */
static void handle_throttle(struct handle_input *ctx, int backlog)
{
    if (ctx->defunct)
	return;

    /*
     * If there's a read operation already in progress, do nothing:
     * when that completes, we'll come back here and be in a
     * position to make a better decision.
     */
    if (ctx->busy)
	return;

    /*
     * Otherwise, we must decide whether to start a new read based
     * on the size of the backlog.
     */
    if (backlog < MAX_BACKLOG) {
	SetEvent(ctx->ev_from_main);
	ctx->busy = TRUE;
    }
}

/* ----------------------------------------------------------------------
 * Output threads.
 */

/*
 * Data required by an output thread.
 */
struct handle_output {
    /*
     * Copy of the handle_generic structure.
     */
    HANDLE h;			       /* the handle itself */
    HANDLE ev_to_main;		       /* event used to signal main thread */
    HANDLE ev_from_main;	       /* event used to signal back to us */
    int moribund;		       /* are we going to kill this soon? */
    int done;			       /* request subthread to terminate */
    int defunct;		       /* has the subthread already gone? */
    int busy;			       /* operation currently in progress? */
    void *privdata;		       /* for client to remember who they are */

    /*
     * Data set at initialisation and then read-only.
     */
    int flags;

    /*
     * Data set by the main thread before signalling ev_from_main,
     * and read by the input thread after receiving that signal.
     */
    char *buffer;		       /* the data to write */
    DWORD len;			       /* how much data there is */

    /*
     * Data set by the input thread before signalling ev_to_main,
     * and read by the main thread after receiving that signal.
     */
    DWORD lenwritten;		       /* how much data we actually wrote */
    int writeerr;		       /* return value from WriteFile */

    /*
     * Data only ever read or written by the main thread.
     */
    bufchain queued_data;	       /* data still waiting to be written */
    enum { EOF_NO, EOF_PENDING, EOF_SENT } outgoingeof;

    /*
     * Callback function called when the backlog in the bufchain
     * drops.
     */
    handle_outputfn_t sentdata;
};

static DWORD WINAPI handle_output_threadfunc(void *param)
{
    struct handle_output *ctx = (struct handle_output *) param;
    OVERLAPPED ovl, *povl;
    HANDLE oev;
    int writeret;

    if (ctx->flags & HANDLE_FLAG_OVERLAPPED) {
	povl = &ovl;
	oev = CreateEvent(NULL, TRUE, FALSE, NULL);
    } else {
	povl = NULL;
    }

    while (1) {
	WaitForSingleObject(ctx->ev_from_main, INFINITE);
	if (ctx->done) {
	    SetEvent(ctx->ev_to_main);
	    break;
	}
	if (povl) {
	    memset(povl, 0, sizeof(OVERLAPPED));
	    povl->hEvent = oev;
	}

	writeret = WriteFile(ctx->h, ctx->buffer, ctx->len,
			     &ctx->lenwritten, povl);
	if (!writeret)
	    ctx->writeerr = GetLastError();
	else
	    ctx->writeerr = 0;
	if (povl && !writeret && GetLastError() == ERROR_IO_PENDING) {
	    writeret = GetOverlappedResult(ctx->h, povl,
					   &ctx->lenwritten, TRUE);
	    if (!writeret)
		ctx->writeerr = GetLastError();
	    else
		ctx->writeerr = 0;
	}

	SetEvent(ctx->ev_to_main);
	if (!writeret)
	    break;
    }

    if (povl)
	CloseHandle(oev);

    return 0;
}

static void handle_try_output(struct handle_output *ctx)
{
    void *senddata;
    int sendlen;

    if (!ctx->busy && bufchain_size(&ctx->queued_data)) {
	bufchain_prefix(&ctx->queued_data, &senddata, &sendlen);
	ctx->buffer = senddata;
	ctx->len = sendlen;
	SetEvent(ctx->ev_from_main);
	ctx->busy = TRUE;
    } else if (!ctx->busy && bufchain_size(&ctx->queued_data) == 0 &&
               ctx->outgoingeof == EOF_PENDING) {
        CloseHandle(ctx->h);
        ctx->h = INVALID_HANDLE_VALUE;
        ctx->outgoingeof = EOF_SENT;
    }
}

/* ----------------------------------------------------------------------
 * Unified code handling both input and output threads.
 */

struct handle {
    int output;
    union {
	struct handle_generic g;
	struct handle_input i;
	struct handle_output o;
    } u;
};

static tree234 *handles_by_evtomain;

static int handle_cmp_evtomain(void *av, void *bv)
{
    struct handle *a = (struct handle *)av;
    struct handle *b = (struct handle *)bv;

    if ((unsigned)a->u.g.ev_to_main < (unsigned)b->u.g.ev_to_main)
	return -1;
    else if ((unsigned)a->u.g.ev_to_main > (unsigned)b->u.g.ev_to_main)
	return +1;
    else
	return 0;
}

static int handle_find_evtomain(void *av, void *bv)
{
    HANDLE *a = (HANDLE *)av;
    struct handle *b = (struct handle *)bv;

    if ((unsigned)*a < (unsigned)b->u.g.ev_to_main)
	return -1;
    else if ((unsigned)*a > (unsigned)b->u.g.ev_to_main)
	return +1;
    else
	return 0;
}

struct handle *handle_input_new(HANDLE handle, handle_inputfn_t gotdata,
				void *privdata, int flags)
{
    struct handle *h = snew(struct handle);
    DWORD in_threadid; /* required for Win9x */

    h->output = FALSE;
    h->u.i.h = handle;
    h->u.i.ev_to_main = CreateEvent(NULL, FALSE, FALSE, NULL);
    h->u.i.ev_from_main = CreateEvent(NULL, FALSE, FALSE, NULL);
    h->u.i.gotdata = gotdata;
    h->u.i.defunct = FALSE;
    h->u.i.moribund = FALSE;
    h->u.i.done = FALSE;
    h->u.i.privdata = privdata;
    h->u.i.flags = flags;

    if (!handles_by_evtomain)
	handles_by_evtomain = newtree234(handle_cmp_evtomain);
    add234(handles_by_evtomain, h);

    CreateThread(NULL, 0, handle_input_threadfunc,
		 &h->u.i, 0, &in_threadid);
    h->u.i.busy = TRUE;

    return h;
}

struct handle *handle_output_new(HANDLE handle, handle_outputfn_t sentdata,
				 void *privdata, int flags)
{
    struct handle *h = snew(struct handle);
    DWORD out_threadid; /* required for Win9x */

    h->output = TRUE;
    h->u.o.h = handle;
    h->u.o.ev_to_main = CreateEvent(NULL, FALSE, FALSE, NULL);
    h->u.o.ev_from_main = CreateEvent(NULL, FALSE, FALSE, NULL);
    h->u.o.busy = FALSE;
    h->u.o.defunct = FALSE;
    h->u.o.moribund = FALSE;
    h->u.o.done = FALSE;
    h->u.o.privdata = privdata;
    bufchain_init(&h->u.o.queued_data);
    h->u.o.outgoingeof = EOF_NO;
    h->u.o.sentdata = sentdata;
    h->u.o.flags = flags;

    if (!handles_by_evtomain)
	handles_by_evtomain = newtree234(handle_cmp_evtomain);
    add234(handles_by_evtomain, h);

    CreateThread(NULL, 0, handle_output_threadfunc,
		 &h->u.o, 0, &out_threadid);

    return h;
}

int handle_write(struct handle *h, const void *data, int len)
{
    assert(h->output);
    assert(h->u.o.outgoingeof == EOF_NO);
    bufchain_add(&h->u.o.queued_data, data, len);
    handle_try_output(&h->u.o);
    return bufchain_size(&h->u.o.queued_data);
}

void handle_write_eof(struct handle *h)
{
    /*
     * This function is called when we want to proactively send an
     * end-of-file notification on the handle. We can only do this by
     * actually closing the handle - so never call this on a
     * bidirectional handle if we're still interested in its incoming
     * direction!
     */
    assert(h->output);
    if (!h->u.o.outgoingeof == EOF_NO) {
        h->u.o.outgoingeof = EOF_PENDING;
        handle_try_output(&h->u.o);
    }
}

HANDLE *handle_get_events(int *nevents)
{
    HANDLE *ret;
    struct handle *h;
    int i, n, size;

    /*
     * Go through our tree counting the handle objects currently
     * engaged in useful activity.
     */
    ret = NULL;
    n = size = 0;
    if (handles_by_evtomain) {
	for (i = 0; (h = index234(handles_by_evtomain, i)) != NULL; i++) {
	    if (h->u.g.busy) {
		if (n >= size) {
		    size += 32;
		    ret = sresize(ret, size, HANDLE);
		}
		ret[n++] = h->u.g.ev_to_main;
	    }
	}
    }

    *nevents = n;
    return ret;
}

static void handle_destroy(struct handle *h)
{
    if (h->output)
	bufchain_clear(&h->u.o.queued_data);
    CloseHandle(h->u.g.ev_from_main);
    CloseHandle(h->u.g.ev_to_main);
    del234(handles_by_evtomain, h);
    sfree(h);
}

void handle_free(struct handle *h)
{
    /*
     * If the handle is currently busy, we cannot immediately free
     * it. Instead we must wait until it's finished its current
     * operation, because otherwise the subthread will write to
     * invalid memory after we free its context from under it.
     */
    assert(h && !h->u.g.moribund);
    if (h->u.g.busy) {
	/*
	 * Just set the moribund flag, which will be noticed next
	 * time an operation completes.
	 */
	h->u.g.moribund = TRUE;
    } else if (h->u.g.defunct) {
	/*
	 * There isn't even a subthread; we can go straight to
	 * handle_destroy.
	 */
	handle_destroy(h);
    } else {
	/*
	 * The subthread is alive but not busy, so we now signal it
	 * to die. Set the moribund flag to indicate that it will
	 * want destroying after that.
	 */
	h->u.g.moribund = TRUE;
	h->u.g.done = TRUE;
	h->u.g.busy = TRUE;
	SetEvent(h->u.g.ev_from_main);
    }
}

void handle_got_event(HANDLE event)
{
    struct handle *h;

    assert(handles_by_evtomain);
    h = find234(handles_by_evtomain, &event, handle_find_evtomain);
    if (!h) {
	/*
	 * This isn't an error condition. If two or more event
	 * objects were signalled during the same select operation,
	 * and processing of the first caused the second handle to
	 * be closed, then it will sometimes happen that we receive
	 * an event notification here for a handle which is already
	 * deceased. In that situation we simply do nothing.
	 */
	return;
    }

    if (h->u.g.moribund) {
	/*
	 * A moribund handle is already treated as dead from the
	 * external user's point of view, so do nothing with the
	 * actual event. Just signal the thread to die if
	 * necessary, or destroy the handle if not.
	 */
	if (h->u.g.done) {
	    handle_destroy(h);
	} else {
	    h->u.g.done = TRUE;
	    h->u.g.busy = TRUE;
	    SetEvent(h->u.g.ev_from_main);
	}
	return;
    }

    if (!h->output) {
	int backlog;

	h->u.i.busy = FALSE;

	/*
	 * A signal on an input handle means data has arrived.
	 */
	if (h->u.i.len == 0) {
	    /*
	     * EOF, or (nearly equivalently) read error.
	     */
	    h->u.i.gotdata(h, NULL, -h->u.i.readerr);
	    h->u.i.defunct = TRUE;
	} else {
	    backlog = h->u.i.gotdata(h, h->u.i.buffer, h->u.i.len);
	    handle_throttle(&h->u.i, backlog);
	}
    } else {
	h->u.o.busy = FALSE;

	/*
	 * A signal on an output handle means we have completed a
	 * write. Call the callback to indicate that the output
	 * buffer size has decreased, or to indicate an error.
	 */
	if (h->u.o.writeerr) {
	    /*
	     * Write error. Send a negative value to the callback,
	     * and mark the thread as defunct (because the output
	     * thread is terminating by now).
	     */
	    h->u.o.sentdata(h, -h->u.o.writeerr);
	    h->u.o.defunct = TRUE;
	} else {
	    bufchain_consume(&h->u.o.queued_data, h->u.o.lenwritten);
	    h->u.o.sentdata(h, bufchain_size(&h->u.o.queued_data));
	    handle_try_output(&h->u.o);
	}
    }
}

void handle_unthrottle(struct handle *h, int backlog)
{
    assert(!h->output);
    handle_throttle(&h->u.i, backlog);
}

int handle_backlog(struct handle *h)
{
    assert(h->output);
    return bufchain_size(&h->u.o.queued_data);
}

void *handle_get_privdata(struct handle *h)
{
    return h->u.g.privdata;
}